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ABSTRACT

We consider job-shop scheduling problems with stress test machines. Several jobs can be processed at the
same time on such a machine if the sum of their sizes does not exceed its capacity. Only jobs with operations
of the same incompatible family can be processed at the same time on a machine. The machine can be
interrupted to start a new or to unload a completed job. A conditioning time is required to reach again the
temperature for the stress test. The machine is unavailable during the conditioning process. Operations that
cannot be completed before a conditioning activity have to continue with processing after the machine is
available again. The makespan is to be minimized. A constraint programming formulation and a variable
neighborhood search scheme based on an appropriate disjunctive graph model are designed. Computational
experiments based on randomly generated problem instances demonstrate that the algorithms perform well.

1 INTRODUCTION

Semiconductor manufacturing deals with producing integrated circuits (ICs). The production requires the
wafer fabrication, sort, assembly, and test stages. Chips are produced in the wafer fabrication stage on
wafers, small discs made from silicon or gallium arsenide. Afterwards the wafers are diced, and defective
chips are sorted out at the second stage. Only high-quality chips are assembled and packaged in assembly
facilities, whereas tests are performed on the final devices in test facilities (Mdnch et al. 2013). Before the
production based on customer orders can start, the products must be designed and qualified for production
in reliability laboratories where a series of measurement and stress operations under different temperature
and stress conditions is performed. The qualification usually takes several weeks.

Semiconductor reliability laboratories can be modeled as complex job shops with some unusual facets.
They contain machines that offer the same functionality, i.e., we have parallel machines, we also refer to
them as machine groups. Reentrant flows are common in such facilities, i.e., the same machine group is
visited several times by a single job. The machines for measurement steps, so-called testers, can be modeled
as s-batching machines, whereas machines for stress tests can be seen as machines with p-batching and job
availability. A p-batch is a group of jobs that are processed at the same time on a batch processing machine
(Fowler and Mdénch 2022), whereas a s-batch is a group of jobs that are processed in a consecutive manner
on a single machine. Significant setup times occur when adjacent s-batches belong to different families.
The stress test machines can be interrupted to start a new job or to unload a completed job. A conditioning
time is required to reach again the necessary temperature for the interrupted stress test on a machine. The
machine is unavailable during the conditioning process. Jobs with operations that cannot be completed
before a conditioning activity have to continue with processing after the machine is available again.

While we have studied scheduling problems for single and parallel stress test machines (Hautz et al
2024; Hautz et al. 2025), we are not aware of any paper where stress test machines are considered in job-
shop scheduling problems. In the present paper, we initiate the modeling of stress test machines in
disjunctive graph representations for complex job shops. Moreover, we report the results of constraint
programming (CP) and a variable neighborhood search (VNS) scheme for the scheduling problem at hand.

The paper is organized as follows. In the next section, we describe the scheduling problem, and discuss
and analyze related work. The disjunctive graph model is discussed in Section 3. The different solution
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approaches, namely a CP approach and a VNS scheme are presented in Section 4. Results of computational
experiments are reported in Section 5. Finally, conclusions and future research directions are provided in
Section 6.

2 PROBLEM SETTING

2.1 Scheduling Problem

We consider n jobs Jy, ..., J, with operations ojk,k =1,..,n for job Jij=1..,n. Each job Ij» has a
ready time 1; =0. The operations have to be performed in the prescribed order 0j; = 0j, = +++ - Ojn;- The

machines which can be used to perform an operation are known and belong to the process flow, the route,
associated with a job. Each operation oj; has a processing time p;; which is independent of the machine
where the operation is executed.

In the present paper, we distinguish stress test machines from tester machines where measurement steps
are executed. We focus on modeling the stress test machines. Although the tester machines are s-batch
machines, for the sake of simplicity and due to space limitations, we consider them as regular, i.e. non-
batching machines. Each stress test operation oj; has a size sj; measured in number of stress boards to
carry chips. Moreover, operation oj; belongs to a family fj;. Several operations that can be processed on a
machine m and belong to the same family can be processed together in a batch on m until the sum of the
job sizes does not exceed the maximum batch size B,,. We assume job availability, i.e., a job in a batch
must be removed from the machine if the operation of the job is completed. The processing of all unfinished
jobs of the current batch is stopped for the removing activity. This results in a reduced stress temperature.
To reach again the correct stress temperature, a condition time cond,, is required for m (El-Kareh and
Hutter 2020). Job j can be added to an already processed batch at time t if the following three conditions
are fulfilled:

1. It holds 7y, = t, i.e., the operation oy, is ready for processing at time t.
2. The operations associated with the jobs of the current batch and oj; belong to the same family.
3. Its size sjj of 0y, fits into the batch.

A conditioning time cond,, is again required after the job is added to an already processed batch on a
machine m (El-Kareh and Hutter 2020). The conditioning time is enlarged when operations of other jobs
are finished during the time span of a conditioning activity or other jobs are added to the batch within this
time span. The remaining jobs of the batch continue with processing after a conditioning activity is
completed. Therefore, resumable operations of jobs are assumed. The makespan C,4, is considered. Using
the three-field notation from deterministic machine scheduling the problem at hand can be stated as follows:

F]|rj, prec,recrc,p — batch, incompatible, s;, By, cond,,, v — a, |Crax, (1)

where FJ, prec, and recrc refer to a flexible job shop, precedence constraints, and reentrant process flows,
respectively, p — batch, incompatible indicates p-batch processing with incompatible families, and
cond,,,r — a describe the machine-specific conditioning time and the resumable operations of the jobs,
respectively. It is shown by Hautz et al. (2025) that 1| p — batch, incompatible, s;, B, cond,,,r —
a|Cmax» @ special case of (1), is already NP-hard. Hence, we have to look for efficient heuristics to tackle
large-sized problem instances in appropriate computing time.

2.2 Related Work

Flexible job shop scheduling approaches are surveyed by Dauzere-Peres et al. (2024). However, job shops
with the characteristics of stress test machines are not described in this paper. Next, we discuss papers
related to disjunctive graph modeling for job shops. Knopp et al. (2017) introduce the batch-oblivious
approach for complex job shops with p-batching, i.e., batches are treated by modifying edge weights rather
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than introducing additional batching nodes in the disjunctive graph. Rocholl and Mdénch (2025) extend this
concept to flexible flow shops with s-batching machines. In the present paper, we extend the batch-oblivious
approach towards modeling stress test machines. These machines are p-batching machines, but the
machines can or must be interrupted for including new jobs and removing jobs with already completed
operations.

Because of the limited machine availability of stress test machines, work for job-shop scheduling with
machine unavailability periods is discussed next. Mauguiére et al. (2005) study job-shop scheduling
problems for the C,,,, measure. Generalized unavailability periods for machines are assumed. Branch &
bound algorithms are proposed for the different types of unavailable periods. Azem et al. (2012) consider
a job-shop scheduling problem with C,,,, measure where operations can be interrupted by machine
unavailability periods movable within prescribed time windows. Tamssaouet et al. (2018) study a job-shop
scheduling problem with machine availability constraints. The disjunctive graph model is extended to allow
for machine unavailability. Simulated annealing and tabu search are applied. A job-shop scheduling
problem with unavailable periods is studied by Lin and Ying (2020). The jobs are non-preemptive. A simu-
lated annealing scheme is proposed. However, in these papers p-batching is not considered and the inter-
ruption regime for jobs due to the unavailability periods is often different to the one assumed in the present
paper. To the best of our knowledge, only the papers Hautz et al. (2024), (2025) propose exact and heuristic
scheduling algorithms for stress test machines. However, only single- and parallel-machine situations are
investigated. In the present paper, we will extend the machine environment to flexible job shops.

3 DISJUNCTIVE GRAPH MODEL

3.1 Modeling Stress Test Machines

A disjunctive graph G = (V, E) with a set of nodes IV and a set of edges or arcs E is considered. The nodes
of the graph represent the operations of problem (1), the artificial start and end operations 0 and *, as well
as artificial end nodes 0; 1 for each job j. Nodes associated with operations of the same job are connected

with directed arcs (conjunctive arcs) according to the given precedence constraints, while operations from
different jobs with additional precedence constraints are also connected by conjunctive arcs. Disjunctive
arcs are used between nodes that can be executed on the same machine to model sequencing decisions. To
derive a conjunctive graph, a machine has to be assigned to each operation, and the disjunctive arcs have
to be directed accordingly such that the resulting graph is acyclic. In a conjunctive graph of problem (1),
the weight of all edges (O, 0]-1) € E, connecting the artificial start node 0 with the first operation o; ; of job
J» are set to the ready date ;. For all edges (0, 0,) connecting the artificial start node with the initial
operation o0, scheduled on machine m, the edge weight is set to zero. For each node v € V in a conjunctive
graph, we denote its route successor by r(v) € V' \ {0} and its machine successor by m(v) € V' \ {0}.
Analogously, its route predecessor is denoted by r~1(v) € V \ {*} and its machine predecessor by
m~1(v) € V \ {*}. Furthermore, the machine chosen for node v is denoted as m,,, and the sets of route
successors and predecessors associated with additional precedence constraints, i.e. from different jobs, are
denoted as SR(v) and PR(v), respectively.

We extend the batch-oblivious approach for disjunctive graphs of Knopp et al. (2017) to model stress
test machines. In contrast to Knopp et al. (2017), the batches within problem (1) do not have the same start
and completion times, as unequal processing times for operations belonging to the same job family are
possible and job availability is assumed. Moreover, conditioning periods and job preemptions have to be
tackled. Given a conjunctive graph, the start time S, of an operation v € V \ {0,*} can be derived by
computing the longest path from 0 to v, which can be recursively computed as

Sy = maX{Sr‘l(v) + lr_l(v),v 'Sm_l(v) + lm_l(v),v 'wlérrl,aR)((v)(Sw + L)}, (2)
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where [,,,, is the weight of the sequence arc between u and v. Within the batch-oblivious approach, the
weight of the sequence arc between v and m(v) is set to I, ;) = 0 if v and m(v) belong to the same
batch. To model the stress test machines of problem (1), we do not have to guarantee S, = Sy, () if
Ly mw)y = 0. Further, the weight of sequence arcs is set to 0 for all adjacent stress operations that belong to
the same family, i.e. to the same batch. Hence, no batching decisions have to be made since the order of
operations defines the batches for stress test machines. A sequence of k = 1 adjacent operations that belong
to the same family is called a batching chain v, m(v), ..., m* (v). The weight of the sequence arc of the last
operation in the batching chain has to be set to the difference of the maximum completion time of all
operations in the batching chain and the start time of the first operation of the batch. Since conditioning
periods have to be considered, (2) only serves as an earliest start date E,, of the first operation of the batch.
For the remaining operations in the batching chain, the machine predecessor solely contributes with its start
date to the earliest start date of the respective node, i.e.

Emaw) = Max{S,-1(mawy) + Lr=1(maw))mawy Sma-1@w) (Sw + lwmaw))} 3)

max
weEPR(mM4(v))

for g = 1, ..., k. The start and completion times of the operations in the batching chain then are computed
with the Algorithm 2 for start time computation of stress test machines proposed by Hautz et al. (2024),
with job order m = (v, m(v), ..., m¥(v)), and earliest start dates r = (E,, wor Eppe ). Subsequently, the
start and completion times of the operations in the batching chain are set, and the edge weights on the
routing edges are updated to by, = Cp = Sy, .., Lpk(yy vk = Cpieyy = Sk T € SRW) U {r(v)},r*¥e
SR(mk(v)) U {r(m*(v)) }, to ensure job availability. In addition, the sequencing arc of the last operation

.....

(bumer = 0)V (lomco) = Py + cOndm, Al=sgoy > 0)V (Lmy = max(G)) = S Alporyy = 0) - (4

for all nodes v € V on stress machine routes, whereas B,, denotes the batch containing v and w denotes the
first node in the batching chain containing v. In addition, the route arcs have to be updated in order to model
the job availability, and the actual processing time needs to be computed for stress operations since it
depends on the preemptions that occur within the batch. Consequently, the invariant

((tn=r0 > O A by > 0) Vb = €y = 5, ) A (b2 = OV Ly = 0) V Ly = 1y + cOndlyy, ) (5)

is required for all v € V,r € SR(v) U {r(v)} on stress test machine routes. If a stress operation is not in a
batch, then conditioning has to be applied just once at the start of the operation. In this case, I, ;) = by =
py + condy, holds, which fulfills (4) and (5). Note that for v € V on tester routes, no batching is
considered as the testers are modelled as regular machines, and the conditioning times of all tester machines
are set to 0. Thus, 1, ;) = Ly = Py > 0 holds for all v € V on tester routes, which also fulfills (4) and
().

Figure 1 shows an example with three jobs and one batch consisting of four operations. For the sake of
visibility, only the disjunctive arcs of the stress test machine containing the batch are shown, the artificial
end nodes were omitted. The weights of the route and sequencing arcs fulfill (4) and (5). The solution
obtained by Algorithm 2 from Hautz et al. (2024) for the batch is also depicted in the Gantt chart in the
figure.
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Figure 1: Example of a disjunctive graph for problem (1) consisting of jobs. The Gantt chart shows the
solution obtained by Algorithm 2 from Hautz et al. (2024) for the formed batch.

3.1 Initial Solution

The presence of additional precedence constraints between two non-identical jobs could lead to cycle
formation when searching for an initial solution. To address this problem, a list scheduling approach (LS)
is proposed. The additional precedence constraints between operations of different jobs are modeled by
adding conjunctive arcs to the graph. Let G = (V, E. U E;), where E, denotes the set of conjunctive arcs
from the job sequences and additional precedence constraints, and E,; is the set of disjunctive arcs
representing sequencing decisions. To avoid cycle formation, a careful machine assignment and iterative
scheduling process is proposed. In the first step, operations are sorted according to their ready times and
for each operation, machines are evaluated based on their current workloads, prioritizing machines that
already contain operations of the same job family to enhance batch formation. Ties are broken by selecting
machines with the smallest workload. The workload of the machines is computed as the sum of the ratio of
processing times and job sizes of operations assigned to that machine. Once the machine assignment is
completed, the operations are scheduled iteratively in a second step. A topological sorting o of the graph G
is used to determine the sequencing order, ensuring that all precedence constraints are respected. The
calculation of the topological sorting can be done by a depth first search (DFS) for acyclic graphs. Initially,
only the arcs in E, are considered for calculating . After sequencing the first machine, additional
disjunctive edges are introduced to the graph. These edges could influence the unscheduled machines.
Hence, o is updated after each iteration incorporating the current set E; before scheduling the next
machine.

3.2 Start Time Computation

Other than in the approach for p-batching in Knopp et al. (2017), the invariants (4) and (5) do not allow to
compute start times within a single pass through the set of nodes sorted in topological order because all
operations in the set B,, could possibly affect the actual processing time of v, i.e. the processing time of v
plus the sum of conditioning times during preemptions. Furthermore, the possibility of reentrant process
flows could make it impossible to evaluate a batching chain together in one iteration, as depicted in Figure
1. At least one recomputation is necessary since the earliest start time of 0,4 can only be evaluated after the
start time of 0,3 was computed, that is again depending on 04,. Hence, the batch containing 045, 0,5, and
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03, has to be evaluated first, subsequently the start time of 03 and finally, the batch containing 01,, 055, 03,
and o044 is reevaluated. In addition, all nodes that were evaluated in between the batch nodes have to be
reevaluated, since the incorporation of 0,4 could possibly change the actual processing time of all nodes in
the batch. In the present example, 0,4 changes the completion time of 03, and hence, 033 is also affected.

Algorithms 1 and 2 consider the general case. Algorithm 1 computes a topological order o of the N =
27:1 n; nodes and iterates over them, while storing all nodes that were already visited in the set Vygiteq-
Measurement and stress operations are distinguished. For measurement operations, the start time is
computed by computing the maximum completion time of machine and route predecessors, as stated in (2).
Similarly, the earliest start time of stress operations are computed, with the difference that the completion
time of the previous batch is computed if the node belongs to another job family than its machine
predecessor. Otherwise, just the start time of the previous node of the batch is considered for the machine
contribution, as described in (3). To compute the start time of stress operations, Algorithm 2 is recursively
used to adjust the dynamic changes in processing times when preemptions occur. When a stress operation
is reached in Algorithm 1, all nodes that were visited up to this iteration are given to Algorithm 2. If the
current node is the first node of a batching chain (or possibly the only one), then the batch is just evaluated
once and no adaptions have to be made. Otherwise, all nodes belonging to the batch B, are collected and
the earliest start time of v is computed. If E,, = Cpq¢cn» then no operations of the batch are preempted by
the current node and hence, no adaptions have to be made. Otherwise, at least one operation of the batch is
preempted, which could affect the start and completion times of all operations that were computed in
between the first and the last operation of B,,. Hence, all those operations, except the nodes that are part of
the batch, have to be visited again, whereas stress operations are recursively revisited since multiple batches
could be affected.

procedure Algorithm1(G = (V,E))
Vvisitea < @
forj=1,..,Ndo
v=0())
if v is a measurement operation do

Sy = maX{Sr‘i(v) + lr_l(v),v 'Sm_l(v) + lm_l(v),v 'WIETIID%)((V)(SW + L)}

else
Bvisited < {v}a Sv = AlgorithmZ(v, Vvisited' Bvisited)
end if
Vvisited < Vvisited U {U}
end for

end procedure

procedure Algorithm2(v, Vyisitedr Buisited)
B, « {v}
Cpatcn = —1
w=m"1(v)

if w # 0 then
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while £, == f,, do
B, < B, U {w}
Byisitea < Byisitea U {W}
if C, > Cpaecn then
Cpatch = Cw
end if
if m~1(w) # 0 then
w=m"1(w)
end if
end while
end if
reverse(B,)
if m™'(v) # 0and f,,-1,) # f, then //(*)
w = argmaquBm_l(v){Cu}
E, = max{S,-1) + L1y, Sw + lwy ugl;g{v)(Su + L)}

else

E, = maX{Sr‘l(v) + lr_l(v),v 'Sm_l(v) 'uggg%(v)(su + L)}

end if //(**)
evaluate the batch B, with Algorithm 2 from Hautz et al. (2024) and set weights
if £, < Cpqtcn then
for w € V,i5iteq, os(first(B,)) < pos(w) < pos(last(B,)) do
if v is a measurement operation do

Sy = maX{Sr‘l(v) + lr‘l(v),v 'Sm_l(v) + lm_l(v),v 'ngl)%)((v)(sw + lwy)}

else
Byisitea < {v}, Sy = Algorithm2(v, Vyisitea, Buisitea)
end if
evaluate E,, like in (*)-(**)
evaluate batch with Algorithm 2 from Hautz et al. (2024) and set weights
end for
end if

return S,
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end procedure.
4 SOLUTION APPROACHES

4.1 CP Approach

We present an extended version of the CP model established for the single-machine case in Hautz et al.
(2024). For detailed explanations of the used constraint constructs, especially for synchronization, we refer
to this paper. The model is based on the following decision variables, state- and cumulative-functions are
used:

Jjo: interval variable representing job j € J at operation o € O, no size is specified

OJjok: optional interval variable representing job j € ] at operation o € O and
machine k € M, no size is specified

CSjok» CEjoi: optional interval variable for conditioning periods of job j (start and end) at
stress operation o € OSand stress test machine k € M3, size is condy,

Csr: optional interval variable representing the conditioning periods s on stress test
machine k € M5, no size is specified

Ojo: integer variable representing the overlaps in the conditioning period of job j €
] at stress operation 0 € 0%

Cnax: integer variable representing the makespan

Skt sequence variable representing job operation sequence on tester k € MT

cumul function C: = }1:1 Zozojl_"_,oj’ni(pulse(CSjok, 1) + pulse(CEjox, 1)) , k € MS

cumul function Si: = Y5_; pulse(Cs, 1) , k € MS

cumul function Rg: = %71 Xomoj1,...0;,, PUIS(Of ok, 5))  k € MS

state function Fy:  state function indicating the active job family on stress test machine k € M.

The CSjok, CEji, Ojo, C, Sk, and Ry quantities are only defined for stress operations and stress test
machines, while S;, only models tester machines. The efficient differentiation of the index sets is necessary
to limit the problem size. This is carried out via tuple modeling inside the commercial CP solver used in
the experiments. 0° and OT describe the sets of stress and measurement operations, and MS and M7 the
sets of stress test and tester machines, respectively. P is the set of precedence constraints. The objective is
given by min Cy, 4, and the constraints are:

startAtStart(0]jor, CSjor. ), startAtEnd(CEjox, Jjor ), Jj €J,0 € 05 (6)
presence0f(0]jox) = presenceOf(CSjox) = presenceOf (CEjox), j € J,0 € 0F (7)
alwaysin(Sy, CSy,, 1,1), alwaysin(S_k,CEjo, 1,1), j € J,0 € 05,k € M5, 3
alwaysin(Cy, Cg,, 1,By),  s€{1,..,SL,keM> 9)
Ojo = Y5-1 overlapLength(OJjox,Csi),  j €J,0 € 0%,k € M5, (10)
sizeOf (Jjo) = Pjo + Ojo, j €],0 € 05, (11)
presenceOf (Csyy) => presenceOf (Csyy), (12)
endBeforeStart(Csy y, Cs2x), S1,52=1,...,5,s1+ 1 =52,k € M". (13)
alwaysEqual(Fy, 0], f;,0,0),j € N, Ry < By, k e MS (14)
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noOverlap(J;,, all, (0] o)), alternative(J;o, all, (0] o)), j € J,0 € 0,k € M, (15)
endBeforeStart(Jjo,]jo+1), j € J,endBeforeStart(J,,J,), (u,v) € P, (16)
endOf (jjoj_nj) < Cpax »j € J. (17)

Constraints (6) — (14) model the stress test machines as described in in Hautz et al. (2024) in detail, the
presented model extends them by the operations sequence o and parallel machine capability k dimension.
To treat measurement machines, the conventional and more powerful global noOverlap constraints is used
directly in (15). An implicit modeling of capacities via cumulative functions over synchronized jobs is not
needed in this situation. The alternative constraint set in (15) models the selection of one machine out of
set of alternatives in each operation. This is done in the same way for stress and measurement operations.
Operation sequence constraints (0 = o + 1) and job-operation precedence constraints (u = v) are modeled
via (16). Finally, (17) bounds the C,,,, value.

4.2 VNS Approach

VNS is a local search-based metaheuristic that explores dynamically changing neighborhood structures to
escape local optima and improve solution quality (Mladenovic and Hansen 1997). We propose a VNS
scheme building on the foundation of basic VNS (Hansen and Mladenovic 2001) based on the established
disjunctive graph formulation. The neighborhood function is based on a swap move, where two successive
critical operations on the same machine are reversed. Critical operations are on the critical path, which is
the sequence of operations that determine the makespan of the schedule, i.e. the longest path between the
start operation 0 and the end operation *. This move is among the most fundamental neighborhood
definitions for job-shop scheduling problems and is motivated by two properties shown by Van Laarhoven
et al. (1992). Firstly, solutions obtained by such moves are always feasible. Secondly, the neighborhood is
connected, ensuring that an optimal solution can be reached from any initial solution via a finite sequence
of swap moves. However, since problem (1) is a flexible job shop, reaching the optimum is not guaranteed
with a fixed initial machine assignment. With the integration of additional moves that allow machine
reassignment like the integrated move of Dauzere-Peres and Paulli (1997), it is likely that this approach can
be improved to a large extent.

Reversing a critical arc on an acyclic graph, called edge reversal, yields an acyclic graph (Van Laar-
hoven et al. 1992). We use similar arguments to show that reversing an arc in our disjunctive graph does
not introduce cycles if the swap between two nodes that are included in an additional precedence constraint
is prohibited. Let u and v be two nodes of different jobs with an additional precedence constraint u = v.
Then, all disjunctive arcs between the predecessors of u and v, between the predecessors of u and the
successors of v, between u and v, and between u and the successors of v have to follow the direction of
the precedence constraint. Otherwise, a cycle would be created since there is a path from u to v and
therefore, there is a path from all predecessors of u to v and all successors of v. However, those arcs
mentioned above can never be part of the critical path except for the arc between u and v. Assume that an
edge between a predecessor p of u and v or a successor s of v is part of the critical path. Then, since there
is an additional precedence constraint between u and v, the path (p,...,u,v,...,s) is a longer path than
(p,v,...,s), which is a contradiction. Analogously, an edge between u and a successor s of v can never be
part of the critical path. It is shown by Dauzeére-Péres et. al. (1998), that an integrated move is applicable
for multi-resource job shop scheduling problems with nonlinear routings and resource flexibility.
Furthermore, Knopp et al. (2017) demonstrate that the integrated move is also applicable for p-batching.
Since the neighborhood structure of edge reversals is included in the neighborhood structure of integrated
moves (Dauzére-Pérés and Paulli 1997), the applicability of edge reversals is guaranteed. The conditions
in their theorems prohibit the case where two critical operations connected by an additional precedence
constraint are reversed.

We propose a VNS scheme that utilizes the edge reversal move to define the neighborhood structures
required for the shaking phase, whereas each neighborhood structure applies the move [ times up to [ = 10,
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i.e., we consider the ten neighborhood structures N; defined in this way. For small to medium-sized
instances, the specific choice of [ does not significantly affect the results, but for larger instances, a higher
value for [ promised better results in preliminary experiments. In the local search phase, the critical paths
to randomly chosen artificial end nodes are computed and edge reversals are applied to those paths,
continuing as long as the objective function value can be improved.

5 COMPUTATIONAL EXPERIMENTS

5.1 Design of Experiments and Implementation Issues

We assess the performance of the VNS scheme and CP model by randomly generated instances motivated
by settings in reliability laboratories. We consider small-, medium-, and large-sized instances with a
different number of operations, number of machines, and number of incompatible job families. As a
reference, we compare the results to the solutions obtained by the LS approach. In the following, DU|[a, b]
refers to a discrete uniform distribution over the set of integers {a, ..., b}. The number of jobs for the small
instances is set to n € {5,10} with n; ~ DU[1,10]. We consider m € {3,5} machines, whereas we

distinguish between the amount of stress test machines mg and of testers m;, and f;,,4, € {2,3} job families.
For the medium-sized instances, we set n € {24,36,48},n; ~ DU[1,15],m € {8,12}, fiqx € {10,15}, and
for the large-sized instances, we consider j = 96, n; ~ DU[1,20],m € {15,20}, and f,q, = 15. Within
all instances, the processing times for stress and measurement operations are distributed according to
DU[1,100] and DU[1,20], respectively. The ready times follow r; ~ DU[1, [SON/B]], and the job sizes
are distributed according to s; ~ DU[1,13]. The maximum batch size for stress test machines is taken from
{21,42} and the conditioning from {1,2,3}, whereas each value has the same probability. We use a
maximum computing time per instance for the CP and the VNS scheme and minimize the makespan.

The VNS scheme is coded using the C++ programming language, for the disjunctive graph model the
Boost library is applied. IBM ILOG CPLEX Optimization Studio version 22.1 CP Optimizer with OPL
Language and CP default settings is applied. The computational experiments are carried out on a
workstation with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz.

5.2 Results

The obtained C,,,, values are shown in Table 1. The time limit for the CP and VNS approach is set to 60,
120, and 300s per instance. The LS is performed without any time limit and serves as a reference solution.
The known optimal C, 4, values that are obtained by the CP are marked bold. For small-sized instances,
both the CP and VNS perform very well, providing near-optimal or optimal solutions within 60s. The
performance of the approaches is nearly identical in this category. For medium-sized instances, the CP
approach slightly outperforms the VNS when given 300s of computing time per instance. Furthermore, the
CP approach shows a clear advantage for shorter time limits, where it consistently provides better solutions
than the VNS. The VNS benefits from extended computing times, as its performance improves significantly
between the 120 and 300s marks, whereas the CP approach reaches high-quality solutions after 120s, with
minimal improvements in comparison to 300s. For large-sized instances, the CP model struggles to find a
feasible solution within the given computing time. While the VNS approach is always able to produce
feasible solutions, it also shows slower improvements over time for those instances. This suggests that
evaluating neighbors becomes increasingly time-consuming for larger instances. The majority of computing
time is spent evaluating neighbors, indicating that more efficient approaches for evaluating solutions should
be explored.

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Complex job-shop scheduling problems motivated by settings in reliability laboratories were studied. The
batch-oblivious approach for disjunctive graphs was extended towards allowing the modeling of stress test
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machines found in reliability laboratories. A VNS scheme was designed based on the disjunctive graph
model. It was compared with a CP formulation. The CP approach is able to outperform the VNS scheme
for medium-sized instances, but it failed to compute a feasible solution for large-sized problem instance

given a limited amount of computing time.

Table 1: Computational results for the C,,,, measure.

Benchmark LS CpP VNS CP VNS CP VNS
n | mg | m - (60s) (60s) (120s) | (120s) | (300s) | (300s)
5 1 2 2 569 452 465 451 451 451 451
5 1 2 3 821 669 676 667 667 667 667
5 2 3 2 563 508 508 508 508 508 508
5 2 3 3 439 374 374 374 374 374 374
10 2 3 2 764 544 588 544 549 542 549
10 2 3 3 686 545 627 545 608 545 545
10 3 2 2 795 538 550 538 543 538 523
10 3 2 3 634 330 445 330 409 329 384
24 4 4 10 1819 1056 1433 1054 1228 1052 1083
24 4 4 15 1770 1050 1517 1010 1256 1004 1055
24 7 5 10 1382 616 944 616 832 616 650
24 7 5 15 1438 661 960 654 953 653 710
36 4 4 10 3060 - 2646 2147 2123 1211 1324
36 4 4 15 3024 1325 2750 1234 2208 1232 1331
36 7 5 10 1940 1257 1723 898 1542 892 960
36 7 5 15 1989 892 1517 897 1384 888 951
48 4 4 10 3438 1615 2967 1467 2416 1459 1615
48 4 4 15 3400 - 2814 1774 2569 1770 1820
48 7 5 10 3010 1183 2678 1018 2257 1005 1183
48 7 5 15 2754 - 2337 1166 2181 1162 1271
96 7 8 15 7565 - 7337 - 6962 - 6833
9 | 10 5 15 5820 - 5804 - 5679 - 5307
96 | 10 10 15 5637 - 5319 - 5253 - 4613
9 | 14 6 15 6574 - 6473 - 6323 - 6045

There are several directions for future research. First of all, we believe that moves similar to
integrated move of Dauzere-Peres and Paulli (1997) will considerably improve the performs of the VNS
scheme. The CP approach can be improved by starting from an initial solution and designing decomposition
methods. Moreover, the real-world scheduling problem found in reliability laboratories is more difficult,
including s-batching machines, maximal time lags, and on-time delivery-related performance measures. In
future research, we will tackle these problems. In addition to static settings, the proposed algorithms should
be applied in a rolling horizon setting similar to Monch and Zimmermann (2011) taking into account
process uncertainty.
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