
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

ADVERSARIAL REINFORCEMENT LEARNING: A DUALITY-BASED APPROACH TO
SOLVING OPTIMAL CONTROL PROBLEMS

Nan Chen, Mengzhou Liu, Xiaoyan Wang, and Nanyi Zhang

Dept. of Systems Engineering and Engineering Management, The Chinese University of Hong Kong,
Hong Kong, CHINA

ABSTRACT

We propose an adversarial deep reinforcement learning (ADRL) algorithm for high-dimensional stochastic
control problem. Inspired by the information relaxation duality, ADRL reformulates the control problem
as a min-max optimization between policies and adversarial penalties, enforcing non-anticipativity while
preserving optimality. Numerical experiments demonstrate ADRL’s superior performance to yield tight dual
gaps. Our results highlight ADRL’s potential as a robust computational framework for high-dimensional
stochastic control in simulation-based optimization contexts.

1 INTRODUCTION

Stochastic control establishes a powerful framework for modeling and solving decision-making problems
in random environments, where uncertainty unfolds and decisions are made sequentially over time. The
principle of dynamic programming provides a mathematically elegant characterization of the structure of
optimal policies in control problems. However, the practical implementation of this principle is severely
constrained by the curse of dimensionality, making it infeasible to solve many high-dimensional applications
directly.

Recently an innovative approach emerges in the literature (e.g., Han and E 2016 and Han et al.
2018), leveraging the high expressivity of deep neural networks combined with Monte Carlo simulation to
address high-dimensional control problems. This deep Monte Carlo optimization approach has garnered
significant attention for its ability to overcome the limitations of traditional methods. For further theoretical
developments, diverse applications, and numerical experiments, we refer to works such as (Becker et al.
2019), (Buehler et al. 2019), (Huré et al. 2021). However, some studies (e.g., Reppen and Soner 2023)
suggest that excessively large neural networks may overfit to future randomness rather than accurately
estimating it. As a result, the feedback policies trained by this deep Monte Carlo approach tend to
outperform the original control problem in-sample by implicitly bypassing the essential adaptiveness
restriction. Furthermore, this overfitting issue also causes feedback actions constructed using overly large
hypothesis spaces to fail to generalize well and perform poorly out-of-sample.

The above considerations give rise to an intriguing research problem: how can we assess the optimality
of approximate control policies, particularly when these policies are derived using complex approximation
schemes such as deep neural networks? In this paper, we propose an adversarial deep reinforcement
learning (ADRL) framework for constructing deep neural network-based approximations to the true value
functions of multi-dimensional stochastic control problems. This novel approach is rooted in the concept
of information relaxation and its associated dual formulation within the stochastic dynamic programming
literature (see Rogers 2007, Brown et al. 2010, Brown and Smith 2022, and Chen et al. 2024). Drawing
inspiration from the principle of strong duality, we find that the dual problem can be reformulated as a
zero-sum game between an adversary and an agent. In this game, the adversary seeks to minimize the
agent’s expected (penalized) reward by strategically selecting an appropriate dual penalty, while the agent

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 271

Chen, Liu, Wang, and Zhang

responds by employing non-adaptive policies to maximize its rewards. From this perspective, the agent
needs to solve deterministic optimization problems in the dual formulation.

We parameterize the dual penalties using deep neural networks and employ stochastic optimization
techniques to develop learning algorithms for identifying the optimal hyperparameters of the dual networks.
Both Robbins-Monro (RM) and Kiefer-Wolfowitz (KW) type methods are utilized in this framework.
Notably, under certain regularity conditions, we derive a simple, unbiased gradient estimator for the RM
method by leveraging the celebrated envelope theorem, which characterizes the differentiability properties
of the value function in parameterized optimization problems.

Once the learning process for the dual part is complete, the ADRL algorithm can also generate adaptive
control policies. This is achieved by utilizing the learned dual functions as approximations for continuation
value functions within the one-step Bellman equation to determine optimal actions. It is important to
emphasize that these greedy policies are suboptimal, serving as a lower bound for the true value of the
original control problem. By combining these lower bounds with the upper bounds derived from the dual
values, the ADRL algorithm is able to construct effective confidence intervals for the true values of the
control problem. Numerical experiments demonstrate that ADRL produces tight confidence intervals even
for high-dimensional control problems. These findings underscore the efficiency of the ADRL framework
in learning high-quality policies with performance guarantees.

The information relaxation-based duality framework has spurred a rapidly growing body of literature. It
has been widely used to demonstrate the near-optimality of certain heuristics by evaluating the tightness of
the corresponding dual gap across various applications (see Brown and Smith 2022, Chen et al. 2024, and
the references therein). However, much of this literature remains silent on how to proceed when the dual
gap of a policy under evaluation is found to be loose. Complementing this literature, the main contribution
of this paper is the development of a systematic approach for constructing tight dual gaps using deep neural
networks, with the ultimate goal of identifying optimal control policies.

Recent advances in adversarial deep learning have primarily focused on efficiently crafting adversarial
examples—inputs subtly perturbed to induce model misclassification—to train neural networks and enhance
their robustness, ensuring high-confidence performance; see (Goodfellow et al. 2015; Huang et al. 2017).
Another prominent technique, Generative Adversarial Networks (GANs) (Goodfellow et al. 2020), employs
a min-max formulation to train generator networks through a zero-sum game between generators and
discriminators. While our work shares structural similarities with GANs in its use of a min-max optimization
framework, it is rooted in a different theoretical foundation and designed for distinct applications. Specifically,
our approach leverages information relaxation theory to construct dual values for stochastic control problems.
As mentioned earlier, this leads to a systematic approach for constructing tight dual gaps for policy evaluation
for solving stochastic control problems.

The remainder of the paper is organized as follows. In Section 2, we review the basics of the SDP duality.
Section 3 establishes the ADRL algorithm with discussions on how to implement the Robbins-Monro and
Kiefer-Wolfowitz methods. Section 4 is devoted to one numerical experiment in optimal trade execution.
Section 5 concludes the paper.

2 CONTROL PROBLEM AND INFORMATION RELAXATION

2.1 Mathematical Formulation

We consider a stochastic optimal control problem in which an agent makes sequential decisions within
a random environment over a finite time horizon, denoted as T = {0,1, . . . ,T}. At each time t ∈ T, the
state of the environment is represented by ssst ∈ S⊆Rm, and the agent selects an action aaat ∈ At ⊆Rn. The
agent receives a reward rt(ssst ,aaat), and the environment transitions to the next state ssst+1 according to the
dynamics:

ssst+1 = ft(ssst ,aaat ,ξt+1), (1)

272

Chen, Liu, Wang, and Zhang

where ξt+1 is a random variable taking values in Ξ ⊆ Rd . The action set At is characterized by a set of
equality and inequality constraints:

At = {a ∈ Rn : gi(st ,a) = 0,1 ≤ i ≤ E; g j(st ,a)≥ 0,1 ≤ j ≤ I}, (2)

with continuously differentiable constraint functions {gi}E
i=1 and {g j}I

j=1.
The agent’s objective is to maximize the expected total reward over the time horizon T. Let Ft denote

the smallest σ -algebra generated by the random variables ξ1, . . . ,ξt . A policy π = (π0, . . . ,πT−1) is said
to be non-anticipative if πt is Ft-measurable, meaning it depends only on the information available up to
time t. Let Π be the collection of all non-anticipative policies. The agent solves the following optimization
problem:

V ∗(sss) = max
π∈Π

V π(sss) = max
π∈Π

E

[
T−1

∑
t=0

rt(ssst ,πt)+R(sssT)
∣∣∣sss0 = sss

]
, (3)

where R(·) denotes the terminal reward function. For simplicity, we assume that the random variables
{ξt}T

t=1 are independent. Under this probabilistic structure, the optimal policy π∗ is in feedback form;
that is, π∗

t is a function of the current state. In addition, let V ∗
t (s) represent the optimal expected reward

achievable from time t onward, given the current state s. Assume in this paper that
Assumption 2.1. All the functions rt(sss,aaa), R(sss), and ft(sss,aaa,ξ) are all bounded and Lipschitz in the sense
that there exists a sufficiently large constant B such that, for any sss,sss′ ∈ Rm and aaa,aaa′ ∈ Rn,

|rt(sss,aaa)− rt(sss′,aaa′)| ≤ B(∥sss− sss′∥+∥aaa−aaa′∥), |R(sss)−R(sss′)| ≤ B∥sss− sss′∥,

and supξ∈Ξ ∥ ft(sss,aaa,ξ)− ft(sss′,aaa′,ξ)∥ ≤ B(∥sss− sss′∥+∥aaa−aaa′∥).

2.2 Information Relaxation and duality

This paper applies the concept of information relaxation (IR) based duality from the literature of stochastic
dynamic programming to develop an adversarial reinforcement learning (RL) approach for stochastic optimal
control problems. The IR framework relaxes the non-anticipativity constraints, allowing policies to utilize
future information, while imposing penalties to account for violations of these constraints. For foundational
work on this approach, see (Rogers 2007), (Brown et al. 2010), (Brown and Smith 2022), and (Chen et al.
2024).

Let AT :=A0 ×·· ·×AT−1 and ΞT := Ξ1 ×·· ·×ΞT . We define a function z(aaa,ξ) : AT ×ΞT →R as a
penalty, where aaa = (aaa0, . . . ,aaaT−1) is a sequence of actions, and ξ = (ξ1, . . . ,ξT) is a sequence of random
perturbations. A penalty function is considered feasible if it satisfies E[z(π,ξ)]≤ 0 for all non-anticipative
policies π ∈ Π. Given a feasible penalty function z(·, ·), the corresponding dual value is defined as:

Dz(sss) := E

[
max

aaa={aaat}T−1
t=0 ∈AT

(
T−1

∑
t=0

rt(ssst ,aaat)+R(sssT)− z(aaa,ξ)

)∣∣∣sss0 = sss

]
. (4)

In this formulation, the optimization is placed inside the expectation, thus relaxing the non-anticipativity
constraints. The penalty function z serves to counterbalance the advantage gained from this relaxation.

The IR literature points out that penalties can be explicitly constructed using a sequence of functions
W = (W0, . . . ,WT), where Wt(·) : S→ R. For (aaa,ξ) ∈ AT ×ΞT and t ∈ T, define

zW
t (aaa,ξ) :=Wt+1(ssst+1)−E

[
Wt+1

(
ft(ssst ,aaat ,ηt+1)

)∣∣ssst
]
, (5)

where {ssst : t ∈ T} is the state trajectory by substituting aaa and ξ into the system dynamics (1), and ηt shares
the same distribution as ξt . By summing over all time steps, we can obtain a feasible penalty as follows:

zW (aaa,ξ) =
T−1

∑
t=0

zW
t (aaa,ξ). (6)

273

Chen, Liu, Wang, and Zhang

Hereafter we refer to W as the generating function of IR penalties.
The strong duality is achievable for finite-horizon, discrete-time control problems. Theorem 1 of

(Rogers 2007) and Theorem 2.3 of (Brown et al. 2010) show that

min
W

E

[
max

aaa={aaat}T
t=0∈AT

(
T−1

∑
t=0

rt(ssst ,aaat)+R(sssT)− zW (aaa,ξ)

)∣∣∣sss0 = sss

]
=V ∗(sss). (7)

In (7), the minimum on the left-hand side is attained when W = (V ∗
0 , · · · ,V ∗

T), and the optimal policy π∗

for the primal problem is also optimal for the dual problem. The strong duality relationship (7) presents a
systematic approach to assess the optimality of a policy π . First, we may evaluate the policy by calculating

V t(sss) = E

[
T−1

∑
s=t

rs(ssss,πs)+RT (sssT)
∣∣∣ssst = sss

]
(8)

for all 0 ≤ t ≤ T . Surely V t(sss)≤Vt(sss) for any sss because of the sub-optimality of π . Then, we replace the
generic W in (6) by V t to construct a penalty zV and compute the associated dual value

V 0(sss) = E

[
max

aaa={aaat}T
t=0∈AT

(
T−1

∑
t=0

rt(ssst ,aaat)+R(sssT)− zV (aaa,ξ)

)∣∣∣sss0 = sss

]
(9)

From the strong duality (7), we know V0(sss) ≤ V 0(sss), which implies 0 ≤ V 0(sss)−V0(sss) ≤ V 0(sss)−V 0(sss).
When the dual gap V 0 −V 0 is sufficiently tight, we can conclude that the performance of policy π must
be very close to the optimality. This line of work has sparked a rapidly expanding literature that leverages
information-relaxation duality to certify the near-optimality of a wide range of heuristic policies. More
recently, (Chen et al. 2024) develop a supersolution-based approach to improve the optimality for a given
policy if we find that its duality gap is loose.

3 MAIN RESULTS

3.1 Adversarial Deep Reinforcement Learning (ADRL)

The min-max formulation of (7) provides a game-theoretic perspective on strong duality. Consider an
adversary whose goal is to minimize the agent’s expected (penalized) reward by selecting an appropriate
W (thereby penalty zW). Meanwhile, the agent seeks to maximize its rewards by employing anticipative
policies. From this perspective, the interaction between the agent and the adversary can be framed as a
zero-sum game. Based on this observation, we develop an adversarial RL algorithm in this section to learn
the solution to (3).

Note that the generating function W of optimal penalties for (7) is typically a highly complex function
of state sss, especially in many high-dimensional stochastic control problems. To address this challenge,
we leverage the remarkable expressivity of deep neural networks (DNNs) to approximate the adversary’s
optimal choice for W in this work. In particular, let φt ∈ Φt ⊂ Rs represent the hyperparameters of the
network at time t, and we parameterize the DNNs as {ρt(·,φt) : t ∈ T}. One may refer to Appendix A.1
for a brief description on the structure of DNN considered in this paper. Invoking (7), we train optimal φt
by solving the following minimization problem

φ
∗ = arg min

φ={φt :t∈T}
E

[
max

aaa={aaat}T
t=0∈AT

(
T−1

∑
t=0

rt(ssst ,aaat)+R(sssT)− zφ (aaa,ξ)

)∣∣∣sss0 = sss

]
, (10)

where zφ is a penalty based on the generating function {ρt(·,φt) : t ∈ T}.

274

Chen, Liu, Wang, and Zhang

Structurally, the problem (10) is essentially a stochastic optimization problem. For any hyperparameter
φ in the construction of penalty function, action sequence aaa, and noise sequence ξ , denote

Y (φ ,aaa,ξ) :=
T−1

∑
t=0

rt(ssst ,aaat)+R(sssT)− zφ (aaa(ξ),ξ). (11)

Here, sss = {ssst : t ∈ T} is the state sequence determined by the action and randomness pair (aaa,ξ). Using
this notation, the optimization problem (10) is to maximize the expected value of E[maxaaaY (φ ,aaa,ξ)].

Inspired by this observation, we develop the following simulation based approach to solve it. We
generate n sample paths of ξ and collect them into a training dataset L n := {ξ (1), · · · ,ξ (n)}, where
each ξ (i) = (ξ

(i)
1 , · · ·ξ (i)

T). Divide L n into m disjoint batches: L n = K1 ∪ ·· · ∪Km. For instance, we
break sample paths evenly into m batches: K1 = {ξ (1), · · · ,ξ (l)}, K2 = {ξ (l+1), · · · ,ξ (2l)}, · · · , Km =

{ξ ((m−1)l+1), · · · ,ξ (n)}, where l = n/m. We use one batch in each iteration of training. Suppose that the
first b− 1 batches K1, · · · , Kb−1 have been used in the previous training iterations to yield the current
estimate of the hyperparameter {φ

b−1
t : t ∈ T}. The bth iteration of ADRL consists of two stages:

-Action Stage: Construct the penalty zb−1 using {ρt(·,φ b−1
t)}. The agent solves the inner optimization

problem

aaab(ξ) = (aaab
0(ξ), · · · ,aaab

T−1(ξ)) = arg max
aaa={aaat}T−1

t=0 ∈AT
Y (φ b−1,aaa,ξ) (12)

along each ξ ∈ Kb. Therefore, the optimization problem in (12) is deterministic. There is a vast research
literature about deterministic optimization that we can draw on to solve these problems; see, e.g., (Nocedal
and Wright 2006). Let us assume for the inner optimization problem, we have
Assumption 3.1. (a) The constraint set At is compact and convex for all t ∈ T. In addition, it satisfies the
Slater’s condition.
(b) For any given φ ∈ Φ, the program (12) admits a unique solution for almost every ξ .

-Adversarial Stage: Update φ using an estimate gradb−1
φ

of the following gradient:

∇φE

[
max

aaa={aaat}T−1
t=0

Y (φ b−1,aaa,ξ)
∣∣∣sss0 = sss

]
. (13)

Update φ by: φ b = φ b−1−γb ·gradb−1
φ

, where γb is the learning rate. The gradient gradb−1
φ

can be estimated
via Robbins-Monro or Kiefer-Wolfowitz methods, detailed in the following subsections.

Algorithm 1 Adversarial Deep Reinforcement Learning (ADRL)

Require: Training data L n, network architecture {ρt(·,φt)}, initial parameters {φ 0
t }, learning rates {γb}

1: for b = 1,2, . . . ,m do
2: Construct penalty zb−1 using {ρt(·,φ b−1

t)}
3: Select minibatch Kb
4: for each ξ ∈ Kb do
5: Solve (12) to find aaab(ξ)
6: end for
7: Compute gradient gradb−1

φ

8: Update φ b = φ b−1 − γb ·gradb−1
φ

9: end for

We encapsulate the ADRL algorithm in Algorithm 1.

275

Chen, Liu, Wang, and Zhang

The ADRL algorithm outputs generating functions {ρt(·,φ m
t), t ∈ T}. This set of functions can be used

to define a greedy policy through the following one-step Bellman equation: for all state sss at t ∈ T, we solve

π
m
t (sss) = arg max

aaat∈At

(
rt(sss,aaat)+E

[
ρt+1(ssst+1,φ

m
t+1)|ssst = sss

])
= arg max

aaat∈At

(
rt(sss,aaat)+E

[
ρt+1(ft(ssst ,at ,ξt+1),φ

m
t+1)|ssst = sss

])
. (14)

Note that such calculated πm depends only on the current state sss. Hence, it is an non-anticipative policy. In
most practical applications, computing the policy for all possible states in the state space is computationally
expensive, and analytical expressions for the expectations are often unavailable. To address this, we calculate
πm for a representative subset of states and generalize it to the entire state space using least-squares fitting.
In this process, a sample average based on a small-scale simulation of ξ can be used as an approximation
for the expectation, facilitating computation; see (Bertsekas and Tsitsiklis 1997) for further details. When
the training data is sufficient, we expect that the generating function {ρt(·,φ m

t), t ∈ T} learned from ADRL
is close to the optimal one; that is, ρt(·,φ m

t)≈V ∗
t (·). By the strong duality relation (7), we know that the

greedy policy πm defined in (14) is also close to the optimal one.
(Balseiro and Brown 2019) develop a general framework in which they derive both a policy and

a performance bound from the same approximation value function. On the one hand, they treat this
approximation as the continuation value and apply the greedy method to select actions with respect to
it. On the other hand, they generate a dual feasible penalty, thereby the dual bounds, using the same
approximate value. “Good" approximations are thus crucial for this framework to yield tight dual gaps.
The ADRL algorithm presents a systematic way to construct such “good" value approximations from the
dual side of the problem. The penalty zm constructed from the generating function {ρt(·,φ m

t), t ∈T} should
be close to the optimal penalty. Meanwhile, the greedy policy πm should also be nearly optimal, leading
to a tight dual gap.

3.1.1 The Robbins-Monro Method

Under some regularity conditions, we can develop unbiased estimators for the gradient (13). Suppose that
the solution to (12) exists at aaab and interchanging expectation and differentiation in (15) is feasible. Then,

∇φE

[
max

aaa={aaat}T−1
t=0

Y (φ b−1,aaa,ξ)
∣∣∣sss0 = sss

]
= E

[
∇φ max

aaa={aaat}T−1
t=0

Y (φ b−1,aaa(ξ),ξ)
∣∣∣sss0 = sss

]
. (15)

Note that the differentiation operation inside the expectation on the right-hand side of the above equality
is taken under fixed ξ . This pathwise derivative estimation is well-studied in simulation literature; see
(Glasserman 2004), (Asmussen and Glynn 2007), and (Chau and Fu 2015) and the reference therein. Hence,

∇φ max
aaa={aaat}T−1

t=0

Y (φ b−1,aaa,ξ) = ∇φ

(
T−1

∑
t=0

rt(ssst ,aaab
t)+R(sssT)− zb−1(aaab(ξ),ξ)

)
= ∇φY (φ b−1,aaab(ξ),ξ) (16)

provides an unbiased estimator for the gradient on the left-hand side of (15). Fixed ξ . Changes in φ

affect Y (φ b−1,aaa(ξ),ξ) directly through zφ b−1
and indirectly through the optimal solution aaaφ b−1

to the inner
optimization problem (12). However, under certain conditions, the indirect effect is negligible due to the
envelope theorem (Milgrom and Segal 2002). Using this intuition, we can show that
Proposition 3.2. Denote

∇φ zφ

t (aaa
φ

t (ξ),ξ) := ∇φ ρt+1(ssst+1(aaaφ ,ξ),φt+1)−E
[
∇φ ρt+1

(
ft
(

ssst(aaaφ ,ξ),aaaφ

t ,ηt+1

)
,φt+1

)]
(17)

for t ∈ T, where ∇φ ρt(·,φt) represents the gradient of ρt with respect to φ and {ssst(aaa,ξ) : t ∈ T} is obtained
by applying action aaa and the randomness ξ to the system.

276

Chen, Liu, Wang, and Zhang

Then, under Assumptions 2.1 and 3.1

∇φE

[
max

aaa={aaat}T−1
t=0

Y (φ ,aaa,ξ)
∣∣∣sss0 = sss

]
= E

[
−

T−1

∑
t=0

∇φ zφ

t (aaa
φ

t (ξ),ξ)

]
. (18)

Due to the page limit, we omit the complete proof in this paper and refer readers to the website of the
first author (https://www1.se.cuhk.edu.hk/~nchenweb/Publications.html) for a proof sketch. According to
Proposition 3.2, we construct an unbiased gradient estimator:

gradb−1
φ

:=− 1
|Kb| ∑

ξ∈Kb

T−1

∑
t=0

∇φ zb−1
t (aaab

t (ξ),ξ). (19)

This estimator enables the use of the Robbins-Monro method to solve the dual problem. Unlike the
Kiefer-Wolfowitz method, this approach does not require solving (12) for multiple φ values.

3.1.2 The Kiefer-Wolfowitz (KW) Method

Alternatively, we can use finite difference-based estimates for ∇φE[Y (φ ,ξ)]. Unlike the Robbins-Monro
method, the KW algorithm does not require Y (φ ,ξ) to be differentiable. Consider the simultaneous
perturbation stochastic approximation (SPSA) algorithm (Spall 1992). In the bth iteration, we generate a
random direction ∆b = (∆b

t, j : t ∈ T, j ∈ J) and perturb φ b−1 by cb∆b. The finite difference approximation
is:

∇̂Y (φ b−1,ξ) :=
maxaaaY (φ b−1 + cb∆b,aaa,ξ)−maxaaaY (φ b−1 − cb∆b,aaa,ξ)

2cb
· (∆b)−1, (20)

where (∆b)−1 is the element-wise inverse of ∆b. This estimator requires only two function evaluations,
regardless of the dimension of φ . It significantly reducing computational cost compared with the traditional
KW estimator (Kiefer and Wolfowitz 1952). The random directions ∆b are i.i.d. with E[∆b] = 0 and finite
inverse moments. A common choice is the symmetric Bernoulli distribution (±1 with probability 1/2).
The step sizes {cb} and {γb} must satisfy some regularity conditions such as cb → 0, ∑b γbcb < ∞, and
∑b γ2

b c−2
b < ∞ to ensure the convergence; see (Spall 1992), (Spall 2005), (Chau and Fu 2015).

4 NUMERICAL EXPERIMENTS

Consider an optimal order execution problem in which a trader plans to transact a large block of equity
over a fixed time horizon with minimum impact costs. It can be viewed as a variant of the models proposed
in (Bertsimas and Lo 1998), (Almgren and Chriss 2001), and (Haugh and Wang 2014). Assume that there
are n different assets traded in the market, and the trader aims to acquire R̄ shares in each of the assets in T
periods. The objective of the trader is to determine a trading schedule, i.e., how many shares to purchase
in each period, denoted by aaat := {a1, · · · ,an}, t = 1,2, · · · ,T , to minimize the associated transaction cost.
Let Rt ∈Rn denote the number of remaining orders need to satisfy in each asset at time t. Then, a feasible
training scheme should satisfy

T

∑
t=1

aaat = R̄, aaat ≥ 0, aaat ∈ Rn, (21)

Rt+1 = Rt −at , R1 = R̄, RT+1 = 0, (22)

where aaat ≥ 0 indicate the no-shorting constraint.

277

Chen, Liu, Wang, and Zhang

To complete the statement of the problem, we specify the price dynamics to be a linear price-impact
model, following (Han and E 2016). In particular, assume that price Pt ∈ Rn follows

Pt = Pt−1 +Aat +BXt + εt , for all t = 1, · · · ,T (23)

where A ∈Rn×n is a positive definite matrix and B ∈Rn×m. Here {εt , t = 1, · · · ,T} is a sequence of white
noise with mean zero and covariance matrix Σε . In (23), the constant matrix A is used to capture the
intensity of the permanent impact: trading the amount of at changes in assets’ fundamental values by Aat
and this change will last persistently in the future via the iterative relation of P.

In addition, this model allows trader to incorporate predictive signals to extract insights about the stock’s
future movements, thereby improving the performance of trade execution. The auxiliary process Xt ∈ Rm

in (23) serves this purpose. There are several approaches in the literature for selecting such signals. For
example, (Bertsimas and Lo 1998) propose that X could represent the return of a broader market index,
such as the S&P 500, a factor commonly employed in traditional asset pricing models like the CAPM.
Alternatively, X could be the outputs of an alpha model derived from the trader’s private stock-specific
analysis, capturing information that has not yet been fully reflected in market prices. The exact nature of
X is irrelevant in this experiment and thus we abstract its interpretation and assume it follows a stationary
AR(1) process: Xt = CXt−1 +ηt . The random noise term ηt has zero mean and covariance matrix Ση ,
independent of εt . The trader’s objective is to minimize

min
{aaat ,1≤t≤T}

E

[
T

∑
t=1

Ptr
t at

]
. (24)

The state variable of this model can be chosen as (Pt−1,Xt ,Rt). The control policy is a function of these
state variables.

In general, this problem has no closed form solution; see the discussion in (Bertsimas and Lo 1998) about
why this problem becomes intractable due the the non-negative constraints on {at}. In our implementation,
we set n = 10 and m = 3, and T = 20, resulting in a high-dimensional space of control policies: R23 →R10.
These challenging settings highlight the effectiveness of our ADRL algorithm in generating high-quality
policies with performance guarantees. For the neural network architecture, we use two hidden layers,
each with ReLU as the activation function. We change the number of neurons (k = 10,50,100) in the
experiments to test the approximation accuracy of neural networks of different complexity. During training
procedure, we apply feature transformation to the state st = (Pt−1,Xt,Rt), as this approach has been shown
to accelerate convergence and enhance generalization. Specifically, we construct quadratic features as
follows:

(
Pt−1, Xt, Rt, XtXtr

t , RtRtr
t , Pt−1Rtr

t , XtRtr
t
)
∈ R263.

These transformed features are then fed into the neural network for training. To compute the expectation
in penalty construction (5), we employ a Monte Carlo simulation with a sample size of 2,000. In the Action
Stage of the algorithm, we use the Sequential Least Squares Quadratic Programming (SLSQP) method to
solve the optimization problem (12). In the Adversarial Stage, we apply the Adam optimizer to dynamically
adjust the learning rates, γb, utilizing historical gradient information.

The first set of experiments focuses on the case without the no-shorting constraint, aaa ≥ 0. This scenario
admits an explicit solution via dynamic programming; see (Bertsimas and Lo 1998) for the analytical
expression of the optimal execution strategy and the corresponding optimal cost. For reference, the dotted
line in Figure 1 represents the value of the optimal cost. The horizontal axis in Figure 1 shows the number
of iterations.

The blue line displays the dual values with the penalty constructed on the generating function
{ρt(·,φ m

t), t ∈ T} after each iteration. The shaded area around the blue line indicates the 95% confi-
dence interval for these dual estimates. In each iteration, a single sample trajectory of ξ is generated as a
mini-batch.

Theoretically, based on the strong duality relation (7), the obtained dual values should provide lower
bounds for the true optimal value. This is supported by the observation that the blue line remains below

278

Chen, Liu, Wang, and Zhang

0 2000 4000 6000 8000 10000
Iterations

400

500

600

700

800

900

Va
lu

e
fu

nc
tio

n

Learning curve

ADRL Dual value k=10
Primal value k=10
Optimal value without constraints

Figure 1: ADRL’s lower bound (blue) and policy-based upper bound (red) with 95% confidence intervals
(shaded area). All networks trained for 104 iterations on an NVIDIA RTX 4090 GPU (sustained 10%
utilization). The number of neurons k = 10 in this figure. The total running times is 191 mins.

the dashed line in the figure. Furthermore, Figure 1 demonstrates that the dual values generated by our
ADRL algorithm converge to the optimal value of the problem (24). As discussed in Section 3.1, we can
construct non-anticipative policies using the greedy policy defined on the dual values. Specifically, we
take the dual value functions after every 500 iterations and simulate (14) based on 2,000 samples of ξ

to evaluate this greedy policy. The red line in Figure 1 shows the values associated with these policies.
They are all above the dotted line because any policies are suboptimal. However, we can easily see that
the greedy policy obtained after 4,000 iterations of ADRL is sufficiently optimal because the policy value
is very close to the lower bound provided by dual values. To quantify the policy optimality, define

gap :=
dual_value−primal_value

dual_value
.

At 5,000 iterations, the gap reaches 2.82%. Since the true value lies between the dual and primal values
(by strong duality), the relative error of the greedy policy at 5,000 iterations must be less than 2.82%. As
a result, our ADRL algorithm can generate a good policy and meanwhile provide the corresponding dual
values as performance guarantee, which presents a systematic way to construct the framework in (Balseiro
and Brown 2019). The results for more complex network configurations (k=50 and k=100) exhibit trends
similar to those shown in Figure 1. Therefore, we omit the corresponding figures for brevity.

In the second set of experiments, we impose no-shorting constraints on aaa (i.e., aaa ≥ 0). As noted in
(Bertsimas and Lo 1998), no closed-form solution exists for this case. We continue to examine a ten-asset
portfolio setting (n = 10, m = 3, T = 20), consistent with the first experiment. Figures 2a and 2b show that
we can still construct effective confidence interval estimates for the problem. After 6,000 iterations, the
dual gaps average 1.85% for k = 50 and 2.86% for k = 100. Based on these tight gaps, we conclude with
high confidence that the true value of the control problem in (24) with no-shorting constraints is likely
to lie between 607.47 (dual value) and 621.08 (primal value). This value exceeds that of the case where
short selling is allowed, which aligns with our expectation that smaller feasible sets lead to higher objective
values for minimization problems.

Finally, we apply a popular reinforcement learning (RL) algorithm from the literature—the deep
empirical risk minimization (DERM) algorithm (Han and E 2016)—to the problem with the no-shorting
constraint to demonstrate the advantages of working with ADRL. As summarized in A.2, DERM uses
in-sample trajectories of the noise process to train policy networks. For this purpose, we simulate 256
samples of {(εt ,ηt) : 0 ≤ t ≤ T} and construct policy networks with two hidden layers, each containing
256 neurons. In each iteration, the samples are used to compute the gradient of the empirical loss on the
right-hand side of (26) with respect to the hyperparameter θ for updating the policy networks.

279

Chen, Liu, Wang, and Zhang

0 2000 4000 6000 8000 10000
Iterations

500

525

550

575

600

625

650

675

700

Va
lu

e
fu

nc
tio

n

Learning curve

ADRL Dual value k=50
Primal value k=50
Optimal value without constraints

(a) ADRL bounds for k = 50

0 2000 4000 6000 8000 10000
Iterations

500

525

550

575

600

625

650

675

700

Va
lu

e
fu

nc
tio

n

Learning curve

ADRL Dual value k=100
Primal value k=100
Optimal value without constraints

(b) ADRL bounds for k = 100

Figure 2: ADRL bounds (k = 50,100) showing learning curve and policy-based upper bound with 95%
confidence intervals. The dotted line indicates the unconstrained theoretical optimal value.

0 1000 2000 3000 4000 5000
Iteration

600

610

620

630

640

650

660

670

680 ADRL upper bound
ADRL lower bound
training loss
evaluation loss

Figure 3: Training and evaluation loss of the ERM-based policy. The blue line shows in-sample training
loss; The red dots with shaded bands show the out-of-sample evaluation of the learned policy with 95%
confidence intervals. The two dashed horizontal lines indicate ADRL upper (red) and lower (green) bounds
from Figure 2.

The blue line in Figure 3 shows the training loss, which continues to decrease throughout training.
However, the evaluation loss (red line) initially improves but eventually worsens, indicating over training,
see (Reppen and Soner 2023). During the initial stages of training, the loss decreases sharply, indicating
that the algorithm quickly learns effective policies from the provided data. However, after 2,000 iterations,
the algorithm begins to overfit, as evidenced by the training loss dropping below the lower bound provided
by ADRL. In other words, the in-sample performance of the trained network surpasses that of the optimal
non-anticipative policies. Note that the minimizer θ ∗ for (26) depends on the entire trajectory ssst . As
a result, DERM transitions from learning better non-anticipative policies to effectively predicting future
states in the training data. Naturally, such an overfitted policy cannot generalize well to out-of-sample
scenarios. As shown by the red dots in the figure, the out-of-sample value of the policies from the latter
stage of learning performs worse (higher than the upper bound provided by ADRL).

A critical problem to resolve this trade off is when to stop the learning. ADRL provides us a systematic
approach to address this issue. For instance, when we stop in-sample learning if the training loss lies
in between the lower and upper bounds from ADRL, the strong duality relation implies that in-sample
performance of the learned policy must be close to the optimality. Figure 3 illustrates that such stopping
rule also leads to good out-of-sample performance. However, we need to acknowledge that, in terms of
computational efficiency, the primal method significantly outperforms ADRL, completing 5,000 training
iterations in approximately 7 minutes. This advantage is largely attributed to high degree of parallelism.
In contrast, ADRL involves repeatedly solving inner optimization problems. How to combine the strength
of both algorithms to enhance the scalability of ADRL will be left for future investigation.

280

Chen, Liu, Wang, and Zhang

5 CONCLUSION

In this study, we develop a novel approach to high-dimensional stochastic control problems by integrating the
information relaxation technique with neural network approximations. Our ADRL method simultaneously
generates upper and lower bounds for the control problem. Future work will further investigate ADRL’s
mechanism for mitigating overfitting through adversarial penalties and extend the framework to model-free
settings.

ACKNOWLEDGMENTS

This research project is partially supported by General Research Fund Scheme (GRF) of Hong Kong
Research Grant Council (Project No. 14211023 and 14205824).

A APPENDIX

A.1 Neural Networks Architecture

In this paper, we employ feedforward neural networks with N ≥ 2 hidden layers (each containing k neurons)
to approximate control policies and value functions. We specify the detailed architecture in this appendix.
The network architecture consists of one input layer, one output layer, and N hidden layers. The state
vector sss is encoded into the network through the input layer. More precisely, we can represent it as follows:

F(sss;φ) = ho ◦σN ◦hN ◦ · · · ◦σ1 ◦h1(sss), (25)

where h1 : Rm → Rk, hn : Rk → Rk (2 ≤ n ≤ N), and ho : Rk → Rd are all affine functions. In particular,
h1(xxx) = HHH1xxx+bbb1, hn(xxx) = HHHnxxx+bbbn, ho(xxx) = HHHoxxx+bbbo, where HHH1 ∈Rk×m (a k×m matrix), HHHn ∈Rk×k (a
k× k matrix), HHHo ∈ Rd×k (a d × k matrix), and bbb1,bbbn ∈ Rk, for n = 1, · · · ,N, bbbo ∈ Rd . σn : Rk → Rk is a
component-wise activation function given by σn(x1, · · · ,xk) = (σ(x1), · · · ,σ(xk)) for each n = 1, · · · ,N. The
hyperparameter φ in the body text of the paper refers to the matrices {HHH1, · · · ,HHHN ,HHHo} and {bbb1, · · · ,bbbN ,bbbo}
used in the construction of network (25).

A.2 Deep Empirical Risk Minimization Algorithm

(Han and E 2016) developed a deep learning-based approach to directly solves the primal control problem.
Its key idea is to approximate the functional dependence of optimal control π∗ on the state by multilayer
feedforward neural networks ϖt(·,θt), where θt is the corresponding network hyperparameter.

To learn the optimal feedback controls, we first repeatedly simulate n i.i.d. replica of the trajectory
of ξ : L n := {ξ (1), · · · ,ξ (n)}, with ξ (i) = (ξ

(i)
1 , · · · ,ξ (i)

T) for 1 ≤ i ≤ n. Then, we may find the optimal
hyperparameters through minimizing the following empirical risk

v∗(L n) := max
{θt}T−1

t=0

1
n

n

∑
i=1

[
T−1

∑
t=0

r(sss(i)t ,ϖt(sss
(i)
t ,θt))+R(sss(i)T)

]
. (26)

The standard stochastic gradient descent method with backpropragation can be easily adapted for this
purpose. After the in-sample training, we can apply the trained policy network ϖ(·,θ ∗

t) in out of sample
to control.

REFERENCES
Almgren, R., and N. Chriss. 2001. “Optimal Execution of Portfolio Transactions”. Journal of Risk 3:5–40.
Asmussen, S., and P. W. Glynn. 2007. Stochastic Simulation: Algorithms and Analysis, Volume 57. New York: Springer.
Balseiro, S. R., and D. B. Brown. 2019. “Approximations to Stochastic Dynamic Programs via Information Relaxation Duality”.

Operations Research 67(2):577–597.

281

Chen, Liu, Wang, and Zhang

Becker, S., P. Cheridito, and A. Jentzen. 2019. “Deep Optimal Stopping”. Journal of Machine Learning Research 20(1):2712–2736.
Bertsekas, D. P., and J. N. Tsitsiklis. 1997. Neuro-Dynamic Programming. Belmont, Massachusetts: Athena Scientific.
Bertsimas, D., and A. W. Lo. 1998. “Optimal Control of Execution Costs”. Journal of Financial Markets 1(1):1–50.
Brown, D. B., and J. E. Smith. 2022. “Information Relaxations and Duality in Stochastic Dynamic Programs: A Review and

Tutorial”. Foundations and Trends in Optimization 5(3):246–339.
Brown, D. B., J. E. Smith, and P. Sun. 2010. “Information Relaxations and Duality in Stochastic Dynamic Programs”. Operations

Research 58(4-part-1):785–801.
Buehler, H., L. Gonon, J. Teichmann, and B. Wood. 2019. “Deep Hedging”. Quantitative Finance 19(8):1271–1291.
Chau, M., and M. C. Fu. 2015. “An Overview of Stochastic Approximation”. In Handbook of Simulation Optimization, 149–178.
Chen, N., X. Ma, Y. Liu, and W. Yu. 2024. “Information Relaxation and a Duality-Driven Algorithm for Stochastic Dynamic

Programs”. Operations Research 72(6):2302–2320.
Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering, Volume 53. New York: Springer.
Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al. 2020. “Generative Adversarial Networks”.

Communications of the ACM 63(11):139–144.
Goodfellow, I. J., J. Shlens, and C. Szegedy. 2015. “Explaining and Harnessing Adversarial Examples”. In 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Available at https://arxiv.org/abs/1412.6572.

Han, J., and W. E. 2016. “Deep Learning Approximation for Stochastic Control Problems”. arXiv preprint arXiv:1611.07422.
Han, J., A. Jentzen, and W. E. 2018. “Solving High-Dimensional Partial Differential Equations Using Deep Learning”.

Proceedings of the National Academy of Sciences 115(34):8505–8510.
Haugh, M., and C. Wang. 2014. “Dynamic Portfolio Execution and Information Relaxations”. SIAM Journal on Financial

Mathematics 5(1):316–359.
Huang, S., N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. 2017. “Adversarial Attacks on Neural Network Policies”.

In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop
Track. Available at https://openreview.net/pdf?id=ryvlRyBKl.

Huré, C., H. Pham, A. Bachouch, and N. Langrené. 2021. “Deep Neural Networks Algorithms for Stochastic Control Problems
on Finite Horizon: Convergence Analysis”. SIAM Journal on Numerical Analysis 59(1):525–557.

Kiefer, J., and J. Wolfowitz. 1952. “Stochastic Estimation of the Maximum of a Regression Function”. The Annals of Mathematical
Statistics:462–466.

Milgrom, P., and I. Segal. 2002. “Envelope Theorems for Arbitrary Choice Sets”. Econometrica 70(2):583–601.
Nocedal, J., and S. J. Wright. 2006. Numerical Optimization. New York: Springer.
Reppen, A. M., and H. M. Soner. 2023. “Deep Empirical Risk Minimization in Finance: Looking into the Future”. Mathematical

Finance 33(1):116–145.
Rogers, L. C. G. 2007. “Pathwise Stochastic Optimal Control”. SIAM Journal on Control and Optimization 46(3):1116–1132.
Spall, J. C. 1992. “Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation”. IEEE

Transactions on Automatic Control 37(3):332–341.
Spall, J. C. 2005. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley &

Sons.

AUTHOR BIOGRAPHIES
NAN CHEN is a Professor in the Department of Systems Engineering and Engineering Management at the Chinese University
of Hong Kong (CUHK). His research interests include financial engineering and FinTech, with a focus on reinforcement
learning, quantitative modeling in finance and risk management, Monte Carlo simulation, and applied probability. His email
address is nchen@se.cuhk.edu.hk and his website is https://www1.se.cuhk.edu.hk/~nchenweb/.

MENGZHOU LIU is a PhD in the Department of Systems Engineering and Engineering Management at the Chinese University
of Hong Kong (CUHK). His email address is mzliu@link.cuhk.edu.hk.

XIAOYAN WANG is a postdoctoral researcher in the Centre for Financial Engineering at the Chinese University of Hong
Kong (CUHK). Her email address is wangxiaoyan235@link.cuhk.edu.hk.

NANYI ZHANG is a PhD student in the Department of Systems Engineering and Engineering Management at the Chinese
University of Hong Kong (CUHK). His email address is nyzhang@se.cuhk.edu.hk.

282

https://arxiv.org/abs/1412.6572
https://openreview.net/pdf?id=ryvlRyBKl
mailto://nchen@se.cuhk.edu.hk
https://www1.se.cuhk.edu.hk/~nchenweb/
mailto://mzliu@link.cuhk.edu.hk
mailto://wangxiaoyan235@link.cuhk.edu.hk
mailto://nyzhang@se.cuhk.edu.hk

	022-inv151s3-file1

