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ABSTRACT 

We consider job-shop scheduling problems with stress test machines. Several jobs can be processed at the 
same time on such a machine if the sum of their sizes does not exceed its capacity. Only jobs with operations 
of the same incompatible family can be processed at the same time on a machine. The machine can be 
interrupted to start a new or to unload a completed job. A conditioning time is required to reach again the 
temperature for the stress test. The machine is unavailable during the conditioning process. Operations that 
cannot be completed before a conditioning activity have to continue with processing after the machine is 
available again. The makespan is to be minimized. A constraint programming formulation and a variable 
neighborhood search scheme based on an appropriate disjunctive graph model are designed. Computational 
experiments based on randomly generated problem instances demonstrate that the algorithms perform well. 

1 INTRODUCTION 

Semiconductor manufacturing deals with producing integrated circuits (ICs). The production requires the 
wafer fabrication, sort, assembly, and test stages. Chips are produced in the wafer fabrication stage on 
wafers, small discs made from silicon or gallium arsenide. Afterwards the wafers are diced, and defective 
chips are sorted out at the second stage. Only high-quality chips are assembled and packaged in assembly 
facilities, whereas tests are performed on the final devices in test facilities (Mönch et al. 2013). Before the 
production based on customer orders can start, the products must be designed and qualified for production 
in reliability laboratories where a series of measurement and stress operations under different temperature 
and stress conditions is performed. The qualification usually takes several weeks. 

Semiconductor reliability laboratories can be modeled as complex job shops with some unusual facets. 
They contain machines that offer the same functionality, i.e., we have parallel machines, we also refer to 
them as machine groups. Reentrant flows are common in such facilities, i.e., the same machine group is 
visited several times by a single job. The machines for measurement steps, so-called testers, can be modeled 
as s-batching machines, whereas machines for stress tests can be seen as machines with p-batching and job 
availability. A p-batch is a group of jobs that are processed at the same time on a batch processing machine 
(Fowler and Mönch 2022), whereas a s-batch is a group of jobs that are processed in a consecutive manner 
on a single machine. Significant setup times occur when adjacent s-batches belong to different families. 
The stress test machines can be interrupted to start a new job or to unload a completed job. A conditioning 
time is required to reach again the necessary temperature for the interrupted stress test on a machine. The 
machine is unavailable during the conditioning process. Jobs with operations that cannot be completed 
before a conditioning activity have to continue with processing after the machine is available again. 

While we have studied scheduling problems for single and parallel stress test machines (Hautz et al 
2024; Hautz et al. 2025), we are not aware of any paper where stress test machines are considered in job-
shop scheduling problems. In the present paper, we initiate the modeling of stress test machines in 
disjunctive graph representations for complex job shops. Moreover, we report the results of constraint 
programming (CP) and a variable neighborhood search (VNS) scheme for the scheduling problem at hand. 

The paper is organized as follows. In the next section, we describe the scheduling problem, and discuss 
and analyze related work. The disjunctive graph model is discussed in Section 3. The different solution 
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approaches, namely a CP approach and a VNS scheme are presented in Section 4. Results of computational 
experiments are reported in Section 5. Finally, conclusions and future research directions are provided in 
Section 6.  

2 PROBLEM SETTING 

2.1 Scheduling Problem 

We consider 𝑛  jobs 𝐽ଵ, … , 𝐽௡ with operations 𝑜௝௞ , 𝑘 ൌ 1, … ,𝑛௝  for job 𝐽௝ , 𝑗 ൌ 1 … ,𝑛 . Each job 𝐽௝ , has a 
ready time 𝑟௝ ൒0. The operations have to be performed in the prescribed order 𝑜௝ଵ → 𝑜௝ଶ → ⋯ → 𝑜௝௡ೕ . The 

machines which can be used to perform an operation are known and belong to the process flow, the route, 
associated with a job. Each operation 𝑜௝௞ has a processing time 𝑝௝௞ which is independent of the machine 
where the operation is executed. 

In the present paper, we distinguish stress test machines from tester machines where measurement steps 
are executed. We focus on modeling the stress test machines. Although the tester machines are s-batch 
machines, for the sake of simplicity and due to space limitations, we consider them as regular, i.e. non-
batching machines. Each stress test operation 𝑜௝௞ has a size 𝑠௝௞ measured in number of stress boards to 
carry chips. Moreover, operation 𝑜௝௞ belongs to a family 𝑓௝௞. Several operations that can be processed on a 
machine 𝑚 and belong to the same family can be processed together in a batch on 𝑚 until the sum of the 
job sizes does not exceed the maximum batch size 𝐵௠. We assume job availability, i.e., a job in a batch 
must be removed from the machine if the operation of the job is completed. The processing of all unfinished 
jobs of the current batch is stopped for the removing activity. This results in a reduced stress temperature. 
To reach again the correct stress temperature, a condition time 𝑐𝑜𝑛𝑑௠ is required for 𝑚 (El-Kareh and 
Hutter 2020). Job 𝑗 can be added to an already processed batch at time 𝑡 if the following three conditions 
are fulfilled: 
1. It holds 𝑟௝௞ ൒ 𝑡, i.e., the operation 𝑜௝௞ is ready for processing at time 𝑡. 
2. The operations associated with the jobs of the current batch and 𝑜௝௞ belong to the same family.  
3. Its size 𝑠௝௞ of 𝑜௝௞ fits into the batch. 

A conditioning time 𝑐𝑜𝑛𝑑௠ is again required after the job is added to an already processed batch on a 
machine 𝑚 (El-Kareh and Hutter 2020). The conditioning time is enlarged when operations of other jobs 
are finished during the time span of a conditioning activity or other jobs are added to the batch within this 
time span. The remaining jobs of the batch continue with processing after a conditioning activity is 
completed. Therefore, resumable operations of jobs are assumed. The makespan 𝐶௠௔௫ is considered. Using 
the three-field notation from deterministic machine scheduling the problem at hand can be stated as follows: 

 
    𝐹𝐽|𝑟௝ ,𝑝𝑟𝑒𝑐, 𝑟𝑒𝑐𝑟𝑐,𝑝 െ 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑠௝ ,𝐵௠ , 𝑐𝑜𝑛𝑑௠ , 𝑟 െ 𝑎 , |𝐶௠௔௫,    (1) 

where 𝐹𝐽, 𝑝𝑟𝑒𝑐, and 𝑟𝑒𝑐𝑟𝑐 refer to a flexible job shop, precedence constraints, and reentrant process flows, 
respectively, 𝑝 െ 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒  indicates p-batch processing with incompatible families, and 
𝑐𝑜𝑛𝑑௠ , 𝑟 െ 𝑎 describe the machine-specific conditioning time and the resumable operations of the jobs, 
respectively. It is shown by Hautz et al. (2025) that 1| 𝑝 െ 𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑠௝ ,𝐵, 𝑐𝑜𝑛𝑑௠, 𝑟 െ
𝑎|𝐶௠௔௫, a special case of (1), is already NP-hard. Hence, we have to look for efficient heuristics to tackle 
large-sized problem instances in appropriate computing time. 

2.2 Related Work 

Flexible job shop scheduling approaches are surveyed by Dauzere-Peres et al. (2024). However, job shops 
with the characteristics of stress test machines are not described in this paper. Next, we discuss papers 
related to disjunctive graph modeling for job shops. Knopp et al. (2017) introduce the batch-oblivious 
approach for complex job shops with p-batching, i.e., batches are treated by modifying edge weights rather 
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than introducing additional batching nodes in the disjunctive graph. Rocholl and Mönch (2025) extend this 
concept to flexible flow shops with s-batching machines. In the present paper, we extend the batch-oblivious 
approach towards modeling stress test machines. These machines are p-batching machines, but the 
machines can or must be interrupted for including new jobs and removing jobs with already completed 
operations. 

Because of the limited machine availability of stress test machines, work for job-shop scheduling with 
machine unavailability periods is discussed next. Mauguière et al. (2005) study job-shop scheduling 
problems for the 𝐶௠௔௫  measure. Generalized unavailability periods for machines are assumed. Branch & 
bound algorithms are proposed for the different types of unavailable periods. Azem et al. (2012) consider 
a job-shop scheduling problem with 𝐶௠௔௫  measure where operations can be interrupted by machine 
unavailability periods movable within prescribed time windows. Tamssaouet et al. (2018) study a job-shop 
scheduling problem with machine availability constraints. The disjunctive graph model is extended to allow 
for machine unavailability. Simulated annealing and tabu search are applied. A job-shop scheduling 
problem with unavailable periods is studied by Lin and Ying (2020). The jobs are non-preemptive. A simu-
lated annealing scheme is proposed. However, in these papers p-batching is not considered and the inter-
ruption regime for jobs due to the unavailability periods is often different to the one assumed in the present 
paper. To the best of our knowledge, only the papers Hautz et al. (2024), (2025) propose exact and heuristic 
scheduling algorithms for stress test machines. However, only single- and parallel-machine situations are 
investigated. In the present paper, we will extend the machine environment to flexible job shops. 

3 DISJUNCTIVE GRAPH MODEL 

3.1 Modeling Stress Test Machines 

A disjunctive graph 𝐺 ൌ ሺ𝑉,𝐸ሻ with a set of nodes 𝑉 and a set of edges or arcs 𝐸 is considered. The nodes 
of the graph represent the operations of problem (1), the artificial start and end operations 0 and ∗, as well 
as artificial end nodes 𝑜௝,௡ೕାଵ for each job 𝑗. Nodes associated with operations of the same job are connected 

with directed arcs (conjunctive arcs) according to the given precedence constraints, while operations from 
different jobs with additional precedence constraints are also connected by conjunctive arcs. Disjunctive 
arcs are used between nodes that can be executed on the same machine to model sequencing decisions. To 
derive a conjunctive graph, a machine has to be assigned to each operation, and the disjunctive arcs have 
to be directed accordingly such that the resulting graph is acyclic. In a conjunctive graph of problem (1), 
the weight of all edges ൫0, 𝑜௝ଵ൯ ∈ 𝐸, connecting the artificial start node 0 with the first operation 𝑜௝,ଵ of job 
𝑗, are set to the ready date 𝑟௝ . For all edges ሺ0, 𝑜௠ሻ connecting the artificial start node with the initial 
operation 𝑜௠ scheduled on machine 𝑚, the edge weight is set to zero. For each node 𝑣 ∈ 𝑉 in a conjunctive 
graph, we denote its route successor by 𝑟ሺ𝑣ሻ ∈ 𝑉 ∖ ሼ0ሽ and its machine successor by 𝑚ሺ𝑣ሻ ∈ 𝑉 ∖ ሼ0ሽ. 
Analogously, its route predecessor is denoted by 𝑟ିଵሺ𝑣ሻ ∈ 𝑉 ∖ ሼ∗ሽ  and its machine predecessor by 
𝑚ିଵሺ𝑣ሻ ∈ 𝑉 ∖ ሼ∗ሽ. Furthermore, the machine chosen for node 𝑣 is denoted as 𝑚௩, and the sets of route 
successors and predecessors associated with additional precedence constraints, i.e. from different jobs, are 
denoted as 𝑆𝑅ሺ𝑣ሻ and 𝑃𝑅ሺ𝑣ሻ, respectively.  

We extend the batch-oblivious approach for disjunctive graphs of Knopp et al. (2017) to model stress 
test machines. In contrast to Knopp et al. (2017), the batches within problem (1) do not have the same start 
and completion times, as unequal processing times for operations belonging to the same job family are 
possible and job availability is assumed. Moreover, conditioning periods and job preemptions have to be 
tackled. Given a conjunctive graph, the start time 𝑆௩  of an operation 𝑣 ∈ 𝑉 ∖ ሼ0,∗ሽ can be derived by 
computing the longest path from 0 to 𝑣, which can be recursively computed as 

 
    𝑆௩ ൌ maxሼ𝑆௥షభሺ௩ሻ ൅ 𝑙௥షభሺ௩ሻ,௩ , 𝑆௠షభሺ௩ሻ ൅ 𝑙௠షభሺ௩ሻ,௩  , max

୵∈୔ୖሺ୴ሻ
ሺ𝑆௪ ൅ 𝑙௪௩ሻሽ,    (2) 
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where 𝑙௨௩ is the weight of the sequence arc between 𝑢 and 𝑣. Within the batch-oblivious approach, the 
weight of the sequence arc between 𝑣 and 𝑚ሺ𝑣ሻ is set to 𝑙௩,௠ሺ௩ሻ ൌ 0 if 𝑣 and 𝑚ሺ𝑣ሻ belong to the same 
batch. To model the stress test machines of problem (1), we do not have to guarantee 𝑆௩ ൌ 𝑆௠ሺ௩ሻ  if 
𝑙௩,௠ሺ௩ሻ ൌ 0. Further, the weight of sequence arcs is set to 0 for all adjacent stress operations that belong to 
the same family, i.e. to the same batch. Hence, no batching decisions have to be made since the order of 
operations defines the batches for stress test machines. A sequence of 𝑘 ൒ 1 adjacent operations that belong 
to the same family is called a batching chain 𝑣,𝑚ሺ𝑣ሻ, … ,𝑚௞ሺ𝑣ሻ. The weight of the sequence arc of the last 
operation in the batching chain has to be set to the difference of the maximum completion time of all 
operations in the batching chain and the start time of the first operation of the batch. Since conditioning 
periods have to be considered, (2) only serves as an earliest start date 𝐸௩ of the first operation of the batch. 
For the remaining operations in the batching chain, the machine predecessor solely contributes with its start 
date to the earliest start date of the respective node, i.e. 
 

              𝐸௠೜ሺ௩ሻ ൌ maxሼ𝑆௥షభሺ௠೜ሺ௩ሻሻ ൅ 𝑙௥షభ൫௠೜ሺ௩ሻ൯,௠೜ሺ௩ሻ,  𝑆௠೜షభሺ௩ሻ, max
୵∈୔ୖሺ୫౧ሺ୴ሻሻ

ሺ𝑆௪ ൅ 𝑙௪,௠೜ሺ௩ሻሻሽ            ሺ3ሻ 

 
for 𝑞 ൌ 1, … ,𝑘. The start and completion times of the operations in the batching chain then are computed 
with the Algorithm 2 for start time computation of stress test machines proposed by Hautz et al. (2024), 
with job order 𝜋 ൌ ሺ𝑣,𝑚ሺ𝑣ሻ, … ,𝑚௞ሺ𝑣ሻሻ, and earliest start dates 𝑟 ൌ ሺ𝐸௩ , … ,𝐸௠ೖሺ௩ሻሻ. Subsequently, the 
start and completion times of the operations in the batching chain are set, and the edge weights on the 
routing edges are updated to 𝑙௩,௥ ൌ 𝐶௩ െ 𝑆௩ , … , 𝑙௠ೖሺ௩ሻ,௥ೖ ൌ 𝐶௠ೖሺ௩ሻ െ 𝑆௠ೖሺ௩ሻ, 𝑟 ∈ 𝑆𝑅ሺ𝑣ሻ ∪ ሼ𝑟ሺ𝑣ሻሽ, 𝑟

௞ ∈
𝑆𝑅ሺ𝑚௞ሺ𝑣ሻሻ ∪ ሼ𝑟ሺ𝑚௞ሺ𝑣ሻሻ ሽ, to ensure job availability. In addition, the sequencing arc of the last operation 
in the batching chain is set to 𝑙௠ೖሺ௩ሻ,௠ሺ௠ೖሺ௩ሻሻ ൌ max

୯∈ሼଵ,…,୩ሽ
ሺ𝐶௠೜ሺ௩ሻሻ െ 𝑆௩. Thus, we require the invariant 

 

൫𝑙௩,௠ሺ௩ሻ ൌ 0൯ ∨ ൫𝑙௩,௠ሺ௩ሻ ൌ 𝑝௩ ൅ 𝑐𝑜𝑛𝑑௠ೡ
∧ 𝑙௠షభሺ௩ሻ,௩ ൐ 0൯ ∨ ൬𝑙௩,௠ሺ௩ሻ ൌ max

୨∈୆౬
൫𝐶௝൯ െ 𝑆௪ ∧ 𝑙௠షభሺ௩ሻ,௩ ൌ 0൰     (4) 

 
for all nodes 𝑣 ∈ 𝑉 on stress machine routes, whereas 𝐵௩ denotes the batch containing 𝑣 and 𝑤 denotes the 
first node in the batching chain containing 𝑣. In addition, the route arcs have to be updated in order to model 
the job availability, and the actual processing time needs to be computed for stress operations since it 
depends on the preemptions that occur within the batch. Consequently, the invariant 
 

ቀ൫𝑙௠షభሺ௩ሻ,௩ ൐ 0 ∧ 𝑙௩,௠ሺ௩ሻ ൐ 0൯ ∨ 𝑙௩,௥ ൌ 𝐶௩ െ 𝑆௩ቁ ∧ ቀ൫𝑙௠షభሺ௩ሻ,௩ ൌ 0 ∨ 𝑙௩,௠ሺ௩ሻ ൌ 0൯ ∨ 𝑙௩,௥ ൌ 𝑝௩ ൅ 𝑐𝑜𝑛𝑑௠ೡ
ቁ   ሺ5ሻ 

 
is required for all 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑆𝑅ሺ𝑣ሻ ∪ ሼ𝑟ሺ𝑣ሻሽ on stress test machine routes. If a stress operation is not in a 
batch, then conditioning has to be applied just once at the start of the operation. In this case, 𝑙௩,௠ሺ௩ሻ ൌ 𝑙௩,௥ ൌ
𝑝௩ ൅ 𝑐𝑜𝑛𝑑௠ೡ

 holds, which fulfills (4) and (5). Note that for 𝑣 ∈ 𝑉  on tester routes, no batching is 
considered as the testers are modelled as regular machines, and the conditioning times of all tester machines 
are set to 0. Thus, 𝑙௩,௠ሺ௩ሻ ൌ 𝑙௩,௥ ൌ 𝑝௩ ൐ 0 holds for all 𝑣 ∈ 𝑉 on tester routes, which also fulfills (4) and 
(5). 

Figure 1 shows an example with three jobs and one batch consisting of four operations. For the sake of 
visibility, only the disjunctive arcs of the stress test machine containing the batch are shown, the artificial 
end nodes were omitted. The weights of the route and sequencing arcs fulfill (4) and (5). The solution 
obtained by Algorithm 2 from Hautz et al. (2024) for the batch is also depicted in the Gantt chart in the 
figure. 
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Figure 1: Example of a disjunctive graph for problem (1) consisting of jobs. The Gantt chart shows the 
solution obtained by Algorithm 2 from Hautz et al. (2024) for the formed batch. 

3.1 Initial Solution 

The presence of additional precedence constraints between two non-identical jobs could lead to cycle 
formation when searching for an initial solution. To address this problem, a list scheduling approach (LS) 
is proposed. The additional precedence constraints between operations of different jobs are modeled by 
adding conjunctive arcs to the graph. Let 𝐺 ൌ ሺ𝑉,𝐸௖ ∪ 𝐸ௗሻ, where 𝐸௖ denotes the set of conjunctive arcs 
from the job sequences and additional precedence constraints, and 𝐸ௗ  is the set of disjunctive arcs 
representing sequencing decisions. To avoid cycle formation, a careful machine assignment and iterative 
scheduling process is proposed. In the first step, operations are sorted according to their ready times and 
for each operation, machines are evaluated based on their current workloads, prioritizing machines that 
already contain operations of the same job family to enhance batch formation. Ties are broken by selecting 
machines with the smallest workload. The workload of the machines is computed as the sum of the ratio of 
processing times and job sizes of operations assigned to that machine. Once the machine assignment is 
completed, the operations are scheduled iteratively in a second step. A topological sorting 𝜎 of the graph 𝐺 
is used to determine the sequencing order, ensuring that all precedence constraints are respected. The 
calculation of the topological sorting can be done by a depth first search (DFS) for acyclic graphs. Initially, 
only the arcs in 𝐸௖  are considered for calculating 𝜎 . After sequencing the first machine, additional 
disjunctive edges are introduced to the graph. These edges could influence the unscheduled machines. 
Hence, 𝜎  is updated after each iteration incorporating the current set 𝐸ௗ  before scheduling the next 
machine.  

3.2 Start Time Computation 

Other than in the approach for p-batching in Knopp et al. (2017), the invariants (4) and (5) do not allow to 
compute start times within a single pass through the set of nodes sorted in topological order because all 
operations in the set 𝐵௩ could possibly affect the actual processing time of 𝑣, i.e. the processing time of 𝑣 
plus the sum of conditioning times during preemptions. Furthermore, the possibility of reentrant process 
flows could make it impossible to evaluate a batching chain together in one iteration, as depicted in Figure 
1. At least one recomputation is necessary since the earliest start time of 𝑜ଵସ can only be evaluated after the 
start time of 𝑜ଵଷ was computed, that is again depending on 𝑜ଵଶ. Hence, the batch containing 𝑜ଵଶ, 𝑜ଶଶ, and 
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𝑜ଷଶ has to be evaluated first, subsequently the start time of 𝑜ଵଷ and finally, the batch containing 𝑜ଵଶ, 𝑜ଶଶ, 𝑜ଷଶ 
and 𝑜ଵସ is reevaluated. In addition, all nodes that were evaluated in between the batch nodes have to be 
reevaluated, since the incorporation of 𝑜ଵସ could possibly change the actual processing time of all nodes in 
the batch. In the present example, 𝑜ଵସ changes the completion time of 𝑜ଷଶ and hence, 𝑜ଷଷ is also affected. 

Algorithms 1 and 2 consider the general case. Algorithm 1 computes a topological order 𝜎 of the 𝑁 ൌ
 ∑ 𝑛௝

௡
௝ୀଵ  nodes and iterates over them, while storing all nodes that were already visited in the set 𝑉௩௜௦௜௧௘ௗ. 

Measurement and stress operations are distinguished. For measurement operations, the start time is 
computed by computing the maximum completion time of machine and route predecessors, as stated in (2). 
Similarly, the earliest start time of stress operations are computed, with the difference that the completion 
time of the previous batch is computed if the node belongs to another job family than its machine 
predecessor. Otherwise, just the start time of the previous node of the batch is considered for the machine 
contribution, as described in (3). To compute the start time of stress operations, Algorithm 2 is recursively 
used to adjust the dynamic changes in processing times when preemptions occur. When a stress operation 
is reached in Algorithm 1, all nodes that were visited up to this iteration are given to Algorithm 2. If the 
current node is the first node of a batching chain (or possibly the only one), then the batch is just evaluated 
once and no adaptions have to be made. Otherwise, all nodes belonging to the batch 𝐵௩ are collected and 
the earliest start time of 𝑣 is computed. If 𝐸௩  ൒  𝐶௕௔௧௖௛, then no operations of the batch are preempted by 
the current node and hence, no adaptions have to be made. Otherwise, at least one operation of the batch is 
preempted, which could affect the start and completion times of all operations that were computed in 
between the first and the last operation of 𝐵௩. Hence, all those operations, except the nodes that are part of 
the batch, have to be visited again, whereas stress operations are recursively revisited since multiple batches 
could be affected. 

procedure Algorithm1(𝐺 ൌ ሺ𝑉,𝐸ሻሻ 

 𝑉௩௜௦௜௧௘ௗ ← ∅ 

 for 𝑗 ൌ 1, … ,𝑁 do  

  𝑣 ൌ  𝜎ሺ𝑗ሻ 

  if 𝑣 is a measurement operation do 

   𝑆௩ ൌ  maxሼ𝑆௥షభሺ௩ሻ ൅ 𝑙௥షభሺ௩ሻ,௩ , 𝑆௠షభሺ௩ሻ ൅ 𝑙௠షభሺ௩ሻ,௩ , max
୵∈୔ୖሺ୴ሻ

ሺ𝑆௪ ൅ 𝑙௪௩ሻሽ 

  else   

   𝐵௩௜௦௜௧௘ௗ ← ሼ𝑣ሽ, 𝑆௩ ൌ Algorithm2(𝑣,𝑉௩௜௦௜௧௘ௗ ,𝐵௩௜௦௜௧௘ௗ) 

  end if 

  𝑉௩௜௦௜௧௘ௗ ← 𝑉௩௜௦௜௧௘ௗ ∪ ሼ𝑣ሽ 

 end for 

end procedure 

 
procedure Algorithm2(𝑣,𝑉௩௜௦௜௧௘ௗ ,𝐵௩௜௦௜௧௘ௗ) 

 𝐵௩ ← ሼ𝑣ሽ                                                 // the batch containing 𝑣 

 𝐶௕௔௧௖௛ ൌ െ1                                           // the completion time of 𝐵௩ without 𝑣 

 𝑤 ൌ 𝑚ିଵሺ𝑣ሻ 

 if 𝑤 ് 0 then 
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 while 𝑓௪ ൌൌ 𝑓௩ do 

  𝐵௩ ← 𝐵௩ ∪ ሼ𝑤ሽ 

  𝐵௩௜௦௜௧௘ௗ ← 𝐵௩௜௦௜௧௘ௗ ∪ ሼ𝑤ሽ 

   if 𝐶௪ ൐ 𝐶௕௔௧௖௛ then  

     𝐶௕௔௧௖௛ ൌ 𝐶௪ 

   end if 

   if 𝑚ିଵሺ𝑤ሻ ് 0 then  

    𝑤 ൌ 𝑚ିଵሺ𝑤ሻ 

  end if 

 end while 

end if 

 𝑟𝑒𝑣𝑒𝑟𝑠𝑒ሺ𝐵௩ሻ 

 if 𝑚ିଵሺ𝑣ሻ ് 0 and 𝑓௠షభሺ௩ሻ ് 𝑓௩ then //(*) 

  𝑤 ൌ argmax୳∈୆ౣషభሺೡሻ
ሼ𝐶௨ሽ  

  𝐸௩ ൌ  maxሼ𝑆௥షభሺ௩ሻ ൅ 𝑙௥షభሺ௩ሻ,௩ , 𝑆௪ ൅ 𝑙௪,௩ , max
୳∈୔ୖሺ୴ሻ

ሺ𝑆௨ ൅ 𝑙௨௩ሻሽ, 

 else 

  𝐸௩ ൌ  maxሼ𝑆௥షభሺ௩ሻ ൅ 𝑙௥షభሺ௩ሻ,௩ , 𝑆௠షభሺ௩ሻ , max
୳∈୔ୖሺ୴ሻ

ሺ𝑆௨ ൅ 𝑙௨௩ሻሽ,    

 end if //(**) 

evaluate the batch 𝐵௩ with Algorithm 2 from Hautz et al. (2024) and set weights 

if 𝐸௩ ൏ 𝐶௕௔௧௖௛ then 

 for 𝑤 ∈ 𝑉௩௜௦௜௧௘ௗ ,𝑝𝑜𝑠ሺ𝑓𝑖𝑟𝑠𝑡ሺ𝐵௩ሻሻ ൏ 𝑝𝑜𝑠ሺ𝑤ሻ ൏ 𝑝𝑜𝑠ሺ𝑙𝑎𝑠𝑡ሺ𝐵௩ሻሻ do 

  if 𝑣 is a measurement operation do 

   𝑆௩ ൌ  maxሼ𝑆௥షభሺ௩ሻ ൅ 𝑙௥షభሺ௩ሻ,௩ , 𝑆௠షభሺ௩ሻ ൅ 𝑙௠షభሺ௩ሻ,௩ , max
୵∈୔ୖሺ୴ሻ

ሺ𝑆௪ ൅ 𝑙௪,௩ሻሽ 

  else 

   𝐵௩௜௦௜௧௘ௗ ← ሼ𝑣ሽ, 𝑆௩ ൌ Algorithm2(𝑣,𝑉௩௜௦௜௧௘ௗ ,𝐵௩௜௦௜௧௘ௗ) 

  end if  

  evaluate 𝐸௩ like in (*)-(**) 

  evaluate batch with Algorithm 2 from Hautz et al. (2024) and set weights 

 end for 

end if  

return 𝑆௩ 
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end procedure. 

4 SOLUTION APPROACHES 

4.1 CP Approach 

We present an extended version of the CP model established for the single-machine case in Hautz et al. 
(2024). For detailed explanations of the used constraint constructs, especially for synchronization, we refer 
to this paper. The model is based on the following decision variables, state- and cumulative-functions are 
used: 
 
𝐽௝௢: interval variable representing job 𝑗 ∈ 𝐽 at operation 𝑜 ∈ 𝑂, no size is specified 

𝑂𝐽௝௢௞: optional interval variable representing job 𝑗 ∈ 𝐽 at operation 𝑜 ∈ 𝑂  and 
machine 𝑘 ∈ 𝑀, no size is specified 

𝐶𝑆௝௢௞ ,𝐶𝐸௝௢௞: optional interval variable for conditioning periods of job 𝑗 (start and end) at 
stress operation 𝑜 ∈ 𝑂ௌand stress test machine 𝑘 ∈ 𝑀ௌ, size is 𝑐𝑜𝑛𝑑௞ 

𝐶௦௞: optional interval variable representing the conditioning periods 𝑠 on stress test 
machine 𝑘 ∈ 𝑀ௌ , no size is specified 

𝑂௝௢:  integer variable representing the overlaps in the conditioning period of job 𝑗 ∈
𝐽 at stress operation 𝑜 ∈ 𝑂ௌ 

𝐶௠௔௫: integer variable representing the makespan 

𝑆௞: sequence variable representing job operation sequence on tester 𝑘 ∈ 𝑀் 

𝑐𝑢𝑚𝑢𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶௞: ൌ ∑ ∑ ሺ𝑝𝑢𝑙𝑠𝑒ሺ𝐶𝑆௝௢௞ , 1ሻ ൅ 𝑝𝑢𝑙𝑠𝑒ሺ𝐶𝐸௝௢௞ , 1ሻሻ௢ୀ௢௝ଵ,…,௢ೕ,೙ೕ

௡
௝ୀଵ , 𝑘 ∈ 𝑀ௌ  

𝑐𝑢𝑚𝑢𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆௞: ൌ ∑ 𝑝𝑢𝑙𝑠𝑒ሺ𝐶௦௞ , 1ሻௌ
௦ୀଵ , 𝑘 ∈ 𝑀ௌ  

𝑐𝑢𝑚𝑢𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑅௞: ൌ ∑ ∑ 𝑝𝑢𝑙𝑠𝑒ሺ𝑂𝐽௝௢௞ , 𝑠௝ሻ௢ୀ௢௝ଵ,…,௢ೕ,೙ೕ

௡
௝ୀଵ , 𝑘 ∈ 𝑀ௌ  

𝑠𝑡𝑎𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹௞: state function indicating the active job family on stress test machine 𝑘 ∈ 𝑀ௌ. 
 
The 𝐶𝑆௝௢௞ ,𝐶𝐸௝௜௞ ,𝑂௝௢,𝐶௞ , 𝑆௞ , and 𝑅௞  quantities are only defined for stress operations and stress test 

machines, while 𝑆௞ only models tester machines. The efficient differentiation of the index sets is necessary 
to limit the problem size. This is carried out via tuple modeling inside the commercial CP solver used in 
the experiments. 𝑂ௌ and 𝑂் describe the sets of stress and measurement operations, and 𝑀ௌ and 𝑀் the 
sets of stress test and tester machines, respectively. 𝑃 is the set of precedence constraints. The objective is 
given by min𝐶௠௔௫, and the constraints are: 

 
𝑠𝑡𝑎𝑟𝑡𝐴𝑡𝑆𝑡𝑎𝑟𝑡൫𝑂𝐽௝௢௞ ,𝐶𝑆௝௢௞൯, 𝑠𝑡𝑎𝑟𝑡𝐴𝑡𝐸𝑛𝑑൫𝐶𝐸௝௢௞ , 𝐽௝௢௞൯,      𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂ௌ  (6) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓൫𝑂𝐽௝௢௞൯ ൌ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓൫𝐶𝑆௝௢௞൯ ൌ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓൫𝐶𝐸௝௢௞൯, 𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂ௌ   (7) 

𝑎𝑙𝑤𝑎𝑦𝑠𝐼𝑛൫𝑆௞ ,𝐶𝑆௝௞ , 1,1൯,   𝑎𝑙𝑤𝑎𝑦𝑠𝐼𝑛൫𝑆_𝑘,𝐶𝐸௝௢௞ , 1,1൯,   𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂ௌ , 𝑘 ∈ 𝑀ௌ, (8) 

𝑎𝑙𝑤𝑎𝑦𝑠𝐼𝑛ሺ𝐶௞ ,𝐶௦௞ , 1,𝐵௞ሻ, 𝑠 ∈ ሼ1, … , 𝑆ሽ, 𝑘 ∈ 𝑀ௌ  (9) 

𝑂௝௢ ൌ ∑  𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐿𝑒𝑛𝑔𝑡ℎሺ𝑂𝐽௝௢௞ ,𝐶௦௞
ௌ
௦ୀଵ ሻ,        𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂ௌ , 𝑘 ∈ 𝑀ௌ,   (10) 

𝑠𝑖𝑧𝑒𝑂𝑓൫𝐽௝௢൯ ൌ 𝑝௝௢ ൅ 𝑂௝௢ , 𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂ௌ, (11) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓൫𝐶௦ଶ,௞൯ ൌ൐  𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓൫𝐶௦ଵ,௞൯, (12) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡൫𝐶௦ଵ,௞,𝐶௦ଶ,௞൯, 𝑠1, 𝑠2 ൌ 1, . . . , 𝑆, 𝑠1 ൅ 1 ൌ 𝑠2,𝑘 ∈ 𝑀ௌ. (13) 

𝑎𝑙𝑤𝑎𝑦𝑠𝐸𝑞𝑢𝑎𝑙൫𝐹௞ ,𝑂𝐽௝௞ , 𝑓௝ , 0,0൯, 𝑗 ∈ 𝑁,   𝑅௞ ൑ 𝐵௞ , 𝑘 ∈ 𝑀ௌ (14) 
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𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝൫𝐽௝௢ , 𝑎𝑙𝑙௞ሺ𝑂𝐽௝௢௞ሻ൯,𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒൫𝐽௝௢, 𝑎𝑙𝑙௞ሺ𝑂𝐽௝௢௞ሻ൯, 𝑗 ∈ 𝐽, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝑀, (15) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡൫𝐽௝௢, 𝐽௝௢ାଵ൯, 𝑗 ∈  𝐽, 𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡ሺ𝐽௨ , 𝐽௩ሻ, ሺ𝑢, 𝑣ሻ ∈ 𝑃, (16) 

𝑒𝑛𝑑𝑂𝑓 ቀ𝐽௝௢ೕ,೙ೕ
ቁ ൑ 𝐶௠௔௫  , 𝑗 ∈ 𝐽. (17) 

Constraints (6) – (14) model the stress test machines as described in in Hautz et al. (2024) in detail, the 
presented model extends them by the operations sequence 𝑜 and parallel machine capability 𝑘 dimension. 
To treat measurement machines, the conventional and more powerful global noOverlap constraints is used 
directly in (15). An implicit modeling of capacities via cumulative functions over synchronized jobs is not 
needed in this situation. The alternative constraint set in (15) models the selection of one machine out of 
set of alternatives in each operation. This is done in the same way for stress and measurement operations. 
Operation sequence constraints (𝑜 → 𝑜 ൅ 1) and job-operation precedence constraints (𝑢 → 𝑣) are modeled 
via (16). Finally, (17) bounds the 𝐶௠௔௫ value. 

4.2 VNS Approach 

VNS is a local search-based metaheuristic that explores dynamically changing neighborhood structures to 
escape local optima and improve solution quality (Mladenovic and Hansen 1997). We propose a VNS 
scheme building on the foundation of basic VNS (Hansen and Mladenovic 2001) based on the established 
disjunctive graph formulation. The neighborhood function is based on a swap move, where two successive 
critical operations on the same machine are reversed. Critical operations are on the critical path, which is 
the sequence of operations that determine the makespan of the schedule, i.e. the longest path between the 
start operation 0  and the end operation ∗ . This move is among the most fundamental neighborhood 
definitions for job-shop scheduling problems and is motivated by two properties shown by Van Laarhoven 
et al. (1992). Firstly, solutions obtained by such moves are always feasible. Secondly, the neighborhood is 
connected, ensuring that an optimal solution can be reached from any initial solution via a finite sequence 
of swap moves. However, since problem (1) is a flexible job shop, reaching the optimum is not guaranteed 
with a fixed initial machine assignment. With the integration of additional moves that allow machine 
reassignment like the integrated move of Dauzere-Peres and Paulli (1997), it is likely that this approach can 
be improved to a large extent.  

Reversing a critical arc on an acyclic graph, called edge reversal, yields an acyclic graph (Van Laar-
hoven et al. 1992). We use similar arguments to show that reversing an arc in our disjunctive graph does 
not introduce cycles if the swap between two nodes that are included in an additional precedence constraint 
is prohibited. Let 𝑢 and 𝑣 be two nodes of different jobs with an additional precedence constraint 𝑢 →  𝑣. 
Then, all disjunctive arcs between the predecessors of 𝑢 and 𝑣, between the predecessors of 𝑢 and the 
successors of 𝑣, between 𝑢 and 𝑣, and between 𝑢 and the successors of 𝑣 have to follow the direction of 
the precedence constraint. Otherwise, a cycle would be created since there is a path from 𝑢  to 𝑣  and 
therefore, there is a path from all predecessors of 𝑢 to 𝑣 and all successors of 𝑣. However, those arcs 
mentioned above can never be part of the critical path except for the arc between 𝑢 and 𝑣. Assume that an 
edge between a predecessor 𝑝 of 𝑢 and 𝑣 or a successor 𝑠 of 𝑣 is part of the critical path. Then, since there 
is an additional precedence constraint between 𝑢 and 𝑣, the path ሺ𝑝, . . . ,𝑢, 𝑣, . . . , 𝑠ሻ is a longer path than 
ሺ𝑝, 𝑣, . . . , 𝑠ሻ, which is a contradiction. Analogously, an edge between 𝑢 and a successor 𝑠 of 𝑣 can never be 
part of the critical path. It is shown by Dauzère-Pérès et. al. (1998), that an integrated move is applicable 
for multi-resource job shop scheduling problems with nonlinear routings and resource flexibility. 
Furthermore, Knopp et al. (2017) demonstrate that the integrated move is also applicable for p-batching. 
Since the neighborhood structure of edge reversals is included in the neighborhood structure of integrated 
moves (Dauzère-Pérès and Paulli 1997), the applicability of edge reversals is guaranteed. The conditions 
in their theorems prohibit the case where two critical operations connected by an additional precedence 
constraint are reversed. 

We propose a VNS scheme that utilizes the edge reversal move to define the neighborhood structures 
required for the shaking phase, whereas each neighborhood structure applies the move 𝑙 times up to 𝑙 ൌ 10, 

1645



Hautz, Klemmt, and Mönch 
 

 

i.e., we consider the ten neighborhood structures 𝑁௟  defined in this way. For small to medium-sized 
instances, the specific choice of 𝑙 does not significantly affect the results, but for larger instances, a higher 
value for 𝑙 promised better results in preliminary experiments. In the local search phase, the critical paths 
to randomly chosen artificial end nodes are computed and edge reversals are applied to those paths, 
continuing as long as the objective function value can be improved.  

5 COMPUTATIONAL EXPERIMENTS 

5.1 Design of Experiments and Implementation Issues 

We assess the performance of the VNS scheme and CP model by randomly generated instances motivated 
by settings in reliability laboratories. We consider small-, medium-, and large-sized instances with a 
different number of operations, number of machines, and number of incompatible job families. As a 
reference, we compare the results to the solutions obtained by the LS approach. In the following, 𝐷𝑈ሾ𝑎, 𝑏ሿ 
refers to a discrete uniform distribution over the set of integers ሼ𝑎, … , 𝑏ሽ. The number of jobs for the small 
instances is set to 𝑛 ∈ ሼ5,10ሽ  with 𝑛௝ ∼ 𝐷𝑈ሾ1,10ሿ . We consider 𝑚 ∈ ሼ3,5ሽ  machines, whereas we 
distinguish between the amount of stress test machines 𝑚௦ and of testers 𝑚௧, and 𝑓௠௔௫ ∈ ሼ2,3ሽ job families. 
For the medium-sized instances, we set 𝑛 ∈ ሼ24,36,48ሽ,𝑛௝ ∼ 𝐷𝑈ሾ1,15ሿ,𝑚 ∈ ሼ8,12ሽ, 𝑓௠௔௫ ∈ ሼ10,15ሽ, and 
for the large-sized instances, we consider 𝑗 ൌ 96, 𝑛௝ ∼ 𝐷𝑈ሾ1,20ሿ,𝑚 ∈ ሼ15,20ሽ, and 𝑓௠௔௫ ൌ 15. Within 
all instances, the processing times for stress and measurement operations are distributed according to 
𝐷𝑈ሾ1,100ሿ and 𝐷𝑈ሾ1,20ሿ, respectively. The ready times follow 𝑟௝ ∼ 𝐷𝑈ሾ1, ⌈50𝑁/𝐵⌉ሿ, and the job sizes 
are distributed according to 𝑠௝ ∼ 𝐷𝑈ሾ1,13ሿ. The maximum batch size for stress test machines is taken from 
ሼ21,42ሽ  and the conditioning from ሼ1,2,3ሽ , whereas each value has the same probability. We use a 
maximum computing time per instance for the CP and the VNS scheme and minimize the makespan. 

The VNS scheme is coded using the C++ programming language, for the disjunctive graph model the 
Boost library is applied. IBM ILOG CPLEX Optimization Studio version 22.1 CP Optimizer with OPL 
Language and CP default settings is applied. The computational experiments are carried out on a 
workstation with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz.  

5.2 Results 

The obtained 𝐶௠௔௫ values are shown in Table 1. The time limit for the CP and VNS approach is set to 60, 
120, and 300s per instance. The LS is performed without any time limit and serves as a reference solution. 
The known optimal 𝐶௠௔௫  values that are obtained by the CP are marked bold. For small-sized instances, 
both the CP and VNS perform very well, providing near-optimal or optimal solutions within 60s. The 
performance of the approaches is nearly identical in this category. For medium-sized instances, the CP 
approach slightly outperforms the VNS when given 300s of computing time per instance. Furthermore, the 
CP approach shows a clear advantage for shorter time limits, where it consistently provides better solutions 
than the VNS. The VNS benefits from extended computing times, as its performance improves significantly 
between the 120 and 300s marks, whereas the CP approach reaches high-quality solutions after 120s, with 
minimal improvements in comparison to 300s. For large-sized instances, the CP model struggles to find a 
feasible solution within the given computing time. While the VNS approach is always able to produce 
feasible solutions, it also shows slower improvements over time for those instances. This suggests that 
evaluating neighbors becomes increasingly time-consuming for larger instances. The majority of computing 
time is spent evaluating neighbors, indicating that more efficient approaches for evaluating solutions should 
be explored. 

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

Complex job-shop scheduling problems motivated by settings in reliability laboratories were studied. The 
batch-oblivious approach for disjunctive graphs was extended towards allowing the modeling of stress test 
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machines found in reliability laboratories. A VNS scheme was designed based on the disjunctive graph 
model. It was compared with a CP formulation. The CP approach is able to outperform the VNS scheme 
for medium-sized instances, but it failed to compute a feasible solution for large-sized problem instance 
given a limited amount of computing time. 

Table 1: Computational results for the 𝐶௠௔௫ measure. 

Benchmark LS CP  VNS CP VNS CP VNS 
n 𝒎𝒔 𝒎𝒕 𝒇𝒎𝒂𝒙  (60s) (60s) (120s) (120s) (300s) (300s) 
5 1 2 2 569 452 465 451 451 451 451 
5 1 2 3 821 669 676 667 667 667 667 
5 2 3 2 563 508 508 508 508 508 508 
5 2 3 3 439 374 374 374 374 374 374 

10 2 3 2 764 544 588 544 549 542 549 
10 2 3 3 686 545 627 545 608 545 545 
10 3 2 2 795 538 550 538 543 538 523 
10 3 2 3 634 330 445 330 409 329 384 
24 4 4 10 1819 1056 1433 1054 1228 1052 1083 
24 4 4 15 1770 1050 1517 1010 1256 1004 1055 
24 7 5 10 1382 616 944 616 832 616 650 
24 7 5 15 1438 661 960 654 953 653 710 
36 4 4 10 3060 - 2646 2147 2123 1211 1324 
36 4 4 15 3024 1325 2750 1234 2208 1232 1331 
36 7 5 10 1940 1257 1723 898 1542 892 960 
36 7 5 15 1989 892 1517 897 1384 888 951 
48 4 4 10 3438 1615 2967 1467 2416 1459 1615 
48 4 4 15 3400 - 2814 1774 2569 1770 1820 
48 7 5 10 3010 1183 2678 1018 2257 1005 1183 
48 7 5 15 2754 - 2337 1166 2181 1162 1271 
96 7 8 15 7565 - 7337 - 6962 - 6833 
96 10 5 15 5820 - 5804 - 5679 - 5307 
96 10 10 15 5637 - 5319 - 5253 - 4613 
96 14 6 15 6574 - 6473 - 6323 - 6045 

 
There are several directions for future research. First of all, we believe that moves similar to the 

integrated move of Dauzere-Peres and Paulli (1997) will considerably improve the performs of the VNS 
scheme. The CP approach can be improved by starting from an initial solution and designing decomposition 
methods. Moreover, the real-world scheduling problem found in reliability laboratories is more difficult, 
including s-batching machines, maximal time lags, and on-time delivery-related performance measures. In 
future research, we will tackle these problems. In addition to static settings, the proposed algorithms should 
be applied in a rolling horizon setting similar to Mönch and Zimmermann (2011) taking into account 
process uncertainty. 
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