
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

PARALLEL SIMULATION-BASED PREDICTION IN DISCRETE-TIME
DISCRETE-STATE-SPACE MARKOV CHAINS WITH GPU IMPLEMENTATION

Yifu Tang1, Peter W. Glynn2, and Zeyu Zheng1

1Dept. of Industrial Eng. and Operations Research, University of California, Berkeley, CA, USA
2Dept. of Management Science and Engineering, Stanford University, Stanford, CA, USA

ABSTRACT

Effectively predicting the future performance of a stochastic system via simulation is a critical need. In
particular, a challenging class of tasks arises when the stochastic system has an underlying unobservable
Markov chain that drives the dynamics, whereas one only gets to partially observe through a function of
the underlying Markov process. Previous literature proposed a long-run estimator to predict the future
performance system of a stationary system given currently observed states. However, it can be challenging
to run a long-run estimator in parallel. In this work, we propose a modified estimator that is easier to
simulate in parallel, especially in a way that fits parallel simulation via Graphics Processing Units (GPUs).
We discuss implementation procedures on GPUs and then analyze the asymptotic convergence behavior
of the parallel estimator and its corresponding central limit theorem.

1 INTRODUCTION

In a range of operational problems, one is interested in predicting the future performance of a system
given currently observed states. These problems arise naturally in applications including supply chain
management, manufacturing operations, and service systems. Lim and Glynn (2023) developed a simulation-
based framework for constructing predictors of future performance measures when the complete system
state is not directly observable. In their model, it is assumed that there is an underlying S-valued Markov
chain (Xu : u ≥ 0) that is not observable. The observable process is denoted as (Yn = f (Xn) : n ≥ 0) for
some function f : S→Rd . With this observable model, one is interested in the performance Zn = g(Xn) for
some performance function g : S→ Rd in future states. In this paper, we consider a special case of Lim
and Glynn (2023) in which the future prediction we are interested in and the observable quantities are the
same, i.e., f (x) = g(x), for all x ∈ S (and therefore Zn = Yn for all n≥ 0).

Specifically, let (Xu : u≥ 0) be a Markov process in a state space S with transition matrix P = (P(x,y) :
x,y ∈ S) and time index u ∈ Z≥0. In our model, (Xu : u ≥ 0) denotes the sequence of underlying states
that is not observable. Assume that (Xu : u≥ 0) is positive recurrent and π , a probability distribution on
S, is the steady-state distribution. Furthermore, there is a function f : S→ Rd , and an observable process
(Yu : u≥ 0) defined as Yu = f (Xu),u ∈ Z≥0. Then, the problem can be viewed as, given y ∈Rd and a fixed
number t ≥ 0, one is interested in estimating

kt(y) := E[Yu+t |Yu = y,X0 ∼ π],

given that X0 follows the steady-state distribution π .
By the formula of conditional expectation, we have

kt(y) = ∑
x∈S

E[f (Xu+t)|Xu = x]P(Xu = x|Yu = y).

As stated in Lim and Glynn (2023), there are some challenges to estimations of kt(y):

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 3262

Tang, Glynn, and Zheng

1. When the state space S is large, simulating the Markov chain (Xu : u≥ 0) may rarely see f (Xu) = y;
2. Since f : S→Rd may compress information, it is likely not to be injective. Therefore, the conditional

distribution P(Xu = x|Yu = y) is not trivial to determine.

To overcome the challenges, simulation-based prediction is proposed in Section 4 of Lim and Glynn (2023).
In the discrete-time Markov process setting, to construct the estimator of kt(y), one runs a long path of
the Markov process X0,X1, · · · ,Xn−1. For each Xi where i = 0,1,2, · · · ,n−1, if Yi = f (Xi) = y, then, one
simulate m− 1 independent paths starting at Xi. Namely, we perform m− 1 independent simulations of
the Markov chain (X̂u : X̂0 = Xi,u≥ 0), where its transition kernel is still P. Denote Xi1, · · · ,Xi,m−1 to be
the m−1 outcomes of our simulations of X̂t (we name these m−1 paths "sub-paths") and Yi j = f (Xi j) for
j = 1,2, · · · ,m−1. Then, an estimator of kt(y) in Lim and Glynn (2023) is

kn(y) =
∑

n−1
i=0 (

1
mYi+t +

1
m ∑

m−1
j=1 Yi j)I(Yi = y)

∑
n−1
i=0 I(Yi = y)

. (1)

This estimator is shown to be asymptotically unbiased and enjoys valid central limit theorems, see Theorems
3 and 4 in Lim and Glynn (2023). However, when simulating kn(y), it requires sequentially simulating a
long path X0,X1, · · · ,Xn−1. Therefore, the time complexity of computing kn(y) is O(nm). When n is large,
simulating kn(y) requires a computational time that is linearly increasing with respect to n.

Therefore, in this work, we aim at giving a parallel estimator for kt(y) that can be implemented on
any parallel computing device, and especially on Graphics Processing Units (GPUs). The discussion of
the parallel estimator is in Section 3.

In section 3.1, we develop a modification of the long-run average estimator kn(y) that makes it easier
to compute in parallel. Our basic idea comes from the regenerative method for simulating the steady-state
of a Markov chain, see Chapter IV, Section 4 of Asmussen and Glynn (2007). Our parallel estimator is
then a modification of the long-run average estimator kn(y). The key idea is to modify the long-run average
estimator kn(y) so that it averages over independent regenerative paths. The regenerative paths start at the
same initial state z ∈ S and terminate at z as well. Denoting τ = inf{t > 0 : Xt = z}. Since the regenerative
paths are independent of each other, we can simulate the paths in parallel.

In section 3.2, we discuss the implementation of our parallel estimator on parallel computing devices,
especially on Graphics Processing Units (GPUs). Our parallel estimator can naturally be implemented on
fully independent parallel processors, such as multi-core CPUs, where each processor is operated by its
own controller. We further show that our parallel estimator can be implemented on parallel computing
devices without independent parallel processors, such as Graphics Processing Units (GPUs). A GPU is
a special type of parallel computing device that is designed to implement similar tasks in parallel. The
detailed comparison of the two types of parallel processors is in Section 3.2, as well as the GPU computing
model.

In section 3.3, the asymptotic behavior of our modified estimator is analyzed. We will use a somewhat
different approach to our modified estimator as compared to that in Lim and Glynn (2023) due to several
reasons. First, our modified estimator is not a precise splitting of kn(y) into regenerative paths. "Boundary
terms" may arise in each simulation cycle. Because of such "boundary terms", the concatenation of
regenerative cycles may be different from the long-run average paths (see detail arguments at the end of
Section 3.1). Secondly, the regenerative paths are independent of each other in our modified estimator.
Therefore, the probabilistic tools for our analysis will be different from Lim and Glynn (2023). Specifically,
we show asymptotic unbiasedness and also the central limit theorem for our proposed estimator.

In Section 4, we will implement our parallel estimator on the GPU and compare it to the CPU
implementation of kn(y) in Eq. (1). We show the accuracy and implementation time of the estimators on
the CPU and the GPU, illustrating that one can take advantage of using the GPU as a parallel computing
device to implement our parallel estimator.

3263

Tang, Glynn, and Zheng

2 THE MODEL, NOTATIONS, AND ASSUMPTIONS

We follow the model in Lim and Glynn (2023). Let (Xu : u ≥ 0) be a Markov process in state space S,
and u ∈ Z≥0 be the time index. We assume the state space S is finite or countably infinite throughout this
paper.

In the model, (Xu : u ≥ 0) denotes the underlying states that is not observable. However, we have
access to the transition matrix P = (P(x,y) : x,y ∈ S) of the Markov process (Xu : u≥ 0). We assume that
the steady state distribution of (Xu : u≥ 0) is unique and is denoted as π .

There is a function f : S→Rd , and an observable process (Yu : u≥ 0) defined as Yu = f (Xu),u ∈ Z≥0.
Since f may not necessarily be injective,

f−1(y) ∆
= {x ∈ S : f (x) = y},

may have multiple elements. We assume throughout the paper f−1(y) ̸=∅.
Then, the problem can be viewed as, given y ∈ Rd and a fixed integer t > 0 , one is interested in

estimating
kt(y) := E[Yu+t |Yu = y,X0 ∼ π], (2)

where X0 ∼ π denotes that X0 follows the steady-state distribution π .
We introduce the following notation in this paper. For two random variables X and Y , we write X d

=Y
if X and Y has the same distribution. Let ⌊x⌋ denote the largest integer less than or equal to x ∈ R, while
⌈x⌉ denotes the smallest integer that is not less than x ∈ R. Denote An

a.s.−−→ A or limn→∞ An
a.s.
= A that An

converges to A almost surely in probability space induced by the Markov chain (Xu : u≥ 0). And we denote

An
D⇒ A or limn→∞ An

d
= A that An converges to A in distribution, see Chung (2001).

3 THE PARALLEL ESTIMATOR AND ITS GPU IMPLEMENTATION

In this section, we proposed the modified parallel estimator of (2). Then, we discuss the implementation
of the parallel estimator on general parallel computing devices. After that, we show, explicitly, the way to
implement the parallel estimator on the GPU. Throughout this section, we assume that the Markov Chain
(Xu : u ∈ Z≥0) is a discrete-time Markov chain.

3.1 The Parallel Estimator

We assume that P(f (X) = y|X ∼ π)> 0 for a given y. With this assumption, the long-run average estimator
in (1) will have a positive probability that I(Yi = y). In this setting, given an integer t > 0, we are interested
in estimating

kt(y) = E[f (Xu+t)|Yu = y,X0 ∼ π] = ∑
x∈S

E[Yu+t |Xu = x]P(Xu = x|Yu = y,X0 ∼ π).

To modify the estimator kn(y) in (1) to be easier for parallel computing, the main idea is to split a
long-run path into regenerative cycles, similar to the idea in Chapter IV, Section 4 of Asmussen and Glynn
(2007). Specifically, with the assumption that the Markov chain (Xu : u≥ 0) is positive recurrent, for any
X0 = z ∈ S, defining τ = inf{s > 0 : Xs = z}, then τ < ∞ almost surely. We aim at modifying the numerator
and denominator of kn(y) into a sum of M independent regenerative paths, where M is a pre-determined
fixed number. Since the regenerative cycles are independent of each other, it is easier for us to simulate
them in parallel.

In each simulation path X p
0 = z,X p

1 , · · · ,X
p
τp−1,X

p
τp = z, · · · ,X p

τp+t−1, whenever X p
i (0≤ i≤ τp−1) satisfies

that f (X p
i) = y, one start simulating m independent sub-paths that start at X p

i , namely (X̃ j,p
u ,u≥ 0), given

X̃ j,p
0 = X p

i and its transition kernel being P, the same as (Xu : u ≥ 0). For each j = 1,2, · · · ,m, denote

3264

Tang, Glynn, and Zheng

X p
i j := X̃ j,p

t . Then, our parallel estimator of kt(y) is

(Parallel Estimator) k̂(y;M,m,z) =
∑

M
p=1 ∑

τp−1
i=0 [1

m f (X p
i+t)+

1
m ∑

m−1
j=1 f (X p

i j)]I(f (X p
i) = y)

∑
M
p=1 ∑

τp−1
i=0 I(f (X p

i) = y)
. (3)

Our parallel modified estimator k̂(y;M,m,z) and kn(y) are not exactly equivalent. If one chooses
k̂(y;M,m,z) and k̂n(y) starting at the same initial state X0 = z ∈ S, and the terminating time n of kn(y) as a
returning time to the initial state z, the major part of the two estimators are equivalent. However, there are
subtle differences between the direct concatenation of different regenerative paths in k̂(y;M,m,z) and the
original long-run average estimator kn(y). In each regenerative cycle X p

0 , · · · ,X
p
τp−1, if one has f (X p

j) = y for
some j≥ τp−t+1, then, one will simulateY p

j+t = f (X p
j+t) in this cycle, which is beyond the returning time τp.

Such Yj+t terms can be viewed as the "boundary terms" of a regenerative cycle. Since different regenerative
paths are independent of each other, the "boundary terms" Y p

j+t in regenerative path p are independent of
other regenerative paths (Xq

k : k≥ 0) for q ̸= p. However, denoting 0 = t0 < t1 < · · ·< tl ≤ n < tl+1 in kn(y)
as the returning times to the initial state X0 = z ∈ S, such "boundary terms" Yj+t (for tr− t < j ≤ tr+1) will
appear in the next regenerative cycle when f (X j) = y. Here tl is the l-th returning time to the initial state
z such that tl ≤ n < tl+1, and tr is the r-th returning time such that tr− t < j ≤ tr+1. In this case, different
regenerative cycles in kn(y) may fail to be independent of each other due to such "boundary terms" of
kn(y).

We provide the implementation of k̂(y;M,m,z) in parallel computing devices (including GPUs) in
Section 3.2. We discuss the asymptotic behavior of k̂(y;M,m,z) in Section 3.3.

3.2 Implementation of the Parallel Estimator on Graphics Processing Units

Clearly, our parallel estimator can be implemented on any group of fully independent parallel processors.
By fully independent, we mean that each processor is capable of executing distinct tasks with their own
controller and memory. An example of fully independent parallel processors is a multi-core CPU system,
where each processor is operated by its controlling operator. On such fully independent parallel processors,
one can assign the M different regenerative cycles simulation tasks to different processing units flexibly.
For example, if there are k fully independent parallel processors and we aim at simulating M tasks. When
k < M, one can first assign k tasks to the k processors and make them implement the tasks in parallel.
Whenever one processor finishes its tasks, one can assign it a new task that has not been completed. This
is a naive but flexible way of implementing tasks on fully independent parallel processors.

However, Graphics Processing Units (GPUs) do not constitute a group of fully independent processors.
Although GPUs contain many parallel computing units, these units are coordinated by a shared controller,
which limits them to executing highly similar tasks. Similarly, other devices with many processors at
a comparable price to GPUs often organize the processors under a shared controller, thus lacking full
independence.

To better understand the benefit of GPU computing for some tasks, we next introduce the GPU parallel
computing model. Modern GPUs (such as NVIDIA GPUs, see NVIDIA Corporation (2022)) adopt a
two-level hierarchical structure: several processing cores form a unit called a Streaming Multiprocessor
(SM), and multiple Streaming Multiprocessors together comprise the GPU. All cores within the GPU share
access to memory, which facilitates rapid data exchange and accelerates computation. A thread is the basic
unit of execution, running a single sequence of instructions on one core. A group of threads executing
within the same Streaming Multiprocessor is referred to as a thread block. Each thread is uniquely identified
by two indices: its position within its thread block and the position of the block within the entire GPU.

To distribute tasks to the threads, one defines a kernel function, which specifies the computation each
thread performs. Although each thread executes the same kernel function, threads can behave differently
by accessing different portions of memory based on their thread and block indices. This design enables

3265

Tang, Glynn, and Zheng

Algorithm 1: This algorithm shows the parallel implementation of estimator k̂(y;M,m,z) on
GPU.

Input: Number of threads (Parallel Computing Units) available k, number of sub-path m, initial
state z ∈ S, transition kernel P, future time t, conditional state y, total replication number M

1 Transfer Random Number Generating states from CPU to GPU;
2 for Thread number d = 1,2, · · · ,k, in parallel do
3 for p = 1,2, · · · ,

⌈M
k

⌉
, on each thread, sequentially do

4 Initialize X p
0 = z;

5 Denote current state x = z;
6 Simulate next state of the initial state w∼ P(x, ·);
7 Set Fd

p ,N
d
p := 0, denoting the cumulative quantity of the numerator and denominator;

8 Set i := 0, recording the length of path;
9 while w ̸= z do

10 Update x← w;
11 Update index i← i+1 and X p

i := w;
12 if f (x) = y then
13 for j = 1,2, · · · ,m−1 do
14 Let X j

0 = x;

15 Simulate the Markov chain (X j
u : u≥ 0), obtaining the result X [j]

0 , · · · ,X [j]
t ;

16 end
17 Update Fd

p ← Fd
p + m−1

m ∑
m−1
j=1 f (X [j]

t);
18 end
19 Update Nd

p ← Nd
p +1;

20 If f (Xi−t) = y, then update Fd
p ← Fd

p + 1
m f (X p

i);
21 Update w∼ P(x, ·) ;
22 end
23 Simulate X p

τp+1, · · · ,X
p
τp+t−1;

24 for j = 0,1,2, · · · , t−1 do
25 If f (X p

τp+ j−t) = y, update Fd
p ← Fd

p + 1
m f (X p

j+τp
)

26 end
27 Return Fd

p and Nd
p ;

28 end
29 end
30 Transfer data {Fd

p ,N
d
p}p=1,2,··· ,⌈M

k ⌉,d=1,2,··· ,k back to CPU;

31 Construct k̂(y;M,m,z) = ∑p,d Fd
p

∑p,d Nd
p

on CPU;

Output: The final estimator k̂(y;M,m,z)

GPUs to efficiently perform a large number of similar operations on different data simultaneously. See
Owens et al. (2008) and NVIDIA Corporation (2022) for more details on GPU computational models.

Although GPUs are powerful in parallel computing, computing processes cannot be implemented
directly on GPUs. One will need Central Processing Units (CPU) to control and distribute the tasks and to
transfer data to GPU. The data-transferring process between the CPU and the GPU is more time-consuming
than that in a single GPU or a single CPU. This means that GPUs may not take much benefit to implement

3266

Tang, Glynn, and Zheng

tasks that require data transfer. We refer to Kirk and Wen-Mei (2016), Ryoo et al. (2008), and Nickolls
et al. (2008) for more details about the benefits of GPU programming.

Therefore, GPUs are good at performing computational jobs that require implementing massive similar
tasks but include few communications between each parallel unit. Because regenerative simulation involves
repeated, structurally similar, and independent simulations across different paths, the GPU’s architecture
is highly suited for implementing our algorithm.

With the above characteristics of GPU computational structure, we next introduce the GPU implemen-
tation of k̂(y;M,m,z). Let there be k available threads on GPU for our parallel computing. We first create
a random number generation (RNG) state on the CPU. Then, we transfer the RNG states from the CPU
to the GPU’s memory, assigning each thread a random number generation state. The kernel function then
controls each thread on the GPU to simulate

⌈M
k

⌉
independent regenerative cycles sequentially. We denote

the terms in the summation of the numerator and the denominator of k̂(y;M,m,z) to be{
Fp(y,z,m) := ∑

τp−1
i=0 [1

m f (X p
i+t)+

1
m ∑

m−1
j=1 f (X p

i j)]I(f (X p
i) = y),

Np(y,z,m) := ∑
τp−1
i=0 I(f (X p

i) = y).
(4)

Then, in each thread,
⌈M

k

⌉
different Fp(y,z,m) and

⌈M
k

⌉
different Np(y,z,m) will be computed and stored

in the GPU’s memory during simulation.
After all the threads have completed their own tasks, the result in the GPU’s memory will then be

sent back to the CPU’s memory and one constructs the final result k̂(y;M,m,z) on the CPU. Specifically,
the implementation of k̂(y;M,m,z) on a GPU with k parallel computing units available is summarized in
Algorithm 1. The process is illustrated in Figure 1.

GPU (Threads In Parallel)

𝑘 threads, each thread simulates ⌈
𝑀

𝑘
⌉ cycles

Thread 1 Simulate ⌈
𝑀

𝑘
⌉ regenerative cycles sequentially

…

{𝐹1
𝑑, 𝑁1

𝑑}𝑑

CPU

෠𝑘 𝑦; 𝑀, 𝑚, 𝑧 =
σ𝑝,𝑑 𝐹𝑝

𝑑

σ𝑝,𝑑 𝑁𝑝
𝑑

Random Number

Generation States

Kernel Function (Controlling All Threads to Implement Algorithm 1)

Thread 2 Simulate ⌈
𝑀

𝑘
⌉ regenerative cycles sequentially

Thread 𝑝 Simulate ⌈
𝑀

𝑘
⌉ regenerative cycles sequentially

Thread 𝑘 Simulate ⌈
𝑀

𝑘
⌉ regenerative cycles sequentially

Output

{𝐹2
𝑑, 𝑁2

𝑑}𝑑

{𝐹𝑝
𝑑, 𝑁𝑝

𝑑}𝑑

{𝐹𝑘
𝑑, 𝑁𝑘

𝑑}𝑑

Figure 1: The figure illustrates the GPU Implementation Process of Computing k̂(y;M,m,z).

Remark 1 In our assignment method on the GPU, the time it takes for each thread to complete is random,
since the cycle length is random. This will likely cause some threads to terminate first while others are
still computing. The threads that complete their tasks first will then wait for all the threads to complete

3267

Tang, Glynn, and Zheng

their tasks. However, even if some threads may spend time idle after completing their tasks, our GPU
implementation of k̂(y;M,m,z) is still shown to be more efficient than the CPU implementation of kn(y)
in the experiment in Section 4.

3.3 Asymptotic Behavior of the Parallel Estimator

We analyze the asymptotic behavior of the parallel estimator k̂(y;M,m,z) in this section. In Lim and Glynn
(2023), they have shown that given some assumptions on the long-run convergence of I(Yi = y) and Yi, and
integrability of f (Xi), their estimator kn(y) will exhibit a central limit theorem for which

√
n(kn(y)−kt(y))

converges weakly to a Gaussian random variable.
As discussed at the end of Section 3.1, our parallel estimator is different from the direct splitting of

kn(y). We will follow a different framework for analyzing the asymptotic behavior of k̂(y;M,m,z), using
different assumptions from Lim and Glynn (2023).

We will first state two Propositions to assist our analysis of the convergence behavior of k̂(y;M,m,z).
Proposition 1 is a restatement of Theorem 2.18 from Hall and Heyde (2014) that gives us a tool to analyze
the almost sure convergence of our parallel estimator k̂(y;M,m,z). Proposition 2 is the "stochastic version"
of the ergodic theorem for our convergence result. We will apply Propositions 1 and 2 to give asymptotic
unbiasedness of k̂(y;M,m,z) with different assumptions from those in Lim and Glynn (2023). Finally, we
will use the multivariate central limit theorem and the Delta method to give the central limit theorem for
k̂(y;M,m,z). We write Fp and Np short for Fp(y,z,m) and Np(y,z,m) in Eq. (4) when there is no ambiguity
of y,z,m.
Proposition 1 (Strong Law of Large Numbers for Martingales, Restatement of Special case) Let (Sn =
∑

n
i=1 Xi,Fn,n≥ 1) be a martingale. If for some p ∈ [1,2], such that

∞

∑
n=1

1
npE[|Xn|p|Fn−1]<+∞,

Then, we have Sn
n

a.s.−−→ 0, as n→ ∞.
We refer the proof of Proposition 1 to Hall and Heyde (2014). Applying Proposition 1, we have the

following proposition.
Proposition 2 (Stochastic Version of Ergodic Theorem) Let ξ = ξ (ω,x) be a r.v. parameterized by x ∈ S,
i.e., for each x ∈ S, there is a probability distribution ξ |x. We denote h(x) = E[ξ |x]. Assume that for some
1 < p≤ 2,

sup
x∈S
{E|ξ (x)|p + |h(x)|p}=C <+∞.

Let X j be a time-homogeneous Markov chain with steady-state distribution π . Let Yj
d
= ξ |(x = X j) for each

j. Furthermore, Y1,Y2, · · · are independent of each other. Then, we have

lim
n→∞

1
n

n−1

∑
j=0

Yj
a.s.
= EX∼π [E[ξ (X)]].

Proof of Proposition 2. Let f (x) = E[ξ |x] and D j = Yj−h(X j). Then, we have

1
n

n−1

∑
j=0

Yj =
1
n

n−1

∑
j=0

h(X j)+
1
n

n−1

∑
j=0

D j.

By Ergodic Theorem, see for example Meyn and Tweedie (2009), we have

1
n

n−1

∑
j=0

h(X j)
a.s.−−→ EX∼π [h(X)].

3268

Tang, Glynn, and Zheng

It remains to analyze 1
n ∑

n−1
j=0 D j. We define the filtration F j := σ(X0,X1, · · · ,X j,D0, · · · ,D j) for j =

0,1,2, · · · , and Mn = ∑
n
j=0 D j. Then, note that for n≥ 1,

E[Mn|Fn−1] = E[Mn−1|Fn−1]+E[Dn|Fn−1]

= Mn−1 +E[Dn|Xn−1,ξn−1]

= Mn−1 + ∑
x∈S

E[Dn|Xn = x]P(Xn−1,x)

= Mn−1.

Furthermore,

E|Mn|= E

∣∣∣∣∣ n

∑
j=0

D j

∣∣∣∣∣≤ n

∑
j=0

E|D j|.

And for each j = 0,1,2, · · · ,
E|D j|= E|Yj−h(X j)|

= E[E[|Yj−h(X j)||X j]]

≤ E[E[|Yj||X j]+ |h(X j)||X j]

≤ sup
X∈S
{E|ξ (X)|+ |h(X)|}< ∞.

This implies that E|Mn|<+∞ for all n≥ 0. Therefore, {Mn} is a Martingale w.r.t. {Fn}. Now, in Theorem
1, take Sn = Mn and Dn = Xn. We note that since p > 1,

∞

∑
n=1

1
npE[|Dn|p|Fn−1]≤C

∞

∑
n=1

1
np <+∞.

Apply Theorem 1, we conclude that as n→ ∞, 1
n Mn

a.s.−−→ 0. Therefore, we conclude Theorem 2. □
We next turn to show the asymptotic unbiasedness of the parallel estimator.

Theorem 1 (Asymptotic Unbiasedness) Assume that there is a constant C > 0, E|ξ (x)|p <C < ∞ for any
x ∈ S and some 1 < p < 2, and Eτ2 <+∞. Then we have, for any given integer m≥ 1,

lim
M→∞

k̂(y;M,m,z) a.s.
= kt(y).

Proof of Theorem 1. We define stopping times 0 = t0 < t1 < · · · as

t j = inf{t > t j−1 : Xt = z}, j ≥ 1.

For any integer integer n, define l = l(n) to be a integer-valued random variable such that tl ≤ n < tl+1.
Consider m−1 independent Markov chains (X̂ [j]

u ,u≥ 0) starting at X̂0 = x, where j = 1,2, · · · ,m. We let

ξ (ω,x) :=
1
m

m−1

∑
j=1

f (X̂ [j]
t)I(f (x) = y).

Note that ∣∣∣∣∣ n

∑
j=0

ξ (X j)−
tl−1

∑
j=0

ξ (X j)

∣∣∣∣∣≤ n

∑
j=tl

|ξ (X j)| ≤
tl+1

∑
j=tl

|ξ (X j)|.

Now denote

Zl :=
tl+1

∑
j=tl

|ξ (X j)|.

3269

Tang, Glynn, and Zheng

Since E|Zl|p < ∞, we have, for p > 1,
∞

∑
l=1

P(Zl ≥ εl)≤
∞

∑
l=1

E|Zl|p

ε plp < ∞.

By Borel-Cantelli Lemma, this implies that Zl
l

a.s.−−→ 0. Therefore, it implies

1
n

∣∣∣∣∣ n

∑
j=0

ξ (X j)−
tl−1

∑
j=0

ξ (X j)

∣∣∣∣∣ a.s.−−→ 0.

Then, denoting

h(x) := E

[
I(f (x) = y)

1
m

m−1

∑
j=1

f (X̂ [j]
t)

]
,

we have, almost surely,

lim
l→∞

1
tl

tl−1

∑
j=0

ξ (X j) = lim
n→∞

1
n

n

∑
j=0

ξ (X j)

= Ex∼π [h(x)]

=
∫

S

m−1
m

E[I(f (x) = y) f (X̂t)]π(dx)

=
m−1

m

∫
S
E[f (X̂t)|X0 = x]I(f (x) = y)π(dx)

(5)

We next analyze the terms

Qp :=
1
m

τp−1

∑
i=0

I(f (X p
i) = y) f (X p

i+t), p = 1,2, · · · ,M.

We aim at finding the asymptotics of ∑
M
p=1 Qp as M→ ∞. It is worth noting that this term is not merely

the decomposition of the numerator in the long-run estimator (1). This is because, since the different
regenerative cycles are independent, the term f (X p

i+t) may be different from the corresponding term in
(X p+1

u ,u≥ 0). By renewal reward theory,

EQp

Eτp
=

1
m

∫
S
E[f (Xt)|X0 = x]I(f (x) = y)π(dx).

And by Eτ2 <+∞, we have EQ2
p ≤ E

[
τ2

p supx | f (x)|2
]
<+∞. Then, by the strong law of large numbers,

we have, as M→ ∞,
1
M

M

∑
p=1

Qp
a.s.−−→ Eτ

m

∫
S
E[f (Xt)|X0 = x]I(f (x) = y)π(dx) (6)

This implies that

lim
M→∞

1
M

M

∑
p=1

Fp(y,z,m)
a.s.
= Eτ

∫
S
E[f (Xt)|X0 = x]I(f (x) = y)π(dx).

Apply similar analysis to the denominator Np(y,z,m), we have

lim
M→∞

1
M

M

∑
p=1

Np(y,z,m)
a.s.
= Eτ

∫
S

I(f (x) = y)π(dx).

Taking the ratio, we conclude the Theorem. □

3270

Tang, Glynn, and Zheng

Remark 2 Theorem 1 implies that for all m ≥ 1, the parallel estimator k̂(y;M,m,z) is asymptotically
unbiased given the assumptions in Theorem 1. However, in the real application, for a fixed number M, the
number of sub-paths m will also contribute to the accuracy. This is because in the proof of the Theorem,
we have shown that the long-run average of ξ (ω,x) will converge to the stationary expectation, as shown
in (5). However, m can determine the variance of ξ defined in the proof of Theorem 1, thus impacting the
overall convergence of the parallel estimator k̂(y;M,m,z).

We next give the Central Limit Theorem to the parallel estimator.
Theorem 2 (Central Limit Theorem for k̂(y;M,m,z)) Assume that the covariance matrix of Fp := Fp(y,z,m)
and Np := Np(y,z,m) exists as Σ, then, there exists σ > 0, such that when M→ ∞,

√
M(k̂(y;M,m,z)− kt(y))

D⇒ N(0,σ2).

Proof of Theorem 2. We first give a joint Central Limit Theorem for the numerator and the denominator of k̂ and
then apply the Delta Method (see for details of Delta Methods, Vaart (2000)). Since (Fp(y,z,m),Np(y,z,m)),
p = 1,2, · · · ,M, are M independent random vectors. By Multi-variate CLT, we have, as M→ ∞,

√
M
(1

M ∑
M
p=1 Fp

1
M ∑

M
p=1 Np

)
D⇒N (µ,Σ),

where µ = (EFp,ENp) and Σ is the covariance matrix of Fp and Np. Consider function g(x,y) = x
y , and

∇g(x,y) = (1
y ,
−x
y2). Note that ∇g(µ) ̸= 0. We apply the Delta method to g(∑M

p=1 Fp,∑
M
p=1 Np). Then, as

M→ ∞,
√

M

(
g(

1
M

M

∑
p=1

Fp,
1
M

M

∑
p=1

Np)−g(µ)

)
D⇒N (0,∇g(µ)⊤Σ∇g(µ)),

where ∇g(µ) =
(

1
ENp

,− EFp
(ENp)2

)
, and

∇g(µ)⊤Σ∇g(µ) =
1

(ENp)2

(
E[F2

p]−
2E[NpFp]

ENp
+

E[N2
p](EFp)

2

(ENp)2

)
.

Hence, we completed the proof. □

Remark 3 Since the Markov chain (Xt : t ≥ 0) is positive recurrent, the choice of X0 = z ∈ S in practice
will not change the convergence behavior of our parallel estimator k̂(y;M,m,z). In practice, one can choose
any starting state X0 = z ∈ S as long as the underlying Markov chain (Xu : u≥ 0) is positive recurrent.

4 NUMERICAL EXPERIMENT

We conduct a preliminary numerical study that compares the performance of the following two situations.

1. NVIDIA RTX 6000 Ada GPU is used for computing k̂(y;M,m,z).
2. An Apple M4 Pro CPU is used for computing the long-run average estimator kn(y).

We consider an M/M/1 queue with arrival rate λ and service rate µ as the underlying hidden Markov
process. Let (Xu : u≥ 0) denote the number of customers in the system. Whether an arrival or a departure
occurs, the discrete time index u will be increased by one, and Xu is transferred to the next state.

At each time step, with probability p = λ

λ+µ
, an arrival occurs, increasing the queue size by one;

with probability q = µ

λ+µ
, a departure occurs, decreasing the queue size by one if the queue is non-empty

(otherwise the queue remains at zero). Let λ < µ so that the traffic intensity is ρ = λ

µ
. Then, the steady-

state distribution exists π(x) = (1−ρ)ρx for x ∈ Z≥0. The observable process (Yu,u ≥ 0) is defined by

3271

Tang, Glynn, and Zheng

Yu = f (Xu), where f (x) =
⌊ x

10

⌋
, mapping the number of customers into integer buckets of size ten. In

practice, one can refer to Yn as the approximate crowded level of some queue. Given a fixed integer t ≥ 0
and y ∈ Z≥0, our objective is to estimate the conditional expectation

kt(y) = E[Yu+t | Yu = y,X0 ∼ π] = E
[⌊

Xt

10

⌋∣∣∣∣ f (X0) = y,X0 ∼ π

]
,

based on simulation. It, in practice, can refer to a prediction of the future crowded level of the queue.
In the experiment, we use the limit of the Monte-Carlo Simulation to determine the real value of

kt(y). Specifically, for a large number N, we sample Z1, · · · ,ZN as π(x| f (x) = y),x ∈ S, the steady-state
distribution conditional on f (x) = y. Then, we start simulate t steps of the Markov chain (Xu : u ≥ 0)
independently, where the initial states are at Z1, · · · ,ZN . Denoting the outcomes at time step t of the paths
to be X̃1,t , · · · , X̃N,t . Then, by law of large number, 1

N ∑
N
j=1 f (X̃ j,t) converges to kt(y) as N→ ∞. We take

the empirical mean of X̃1,t , · · · , X̃N,t , where N = 2×108, in our numerical experiment, to be the real value
of kt(y). For N = 2×108, their empirical mean is shown to converge.

A thorough comparison of the computational costs between CPUs and GPUs requires aspects of
price, power consumption, hard-ware devices, etc. We refer the readers to Lee et al. (2010) for a more
detailed comparison in the GPU computing society. In this experiment, we compare kn(y) computed on an
Apple MacBook Pro M4 CPU (device price around 1500-2000 USD, representing portable devices) and
k̂(y;M,m,z) computed on an NVIDIA RTX 6000 Ada GPU (device price around 6000 USD, representing
computational servers). The price here reflects partially the computational costs in practice. We report
the corresponding execution time and absolute error of the CPU estimator kn(y) and the GPU estimator
k̂(y;M,m,z). The execution time is defined as the time from the beginning of task assignment to the final
estimator is output. When doing the GPU implementation of k̂(y;M,m,z), we assign each thread on the
GPU device one regenerative cycle to simulate. The result of the experiment is shown in Table 1.

Table 1: Comparison of CPU vs. GPU estimator performance given parameters λ = 3,µ = 2,y = 1, t = 5,
in both CPU and GPU implementation, float 64 type precision is used.

Parameters CPU time (s) CPU error GPU time (s) GPU error
n = 105,M = 214,m = 5 0.38 0.004 0.8 0.038
n = 106,M = 215,m = 5 3.81 0.003 0.79 0.008
n = 107,M = 216,m = 5 37.01 0.00085 0.81 0.0008

As shown in the experiment, when achieving the same level of accuracy, the estimator implemented
on the GPU takes significantly less time than that on the CPU. In the experiment on the GPU, since the
terminating time of each regenerative cycle is random, the threads that finish their task first will wait until
other threads complete their tasks. Even if some threads may spend their time idling, the experiment still
shows that the estimation on the GPU takes significantly less time than computing kn(y) on the CPU.
Besides, the table shows that the GPU estimator converges faster than the CPU estimator. Doubling M
will result in exactly twice of regenerative cycles, while multiplying n by 10 may not increase an exact
number of regenerative cycles in the CPU estimator kn(y). Therefore, the convergence speed of the CPU
estimator kn(y) may not be a constant.

5 CONCLUSION AND FUTURE WORK

In this paper, we have discussed the modification of a long-run average estimator kn(y) in Eq. (1) into
a parallel estimator to perform simulation-based prediction in a discrete time and state space setting.
We showed how to implement the parallel estimator on Graphics Processing Units (GPUs). Also, we
discussed the asymptotic behavior of the modified parallel estimator k̂(y;M,m,z). There are various future
directions. The study of assumptions that ensure convergence of k̂(y;M,m,z) is an interesting future
direction. Furthermore, the analysis of k̂(y;M,m,z) only gives an order of convergence as M→ ∞ and an

3272

Tang, Glynn, and Zheng

intuitive explanation of the impact of m on k̂(y;M,m,z). It is worth giving a thorough, quantified discussion
of the order of convergence w.r.t both M and m. Indeed, the development of parallel simulation-based
prediction also involves many future directions. First of all, it is worth analyzing the cases when the
underlying Markov chain has continuous time or continuous state space. Furthermore, in practice, one
may face situations where the time of using parallel computing devices is limited. In this case, one will
need to terminate the parallel simulation within a given time. We also plan to extend our analysis of the
parallel estimator in the setting that the time of using parallel computing devices is limited.

ACKNOWLEDGMENTS
We would love to express our appreciation and thanks to the anonymous reviewers, for their time, comments
and suggestions. They are very helpful to the improvement of our manuscript. The third author acknowledges
NSF for partial support.

REFERENCES
Asmussen, S., and P. W. Glynn. 2007. Stochastic Simulation: Algorithms and Analysis. New York: Springer.
Chung, K. L. 2001. A Course in Probability Theory. 3rd ed. San Diego: Academic Press.
Hall, P., and C. C. Heyde. 2014. Martingale Limit Theory and its Application. New York: Academic Press.
Kirk, D. B., and W. H. Wen-Mei. 2016. Programming Massively Parallel Processors: A Hands-on Approach. San Francisco:

Morgan Kaufmann.
Lee, V. W., C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, et al. 2010. “Debunking the 100X GPU vs. CPU Myth:

An Evaluation of Throughput Computing on CPU and GPU”. In Proceedings of the 37th Annual International Symposium
on Computer Architecture. June 19th-23rd, Saint-Malo, France, 451–460.

Lim, E., and P. W. Glynn. 2023. “Simulation-Based Prediction”. Operations Research 71(1):47–60.
Meyn, S., and R. L. Tweedie. 2009. Markov Chains and Stochastic Stability. 2nd ed. Cambridge Mathematical Library.

Cambridge: Cambridge University Press.
Nickolls, J., I. Buck, M. Garland, and K. Skadron. 2008. “Scalable Parallel Programming with CUDA: Is CUDA the Parallel

Programming Model that Application Developers have been Waiting for?”. Queue 6(2):40–53.
NVIDIA Corporation 2022. GPU Performance Background User’s Guide. https://docs.nvidia.com/deeplearning/performance/

dl-performance-gpu-background/index.html, Accessed: 10th March 2025.
Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. 2008. “GPU Computing”. Proceedings of the

IEEE 96(5):879–899.
Ryoo, S., C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W. Hwu. 2008. “Optimization Principles and

Application Performance Evaluation of a Multithreaded GPU Using CUDA”. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. February 20th-23th, Salt Lake City, UT, USA, 73–82.

Vaart, A. W. v. d. 2000. Asymptotic Atatistics. Cambridge: Cambridge University Press.

AUTHOR BIOGRAPHIES
YIFU TANG is a PhD Student at the University of California, Berkeley. His email address is yifutang@berkeley.edu.

PETER W. GLYNN is the Thomas Ford Professor in the Department of Management Science and Engineering (MS&E) at
Stanford University. He is a Fellow of INFORMS and of the Institute of Mathematical Statistics, has been co-winner of Best
Publication Awards from the INFORMS Simulation Society in 1993, 2008, and 2016, and was the co-winner of the John
von Neumann Theory Prize from INFORMS in 2010. In 2012, he was elected to the National Academy of Engineering. His
research interests lie in stochastic simulation, queueing theory, and statistical inference for stochastic processes. His email
address is glynn@stanford.edu and his homepage is https://web.stanford.edu/~glynn/index.html.

ZEYU ZHENG is an associate professor in the Department of Industrial Engineering and Operations Research (IEOR) and
the Berkeley Artificial Intelligence Research Lab (BAIR) at the University of California, Berkeley. He received a Ph.D. in
Management Science and Engineering (2018), Ph.D. minor in Statistics (2018) and M.A. in Economics (2016) from Stanford
University, and B.S. in Mathematics (2012) from Peking University. His email address is zyzheng@berkeley.edu and his
homepage is http://zheng.ieor.berkeley.edu.

3273

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
mailto://yifutang@berkeley.edu
mailto://glynn@stanford.edu
https://web.stanford.edu/~glynn/index.html
mailto://zyzheng@berkeley.edu
http://zheng.ieor.berkeley.edu

	272-inv150s3-file1

