Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

AGENTIC SIMHEURISTIC: INTEGRATING GENERATIVE AI AND SIMHEURISTIC FOR A
TEAM ORIENTEERING PROBLEM

Mohammad Peyman', and Yusef Ahsini!>

'Bechained Artificial Intelligence Technologies, Barcelona, Spain
ZResearch Center on Production Mgmt. & Eng., Universitat Politeécnica de Valéncia, Alcoy, Spain
3Pure & Applied Math. University Research Institute, Universitat Politecnica de Valeéncia, Valencia, Spain

ABSTRACT

Addressing complex stochastic optimization problems often requires hybridization of search and evaluation
methods. Simheuristics combine metaheuristics and simulation but typically rely on static control logic.
Meanwhile, large language models (LLMs) offer advanced reasoning but lack robust mechanisms for
constrained optimization. We propose the agentic simheuristic framework, a novel architecture that leverages
an LLM as a high-level coordinator for simheuristic components. Applied to the team orienteering problem
(TOP) under uncertainty, the framework employs an LLM to manage an exploratory agent for broad
solution search and an exploitative agent for intensive refinement. Both agents integrate Monte Carlo
simulation to evaluate solutions under uncertainty. The LLM guides the process by selecting promising
and diverse exploratory solutions to seed refinement, enabling intelligent coordination within simheuristics.
We present the framework architecture and provide initial empirical results on TOP benchmark instances,
illustrating operational feasibility as a proof of concept and highlighting potential for explainable, Al-driven
optimization.

1 INTRODUCTION

Modern decision-making scenarios, particularly in operations, logistics, and resource management, are
increasingly characterized by large-scale, complex constraints, and widespread uncertainty (Juan et al.
2015). While traditional optimization techniques are effective under deterministic conditions, the presence
of stochastic factors such as variable travel times, fluctuating demand, or unpredictable resource availabil-
ity, necessitates methods that explicitly account for variability and risk. Simulation-based optimization
approaches, particularly simheuristics, have emerged as a powerful paradigm for tackling such challenges
(Juan et al. 2023; Abdullahi et al. 2025). By integrating metaheuristic search algorithms with simulation
techniques, depending on the specific characteristics of the system under investigation, simheuristics may
employ either MCS techniques (Gonzalez-Neira et al. 2017) or discrete-event simulation methods (Rabe
et al. 2020) for the exploration of vast solution spaces while evaluating candidate solutions under realistic,
uncertain conditions, leading to solutions that are not only high-performing on average but also robust
against potential disruptions. Despite their success, conventional simheuristics often rely on pre-defined
algorithmic structures and parameter settings. The strategic decisions within the search such as balancing
exploration and exploitation, selecting promising regions to investigate further, or adapting heuristic pa-
rameters based on search progress, typically depend on static rules or require extensive, instance-specific
tuning by domain experts. This limits their adaptability and potential autonomy in complex, dynamic
environments.

Additionally, the emergence of powerful generative Al, particularly large language models (LLMs) like
Gemini, GPT-4, and Llama 2, has opened new frontiers in automated reasoning, planning, and complex
instruction following (Touvron et al. 2023; Gemini Team et al. 2023). These generative Al models
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possess remarkable capabilities for processing diverse information streams, understanding nuanced context,
generating explanatory rationales, and making high-level strategic judgments when appropriately prompted
and guided (Wei et al. 2022). However, attempts to apply LLMs directly to fine-grained combinatorial
optimization problems often face difficulties in properly satisfying hard constraints, navigating complex
search spaces effectively, and achieving near-optimal solution quality (Huang et al. 2025; Surendar 2025).

This paper bridges the gap between the robust evaluation capabilities of simheuristics and the strategic
reasoning potential of Generative Al. We introduce the agentic simheuristic framework, a novel methodology
where an LLM acts as an intelligent orchestrator, coordinating specialized simheuristic "agents" rather than
performing the low-level optimization search itself. The LLM receives structured feedback summarizing
the performance and characteristics of solutions generated by different agents, analyzes this information,
and makes high-level strategic decisions to guide the overall search process. This includes dynamically
allocating computational budget, and selecting promising candidate solutions generated by an exploration-
focused agent to seed an exploitation-focused agent. An embedded simulation component remains critical,
providing the stochastic evaluation required by the agents and guiding the LLM’s assessment of solution
robustness. We demonstrate the effectiveness of this framework on the team orienteering problem (TOP)
under uncertainty, a prototypical NP-hard routing challenge applicable in domains such as disaster relief,
tourism planning, and autonomous mission scheduling (Chao et al. 1996; Panadero et al. 2020). Formally,
the TOP involves designing routes for a limited fleet of vehicles that begin and end their journeys at
predefined depots. Each potential location offers a reward when visited, and traveling between locations
incurs a cost, typically measured by time or distance. The objective is to maximize the total collected
reward while ensuring that the travel cost of each vehicle’s route remains within a predetermined maximum
limit. The main contributions of this work are:

* The conceptualization and implementation of the agentic simheuristic framework, employing an
LLM to orchestrate distinct exploration-focused and exploitation-focused simheuristic agents for
solving stochastic optimization problems like the TOP under uncertainty.

* A novel mechanism for LLM-driven strategic control in simheuristics, demonstrating how generative
Al can analyze structured feedback (performance metrics, solution diversity) to make informed
decisions (e.g., seed selection) that guide the search trajectory.

* An empirical evaluation of the proposed framework on benchmark TOP instances with stochastic
travel times.

* A design of the framework with a view toward improved explainability in future extensions.

The remainder of this paper is organized as follows: Section 2 provides background information
and reviews relevant literature on simheuristics, and the emerging use of LLMs in optimization contexts.
Section 3 presents the definition of the stochastic TOP. Section 4 details the proposed agentic simheuristic
framework, outlining its architecture, the roles of the LLM orchestrator and (meta)heuristic agents, and
the operational workflow through its distinct phases. Section 5 describes the experimental setup, including
the benchmark instances used, parameter settings, and performance metrics, followed by a presentation
and analysis of the computational results. Finally, Section 6 concludes the paper, summarizing the key
findings, discussing the implications and limitations of the agentic approach, and suggesting directions for
future research.

2 BACKGROUND AND LITERATURE REVIEW
2.1 SIMHEURISTICS

Variables in practical scenarios often exhibit uncertainty—e.g., travel delays or fluctuations in demand.
Travel times between nodes in urban networks, typically based on speed and distance, are influenced by
factors such as traffic and weather, resulting in temporal variability. This can be modeled as a stochastic
variable following distributions like lognormal or Weibull, which effectively represent skewed data. In
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this context, travel times comprise ideal components plus stochastic delays. Other problem uncertainties
can be modeled using fuzzy variables (Lootsma 2013), requiring solution methods that incorporate both
probabilistic constraints and stochastic/fuzzy modeling. Simheuristics address this by integrating simulation
with optimization. The approach begins by replacing uncertain variables with expected values to solve a
deterministic version, then evaluates candidate solutions through Monte Carlo or discrete-event simulation,
iteratively refining an elite solution set until convergence (Rabe et al. 2020; Juan et al. 2023). Final elite
solutions undergo extensive simulation for robust analysis. Numerous studies attest to simheuristics’ power
under uncertainty: iterated local search for preventive maintenance (Gruler et al. 2021), fuzzy-stochastic
extensions (Juan et al. 2023), and discrete-event models for warehouse layout (Leon et al. 2023). In the
stochastic TOP, adaptive MDP heuristics (Tricoire et al. 2010), BR-simheuristics for hospital logistics
during COVID-19 (Rabe et al. 2021), chance-constrained programming (Herrera et al. 2022), and urban
drone routing (Peyman et al. 2025) demonstrate its practical impact.

2.2 GENERATIVE AI AND LLMs

The rapid advancement of large language models (LLMs), a key branch of generative Al, has transformed
artificial intelligence. Built on the transformer architecture (Vaswani et al. 2017), models such as OpenAI’s
GPT series (Brown et al. 2020), Meta’s LLaMA family (Touvron et al. 2023), and Google’s PaLM and
Gemini (Gemini Team et al. 2023) demonstrate strong capabilities in natural language tasks. Trained on vast
corpora, LLMs exhibit emergent abilities such as few-shot and zero-shot learning (Brown et al. 2020), as well
as improved reasoning and planning via techniques like Chain-of-Thought prompting (Kojima et al. 2022).
These capabilities position LLMs for roles beyond text generation, including decision-support and complex
task execution. Recent “agentic” LLM-based systems autonomously decompose tasks, utilize external
tools, and reflect on outcomes (Xi et al. 2025; Park et al. 2023), often via a reasoning—action—observation
loop as in ReAct (Yao et al. 2023) or Reflexion (Shinn et al. 2023). This capability underpins our LLM
orchestrator. Simheuristics—hybrids of stochastic simulation and metaheuristics—have proven effective in
uncertain domains (Chica et al. 2020), yet seldom incorporate Al. Notable exceptions include deep RL for
orienteering problems (Gama and Fernandes 2021), neural algorithmic reasoning frameworks (Wu et al.
2024), and a recent LLM-assisted simheuristic for project portfolio selection (Saiz and Calvet 2024).

However, direct integration involving LLM-driven generative methods with simheuristics remains
significantly underexplored. Our proposed agentic simheuristic framework represents a novel synthesis
within this landscape. Unlike direct optimization attempts, it leverages established, powerful simheuristic
agents for the core search and evaluation, ensuring solution feasibility and robust performance assessment
via MCS. Unlike simple parameter tuning or code generation, the LLM acts as an active, online orchestrator
during the search process. Its key role is strategic coordination between distinct, complementary heuristic
agents. By processing structured feedback summarizing agent performance and solution characteristics
(quality, diversity), the LLM makes informed, high-level decisions—specifically, selecting diverse, high-
potential seeds from the explorer to guide the exploiter. This contrasts with single-agent LLM frameworks
or approaches where the LLM selects a single heuristic upfront. Furthermore, the tight integration with
simheuristics allows the LLM’s strategic decisions to be informed by stochastic performance estimates, and
its generative nature offers inherent potential for explainability. This work, therefore, explores the unique
potential of using LLMs specifically for the high-level strategic coordination between multiple specialized
optimization-simulation components within a dynamic search process.

3 PROBLEM DEFINITION

As introduced earlier, we demonstrate and evaluate our agentic simheuristic framework using the TOP under
uncertainty. The TOP, a well-known NP-hard routing challenge (Chao et al. 1996), involves designing
routes for a limited fleet of vehicles (or operational teams) to maximize collected rewards from visited
locations, subject to resource constraints. While the conceptual understanding of the TOP was outlined in
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the introduction, this section provides its formal mathematical definition, specifically tailored to incorporate
stochastic transition costs.

The problem is defined on a directed graph G = (V,A). The set of nodes V ={0,1,2,...,n+ 1} includes
a designated initial depot (node 0), a final depot (node n+ 1), and a set N = {1,...,n} of intermediate
operational points where rewards can be collected. Arcs (i, j) € A (where i, j € V,i # j) represent feasible
transitions. We consider a set K of M available vehicles/teams. Each vehicle k € K initiates its route from
node 0, visits a subset of nodes in N, and makes an eventual return to node n-+ 1. Each visited node j € N
yields a deterministic reward u; > 0; rewards for the depots are uy = u,+1 = 0. The primary objective is to
maximize the total reward collected by all vehicles/teams, as shown in Equation (1). For each arc (i, j) € A
and each vehicle k € K, a binary decision variable xf-‘j is 1 if vehicle k traverses arc (i, j), and O otherwise.

This objective is maximized subject to several constraints. Firstly, each intermediate node j € N can
be visited at most once across all vehicles/teams (2). Each vehicle k € K must start its route at node 0 (3)
and end at node n+ 1 (4). Route continuity for each vehicle k is ensured by flow conservation constraints
at each intermediate node j € N (5). To prevent sub-tours, auxiliary variables yk > 0 are introduced to track
the position of node j in the route of vehicle k (6 and 7). Constraint (8) caps the total travel time of every
vehicle k € K at its endurance limit Cpax. Each edge (i, j) € A has an associated (stochastic) travel time S;; s
whose distribution is estimated from data (e.g., Log-Normal). This formulation enforces the time budget
while explicitly accounting for uncertainty in travel durations The evaluation of this chance constraint
necessitates simulation. Finally, the decision variables x are binary (9).
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Our proposed agentic simheuristic approach, detailed in the following section, is designed to address
such complexities by leveraging an LLM for high-level strategic coordination of specialized simheuristic
agents. While we focus on the TOP with its vehicle routing interpretation for this proof-of-concept, the
underlying principles of LLM-coordinated exploration and exploitation agents within a simheuristic loop
are envisioned to be generalizable to a broader class of complex stochastic optimization problems.
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4 AGENTIC SIMHEURISTIC APPROACH

This section details the proposed agentic simheuristic framework, a novel methodology leveraging the
strategic reasoning capabilities of LLMs to orchestrate simheuristic optimization processes. The core
idea is to use an LLM not for direct optimization but as a high-level controller coordinating specialized
heuristic agents, whose solutions are evaluated under uncertainty using MCS. Specifically, in this work,
the framework coordinates a biased-randomized multi-start (BR-MS) agent focused on exploration and a
biased-randomized iterated local search (BR-ILS) agent focused on exploitation.

Figure 1 schematically presents our three-component architecture. At its core, an LLM orchestrator
(e.g., GPT-4, Gemini, Llama 2) governs the workflow, interprets agent feedback, and makes strategic calls.
It communicates with two specialized (meta)heuristics: a BR-MS exploration agent (Marti et al. 2013) (solid
arrows) that quickly generates diverse candidate solutions, and a BR-ILS exploitation agent (Lourenco
et al. 2010) (dashed arrows) that applies perturbation-and-local-search cycles to intensify high-quality
solutions. Both agents feed candidate solutions into an embedded MCS for risk-aware evaluation. This
combination leverages BR-MS’s speed and BR-ILS’s refinement under LLM guidance to efficiently navigate
stochastic search spaces. The framework executes through a sequence of phases orchestrated by the LLM.
While the architecture permits more dynamic control flows, our current implementation adopts a structured
multi-phase strategy to systematically balance exploration and exploitation for the stochastic TOP. Initially,
the LLM orchestrator launches the exploration phase. It decides on an appropriate initial time allocation
for the BR-MS agent, considering the total time budget, the need to reserve time for final evaluation,
and potentially the complexity of the instance. It then tasks the agent with exploring the solution space
within this budget, providing the instance details and simulation parameters. The BR-MS agent proceeds
iteratively, using biased randomization and short MCS evaluations to generate and assess a diverse pool of
candidate solutions. Upon completion, it reports its findings (best deterministic solution, elite simulated
solutions) back to the LLLM orchestrator.

Subsequently, the framework enters the analysis and seed selection phase, where the LLM orchestrator
actively makes strategic decisions. Processing the feedback, the LLLM analyzes the characteristics of the
unique candidate solutions provided by the explorer. Based on its configured strategy (e.g., prioritizing high
simulated reward, potentially considering solution robustness or structural features), it ranks the candidates.
Before the LLM is queried, the Python controller performs a deterministic diversity pre-filtering step. For
every candidate produced by the BR-MS explorer we extract the set of visited customer nodes and compute
its Jaccard similarity with the node sets of the survivors selected so far. A candidate is retained only if the
maximum similarity does not exceed a defined threshold (0.85$ in our experiments). After this screening,
the LLM ranks the remaining candidates and selects up to k of them as seeds for the subsequent exploitation
phase. The LLM finalizes this phase by outputting the validated list of seed-solutions. Its implementation
is conducted using the following prompt:

Final Seed Selection from Pre-Filtered Candidates.

Total solver time budget: {max_time:.2f}s. Remaining solver time:
{remaining_time:.2f}s.

Goal: Select the best seeds for focused Biased-Randomized ILS runs from
the provided pre—-filtered list.

Available PRE-FILTERED candidates (index: summary):
{candidate_summaries}

Diversity Threshold (alreadyappliedinpre-filtering): {diversity_threshold:.2f}.
Selectupto {max_seeds} indices fromthelistabove. Prioritizecandidates
withthebest rewardpotential (considerbothdeterministicandsimulated
rewards) .

Respond with:

1. A comma-separated list of integer indices (e.g. 0,2,4) on the first
line.
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2. The separator ’ {separator}’ on the next line.
3. Abrief explanation for your final selection choices on the following
lines.

Because the list that the LLM receives has already been diversity-screened, the model is relieved
from computing pairwise similarity itself. The prompt therefore simply reminds it that the "Diversity
Threshold" has been applied; its task is to pick the k highest-reward seeds subject to that cardinality
limit. Along with this diversity information, the LLM also receives the total solver time budget, remaining
solver time, and maximum number of seeds to select (typically 3 in our instances). For each solution
in the list, the LLM receives a concise structured summary containing: (1) a deterministic reward value
measuring performance under expected conditions, (2) a simulation reward value capturing performance
under stochastic evaluation, and (3) structural information about the number of routes. These three metrics
enable the LLLM to make informed decisions prioritizing solutions with the best overall performance potential
while considering time constraints. In other words, the diversity constraint is enforced algorithmically by
the controller, whereas the LLM performs strategic selection from this pre-filtered, diverse candidate pool
with awareness of both solution quality and computational resource constraints.

In other words, the diversity constraint is enforced algorithmically by the controller, whereas the LLM
merely operates on the pre-filtered, hence already diverse, set of candidates. The exploitation Phase is then
initiated based on the LLM’s decisions. The LLM orchestrator determines how to allocate the remaining
computational budget among the selected seed-solutions. This could be a simple equal division or potentially
a more nuanced allocation based on the perceived potential of each seed. The prompt used is:

Focused Exploitation Time Allocation (Biased-Randomized ILS Loops) .
Total solver time budget: {max_time:.2f}s. Remaining solver time:
{remaining_time:.2f}s.

Number of final selected seeds: {num_seeds}.

Final selected seed summaries:

{seed_summaries}

Goal: Allocate remaining solver time among {num_seeds} final seeds for
Standard ILS.

Task: First, explain your reasoning for choosing a time allocation
strategy (consider seed quality/diversity, remaining time) . Then,
state the chosen strategy ('EQUAL’ or "WEIGHTED') .

Respond with:

1. Your reasoning on the first lines.

2. The separator ' {separator}’ on the next line.

3. The strategy name ('EQUAL’ or "WEIGHTED’) on the final line.

It then launches sequential instances of the BR-ILS agent, providing each with its assigned seed and
corresponding time budget. Each BR-ILS agent instance executes its iterative search, alternating between
perturbation (configured by the LLM - e.g., biased-randomized) and Local Search, using short MCS
evaluations to guide its internal acceptance criterion and track promising solutions. Upon completion, each
agent reports its best findings back to the LLM orchestrator. Finally, the final evaluation and selection
phase concludes the process. The LLM orchestrator aggregates all results. It identifies the best overall
deterministic solution and the top unique elite candidates based on short simulations from all exploitation
runs. This final pool undergoes high-fidelity evaluation via long MCS runs, performed within the reserved
time budget. Based on these reliable results, the LLM makes the final determination of the final best result
in deterministic and stochastic situations. Throughout the process, the LLM can be prompted to provide
explanations justifying its key strategic decisions regarding seed selection and potentially time allocation.

The orchestrator queries the LLM through a stateless HTTPS API, pinning requests to a deployment
region close to the simulation server to curb network latency; it employs the Gemini 2.0 Flash model,
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whose fast inference facilitates real-time optimisation. Each call is issued with a low temperature to limit
stochasticity, and the prompt is strongly typed, specifying exact syntax for floats, comma-separated indices
and a sentinel separator so that the parser can deterministically extract actionable data. The returned string is
immediately vetted by range checks, regular-expression matching and hash-based diversity guards, and any
deviation triggers an automatic fallback to tuned heuristic defaults. This blend of low-latency deployment,
fast-response model, conservative temperature and strict prompt-and-verify protocol keeps LLM guidance
both rapid and reliable, while leaving the solver’s time budget intact.
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Figure 1: Schema of the agentic simheuristic framework.

5 COMPUTATIONAL RESULTS

The computational experiments were conducted on Apple Silicon M2 CPU with 16 GB RAM. The agentic
simheuristic framework were implemented using Python 3.12. The LLM selected in our implementation
is Gemini 2.0 Flash. The framework’s computational time was set to a time limit of 60 seconds for all
instances. The 3 parameter for the geometric distribution was randomly assigned from the interval (0.1,0.3)
after a quick tuning process over a random sample of instances which established a good performance. For
the exploratory and refinement stages of the simulation phase, we conducted 100 and 1000 simulation runs,
respectively. To validate the proposed methodology, we randomly selected 10 instances from a well-known
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benchmark proposed by (Chao et al. 1996) and conducted 10 separate executions for each instance, utilizing
varying initial seeds for the algorithm. Among the results from these runs, we reported the best solutions
based on the highest collected reward. This benchmark set is composed of a total of 320 instances, divided
into seven main groups. Each instance is labeled in the pattern px.y.z, where x is the group number,
y is the number of vehicles, which varies from 2 to 4 depending on the instance, and z indicates the
instance number. These instances have been widely used in previous research to assess the efficiency of
algorithms in handling the deterministic TOP. In the stochastic scenario, we introduce uncertainty into the
travel times between nodes. Each edge (i,j) € A in the directed graph G = (V,A) is now defined by a
travel time, 7;; = Tj; > 0, which is not deterministic but follows a best-fit probability distribution function
with a mean value E[t;;] > 0. In our computational experiments, we used the Log-Normal probability
distribution to model the random travel times. The Log-Normal distribution is preferred over the Normal
distribution when modeling non-negative random variables. It has two parameters, namely the location
parameter ¢ and the scale parameter 6. These parameters can be determined based on the properties of
the Log-Normal distribution considering the stochastic travel times between nodes i and j are assumed
to be as follows: E[T;;] = t;; (i.e., the travel costs of the deterministic instances), and Var[T;;| =c-t;; for
all i,j € {0,1,2,...,n+1}. The parameter ¢ serves as a design parameter enabling us to control the level
of uncertainty. As c¢ approaches zero, the results of the stochastic scenario are expected to converge with
those obtained in the deterministic scenario. For our analysis, we have employed the value ¢ = 1, which
introduces a significant level of uncertainty as it uses the deterministic travel time as variance. A more
comprehensive discussion on the implications of varying the parameter ¢ can be found in (Panadero et al.
2023). In our analysis, the LLM selection policy in the Seed Filtering is strikingly uniform, when only
one candidate remains (32% of cases) it is chosen; when two remain (18%), both are chosen; when three
remain (41%), all three are chosen; and when more than three pass the filter (9%), the top three seeds by
combined deterministic and simulated reward are selected. For the subsequent time allocation, the model
applies an equal-distribution strategy in 94% of runs, resorting to a weighted allocation in the remaining
6%. In the roughly 6% of cases where a weighted allocation is used, the decision always reflects a clear
performance gap among the seeds, one seed’s simulated or deterministic reward substantially exceeds its
peers, so the agent concentrates a larger share of ILS iterations on that top performer while still reserving
a smaller portion of time for the other candidates to maintain diversity.

Tables 1 presents the computational results obtained by applying the proposed agentic simheuristic
framework respectively. The first column identifies the problem instances, while the subsequent columns
present the results under both deterministic and stochastic evaluation scenarios. The BKS column lists the
best-known solutions (BKS) for the deterministic variant of the problem, obtained from the literature. The
OBD-R column reports the total collected reward for the best-found solutions in the deterministic scenario.
The OBD-S-R column indicates the collected reward when the deterministic solutions are evaluated in a
stochastic environment, reflecting their performance under uncertainty. The OBS-R column presents the
collected reward for the best-found solutions in the stochastic scenario.

Firstly, over the full set of instances (average BKS = 778.25), the agentic simheuristic’s deterministic
outputs (average OBD-R = 756.10) consistently match or exceed the standalone BR-MS baseline (average
OBD-R = 685.50) and often tie the BKS. This deterministic advantage is driven by the insertion of a BR-ILS
exploitation phase immediately after the broad BR-MS exploration, enabling more intensive refinement
of the most promising candidate solutions. Secondly, when those deterministic solutions are re-evaluated
stochastically, the agentic framework again outperforms BR-MS—achieving an average OBD-S-R of 705.46
versus 643.68 for BR-MS—and its directly optimized stochastic solutions (OBS-R = 711.46 on average)
markedly exceed the BR-MS average of 647.38. These results demonstrate that LL.M-guided coordination
and focused exploitation not only yield high-quality deterministic solutions but also deliver substantially
greater expected rewards under uncertainty, underscoring the robustness of the agentic simheuristic in
stochastic settings.
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Table 1: Comparison of BKS, agentic simheuristics, and BR-MS results.

Agentic Simheuristics BR-MS Simbheuristic

Instance BKS [1] OBD-R [2] OBD-S-R OBS-R[3] OBD-R [4] OBD-S-R OBS-R [5]
p2.3.h 165 165 153.50 153.75 165 153.45 153.66
p2.4.f 105 105 95.46 99.53 105 95.18 98.23
p3.2.k 550 550 520.59 526.15 500 465.19 473.68
p3.3.t 760 760 691.08 694.12 710 670.48 671.68
p3.4.t 670 670 637.76 640.21 670 636.40 639.40
p3.4.r 600 600 563.26 569.70 520 493.48 493.89
p4.2.q 1268 1246 1181.21 1182.98 865 846.53 846.53
p4.3.m 1063 929 872.14 872.76 756 721.16 723.46
p4.4.p 1124 1094 992.47 1008.46 817 765.22 781.92
p5.2.z 1680 1660 1573.10 1573.59 1660 1564.33 1550.98
p5.2.u 1460 1425 1337.69 1349.06 1425 1335.36 1346.81
p5.3.h 260 250 233.35 234.15 240 226.11 228.68
p5.3.k 495 470 445.97 455.93 435 398.46 402.39
pS4.g 140 140 130.89 131.23 140 130.44 130.77
pS.4.x 1450 1450 1348.65 1367.85 1415 1335.13 1342.57
p6.3.j 828 828 754.30 756.64 816 732.54 746.89
p6.3.n 1170 1164 1097.03 1100.07 1002 932.07 932.07
p6.4.k 528 516 468.15 470.41 486 433.80 439.09
p7.2.p 1002 875 798.72 828.68 772 739.22 745.68
p7.3.f 247 225 214.03 214.06 211 199.13 199.34
Average  778.25 756.10 705.46 711.46 685.50 643.68 647.38

The performance gap relative to the BKS is shown in Figure 2. The boxplots display the distribution of
percentage gaps of OBD, OBD-S, and OBS solutions for both the standalone BR-MS baseline (red boxes)
and the agentic simheuristic (blue boxes). For the OBD Gap, the agentic approach exhibits a mean gap of
2.69% compared to 10.20% for BR-MS. Likewise, for the OBD-S Gap the agentic mean is 9.32% versus
16.08% for BR-MS, and for the OBS Gap the agentic mean is 8.46% versus 15.44% for BR-MS. We applied
a two-tailed Wilcoxon signed-rank test to the paired OBS rewards (d; = OBS_Agentic, — OBS_BR-MS;)
over 20 instances. All d; > 0, yielding W =0, p < 0.0001. Hence, we reject Hy and conclude that the
agentic simheuristic delivers significantly higher stochastic rewards than BR-MS.
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Figure 2: Gaps with respect to BKS for the different approaches.

6 CONCLUSION AND DISCUSSION

We have presented an agentic simheuristic framework in which an LLM orchestrator guides BR-MS
exploration and BR-ILS exploitation with embedded MCS for risk-aware evaluation. Applied to the
stochastic TOP, our proof-of-concept implementation reduced the average deterministic gap from 10.20
% to 2.69 % and the average stochastic gap from 16.08 % to 9.32 %, while producing significantly
higher expected rewards. These results confirm that LLM-guided coordination can both improve solution
quality and reduce variability compared to a standalone BR-MS baseline. The LLM orchestrator managed
the interplay between a BR-MS agent for exploration and a BR-ILS agent for exploitation, with both
agents utilizing embedded MCS for risk-aware solution evaluation. By processing diverse information
streams—ranging from quantitative performance metrics and solution characteristics to, in future iterations,
qualitative problem descriptions—the LLM applies flexible, explainable reasoning. This separation of
concerns offers a promising alternative to the static control logic and manual parameter tuning typical
of traditional simheuristics, fostering greater robustness across varied instances and enabling dynamic
adaptation of search strategies based on real-time feedback.

Nonetheless, this initial study remains a proof-of-concept with certain limitations. The current imple-
mentation uses a structured yet simple summary-based protocol for seed selection and inter-phase time
allocation, confining strategic intervention to discrete decision points rather than continuous control over
parameters or operator choice. Moreover, overall performance still depends on the efficacy of the underlying
BR-MS and BR-ILS agents and the fidelity of the embedded MCS. Future work will extend this framework
by enabling richer LLM-agent dialogues for dynamic parameter tuning and operator selection, integrating
continuous monitoring of search state, and validating the approach on other stochastic optimization domains.
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