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ABSTRACT

We study decentralized multi-agent multi-armed bandits, where clients communicate over sparse random
graphs with heavy-tailed degree distributions and observe heavy-tailed reward distributions with potentially
infinite variance. We are the first to address such fully heavy-tailed scenarios, capturing the dynamics and
challenges of communication and inference among multiple clients in real-world systems, and provide
regret bounds that match or improve upon existing results developed in even simpler settings. Under
homogeneous rewards, we exploit hub-like structures unique to heavy-tailed graphs to aggregate rewards
and reduce noises when constructing UCB indices; under M clients and degree distributions with power-law
index α > 1, we attain a regret (almost) of order O(M1− 1

α logT ). Under heterogeneous rewards, clients
synchronize by communicating with neighbors and aggregating exchanged estimators in UCB indices; by
establishing information delay bounds over sparse random graphs, we attain a O(M logT ) regret.

1 INTRODUCTION

Multi-armed Bandit (MAB) is an online sequential decision-making framework where a decision maker, or
a client, pulls an arm from a finite set of arms at each time step, receives the reward of the pulled arm,
and aims to maximize the cumulative received reward, or equivalently, minimize the regret compared to
always pulling the optimal arm (Auer et al. 2002; Auer et al. 2002). Recent advancements have focused on
its multi-agent variant, namely Multi-agent Multi-armed Bandit (MA-MAB), capturing the complexity of
networks of decision makers in real-world scenarios. A notable focus in on cooperative MA-MAB, where
M clients aim to optimize the regret of the entire network via communication, with respect to a globally
optimal arm defined by the global reward averaged across all clients. In this work, we consider a general
and widely applicable setting with decentralization, where clients communicate on a graph without the
stringent assumption of a central server.

Unique to decentralized MA-MAB is the coupling between graphs and time in the sequential regime,
where two clients can communicate only when there is an edge between them on the graph. Many studies
have focused on time-invariant graphs (i.e., with edges remaining constant over time). However, the
emergence of examples such as ad-hoc wireless networks (Roman et al. 2013) has motivated the recent
interest in time-varying graphs. In particular, the random-graph setting allows graphs to be redrawn from a
distribution at each time step. For instance, Xu and Klabjan (2024) has recently explored the classical
light-tailed Erdős–Rényi graphs in MA-MAB, where the edge between each pair of clients is sampled
under a Bernoulli distribution with constant probability. Notably, this model is symmetric and dense, with
each client having exactly the same expected degree (i.e., the count of connected clients) of order O(M).
However, real-world tasks often involve uneven and sparse communications: the degree—representing
the communication resource assigned to each client—can be rather heterogeneous among clients, and the
resource for each individual may not scale with M. Enabling collaboration over such asymmetric and sparse
graphs facilitates system-wide performance in cooperative MA-MAB, which depends on the collective
performance of all clients rather than any single individual, and has profound impact on promoting fairness
and enhancing social good. This setting, however, remains unexplored and leaves a significant research gap.
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This work focuses on sparse random graphs with power-law heavy-tailed degree distributions that
capture the highly asymmetric network dynamics in real-world tasks, where a few vertices play hub-like
roles with many connections to others, while most vertices have limited degrees. Such power-law heavy tails
prevail in real-world networks across numerous contexts, including finance and economics, transportation
networks, online retailing, supply chains, social communications, and epidemiology, to name a few; see,
e.g., (da Cruz and Lind 2013; Clancy, David Jr 2021; Hearnshaw and Wilson 2013; Kunegis 2013; Clauset
et al. 2009; Vázquez et al. 2002; Pastor-Satorras and Vespignani 2002). Therefore, it is essential to address
this research gap and build solid theoretical and algorithmic foundations for MA-MAB over sparse and
heavy-tailed random graphs, thus enabling efficient and robust decision-making via time-evolving, uneven,
and limited communication and coordination over a wide range of real-world networks.

Two aspects of the reward distributions are central to multi-agent MAB problems. First, if the expected
reward of an arm is the same for all clients, it is categorized into homogeneous settings; otherwise, it is
heterogeneous. While homogeneous MA-MAB is generally well understood, heterogeneous MA-MAB has
recently gained attention and presents additional challenges. This is particularly true in the decentralized
setting, as inferring the global optimal arm requires the reward information from all clients. While
Erdős–Rényi (E-R) graphs have been addressed in (Xu and Klabjan 2024), their approach does not apply to
our sparse and asymmetric setting. Second, the intensity of randomness (more specifically, tail behaviors)
of reward distributions significantly impacts the complexity of the problem. Aside from the long-standing
focus on sub-Gaussian rewards in the bandit community, there has been a recent interest in distributions
with heavier tails, including the sub-Exponential class and Exponential families (Korda et al. 2013; Jia
et al. 2021), and those with even heavier tails and infinite pth order moments (Bubeck et al. 2013;
Vakili et al. 2013; Dubey and Pentland 2019; Tao et al. 2022). Inferring the mean value using reward
observations under such extreme randomness becomes quite challenging, often necessitating the use of
robust estimators in the algorithms. Notably, such efforts are mostly limited to single-agent MAB. A
recent work (Dubey and Pentland 2020) addresses heavy-tailed rewards with (1+ ε)th-order moments in
MA-MAB, but only considers the homogeneous-rewards setting and with time-invariant connected graphs.
Considering heavy-tailed rewards in a more challenging and general setting with heterogeneous rewards
and time-varying random graphs remains unexplored, a gap we address herein as well.

In this paper, we focus on the following question: Can we formulate and solve the multi-agent
multi-armed bandit problem with heavy-tailed random graphs and heavy-tailed rewards in both homogeneous
and heterogeneous settings?

1.1 Main Contributions

We hereby provide an affirmative answer to the research question through our contributions, elaborated as
follows. We formulate the multi-agent multi-armed bandit problem over sparse, asymmetric, and heavy-tailed
random graphs, and under rewards with potentially infinite variance. Specifically, we consider rank-1
inhomogeneous random graphs (Boguná and Pastor-Satorras 2003; Chung and Lu 2002) with heavy-tailed
degree distributions, a standard setting in literature (e.g., (van der Hofstad et al. 2017; van der Hofstad
et al. 2020)). In this framework, the probability for having an edge between a pair of clients at each time
step is dictated by (normalization of) attraction weights of clients; under heavy-tailed weight distributions,
some clients consistently play hub-like roles and often connect to many other clients. Moreover, the graphs
we consider are much more sparse (with O(1) expected degree for each client) compared to Erdos-Renyi
graphs (with O(M) expected degree), which translates to significantly reduced communication costs and is
of broad interest in large-scale multi-agent learning problems.

Methodologically, we propose new algorithms for homogeneous and heterogeneous settings. In the
homogeneous-reward setting, we characterize and exploit the notion of hubs exclusive to heavy-tailed graphs:
clients over the hub communicate and aggregate rewards, achieving variance reduction proportional to the
hub size, while other clients use delayed aggregation through a hub representative. This principle guides
the design of our novel UCB index, which also incorporates the median-of-means estimator for robust
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estimation under heavy-tailed rewards. In the heterogeneous setting, another challenge is asynchronization
(differences in arm pulls) among clients due to variations in their reward distributions. To address this,
clients use random sampling when asynchronization occurs, and deploy UCB-based strategies otherwise
based on our newly constructed reward estimators. Specifically, we propose an aggregation method that
integrates the most recent heavy-tailed reward information from all clients, introducing novel information
update mechanisms.

We establish theoretical guarantees for the proposed algorithms via comprehensive regret analyses. In
homogeneous settings, we obtain a regret upper bound that is (almost) of order O(M1− 1

α logT ), which is
sublinear in M. This improves upon the potential linearity in (Dubey and Pentland 2020) and demonstrates
sample complexity reduction even under sparse graph structures. Under heterogeneous rewards, we derive an
upper bound of order O(M logT ), extending the bound in (Xu and Klabjan 2024) to sparse and asymmetric
graphs with heavy-tailed rewards. The results highlight the consistency and effectiveness of our approach.

1.2 Motivating Examples

We highlight that this work is motivated by several real-world applications that depart from traditional
assumptions. For instance, we consider the sequential testing and development of advertising strategies
across customers or centers in large-scale networks, where the underlying communication topology is often
heavy-tailed (see, e.g., (Kunegis 2013)). Such network structures reflect the heterogeneous and highly
skewed connectivity observed in practical marketing and social platforms.

In another example, within wireless ad-hoc networks in edge computing and digital infrastructure,
coordination among multiple devices must occur under sparse and unevenly distributed communication patterns
(see, e.g., (Besson and Kaufmann 2018)). These settings illustrate the challenges of decentralized decision-
making in dynamic and bandwidth-limited environments, further motivating the need for topology-aware
cooperative learning algorithms given heavy-tailed graphs herein.

2 PROBLEM SETUP

We start by setting notations that will be frequently used throughout this paper. Given a positive integer
k, let [k] = {1,2, . . . ,k}. We adopt the convention that [0] = /0. Given two sequences of non-negative real
numbers (xn)n≥1 and (yn)n≥1, we say that xn = O(yn) (as n→ ∞) if there exists some C ∈ [0,∞) such that
xn ≤Cyn ∀n≥ 1. Besides, we say that xn = o(yn) if limn→∞ xn/yn = 0.

Let M denote the number of clients, which are labeled by [M] = {1,2, . . . ,M}. At each time t = 1,2, . . .,
the clients are distributed over an undirected graph Gt = (V,Et), where V = [M], and Et is the set of edges
(i.e. two clients m, l communicate at time t only if (m, l) ∈ Et). Let K be the number of arms. For each
client m ∈ [M], we denote the reward of arm 1≤ i≤ K at time t by rm

i (t), which is an i.i.d. copy from a
time-invariant distribution Fm

i with mean value µm
i . By a homogeneous-reward setting, we refer to the case

where µm
i = µ l

i ∀m, l ∈ [M] holds for any arm i. Otherwise, we call it a heterogeneous-reward setting. Our
Assumption 1 is sufficiently general to account for both heavy-tailed reward distributions (potentially with
infinite variance) and light-tailed distributions (with finite moments of any order, e.g. sub-Gaussian and
sub-exponential classes).
Assumption 1 (Rewards with Uniformly Bounded (1+ ε)th Central Moments) Given m ∈ [M] and i ∈ [K],
rewards (rm

i (t))t≥1 are i.i.d. copies from the distribution Fm
i . Also, there exist ε ∈ (0,1] and ρ ∈ (0,∞) such

that supm∈[M], i∈[K] E|rm
i (1)−µm

i |1+ε ≤ ρ, where µm
i =∆ Erm

i (1) =
∫

xFm
i (dx) denotes expected rewards.

We use at
m to denote the arm pulled by client m at time t. We define the global reward of arm i

at each time step t as ri(t) = 1
M ∑m∈[M] rm

i (t), and the expected value of the global reward of arm i by
µi =

1
M ∑m∈[M] µ

m
i . We denote the global optimal arm by i∗ = argmaxi∈[K] µi, and consider the cooperative

setting where all clients would, ideally, pull the globally optimal arm i∗. The optimality gap for arm i
is ∆i = µi∗ −µi. This motivates the definition of the total regret of the system, which we call regret for
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simplicity throughout the paper, by RT = M ·T · µi∗ −∑
T
t=1 ∑m∈[M] µat

m
, measuring the difference in the

cumulative expected reward between the global optimal arm and the actions.
The main objective of this paper is to develop a multi-agent MAB algorithm and minimize RT for

clients given the sparse communications available on (Gt)t≥1, and we are particularly interested in the
case where the communication graphs (Gt)t≥1 are time-varying with heavy-tailed degree distributions.
More precisely, we consider the graph sequence (Gt)t≥1 that are generated as follows. Independently for
each time t ≥ 1 and pair m, l ∈ [M] with m ̸= l, we have (m, l) ∈ Et with probability P(hm,hl), and (m,n) /∈
Et with probability 1−P(hm,hn), where the kernel P(·, ·) is defined by

P(u,v) = min{1, uv/(θM)}, ∀u,v≥ 0, (1)

and (hm)m≥1 are i.i.d. copies of some random variable h with mean θ = Eh. Note that this is the standard
rank-1 inhomogeneous random graphs; e.g., (Boguná and Pastor-Satorras 2003; Chung and Lu 2002).
Intuitively speaking, hm is the weight assigned to the mth node, representing its attraction to the other
nodes. The weight hm would not change with time t, and is close to the expected degree of the mth node
(especially under large M) over the graphs (Gt)t≥1. In particular, we consider the case where the weights
hm’s are heavy-tailed, and capture heavy tails using notion of regular variation. Given a measurable function
φ : (0,∞)→ (0,∞), we say that φ is regularly varying as x→ ∞ with index β (denoted as φ(x) ∈RV β (x)
as x→ ∞) if φ(x) = xβ · l(x) for some function l : (0,∞)→ (0,∞) with limx→∞ l(tx)/l(x) = 1 for all t > 0.
That is, φ(x) roughly follows a power-law tail with index β . For a standard treatment on the properties of
regularly varying functions, see, e.g., (Resnick 2007). We impose the following assumption on the attraction
weight sequence (hm)m≥1.
Assumption 2 (Heavy-Tailed Graph) P(h > x) ∈RV −α(x) for some α > 1.

We impose the next assumption to exclude the pathological case that some clients are (almost) never
connected to others at any time t.
Assumption 3 (Lower Bound for h) There exists ch > 0 such that P(h≥ ch) = 1.

We use Nm(t) to denote the neighborhood set of the mth node at time t, which includes all the other nodes
that are connected to m over the graph Gt . Equivalently, the graph Gt can be represented by the adjacency
matrix (X t

m,l)1≤m,l≤M where X t
m,l = 1 if there is an edge between nodes m and l, and X t

m,l = 0 otherwise. We
set X t

m,m ≡ 1 for any 1≤ m≤M. We also define the empirical adjacency matrix by Pt(m, l) =∆ ∑
t
s=1 X s

m,l/t
and Pt =

(
Pt(m, l)

)
1≤m,l≤M . We note that each node m only knows its own neighbors and can only observe

the m-th row of Pt , i.e., node m has access to {Pt(m,q)}M
q=1 but not {Pt(n,q)}M

q=1 for n ̸= m.

3 ANALYSES OF RANDOM GRAPHS

In this section, we establish useful properties regarding the hub structures and information delay over
random graphs Gt defined in Section 2. The results lay the foundation for our subsequent analysis of
multi-agent multi-armed bandits. Due to the page limit, we refer the readers to the online preprint (Wang
and Xu 2025) for the rigorous proofs of all theoretical results in this paper.

3.1 Hubs on Heavy-Tailed Graphs

A feature exclusive to heavy-tailed graphs is the arise of hub-like nodes with disproportionately large
degrees (i.e., being connected to a large number of nodes), which enables efficient communication
among all clients through such hubs. We first consider a deterministic characterization of the hub. Let
m̂ = argmaxm∈[M] |Nm(1)| be the client with the highest degree at time 1 (arbitrarily pick one if there are
ties). Let St

0 =
∆ {m ∈ [M] : (m, m̂) ∈ Et} be the clients communicating with m̂ at time t. Note that, for any

m ∈ [M] with hm > θM/hm̂, by (1) we know that such m must be deterministically (i.e., with probability 1)
connected to m̂ for all t. Lemma 1 confirms that, with high probability, such nodes m are plenty. Specifically,
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by standard techniques in extreme value theory for heavy-tailed variables, one can show that hm̂ is roughly
of order M1/α , and (under α ∈ (1,2)) the count of m ∈ [M] with hm > θM/hm̂ ≈ θM1−1/α is roughly of
order M2−α . By taking the ζ -slackness in the power-law index (as demonstrated in Lemma 1), we are able
to ensure the exponentially decaying bound for pathological cases.
Lemma 1 Let Assumptions 2 and 3 hold with α ∈ (1,2). Given ζ ∈ (0,2−α), there exists γ > 0 such
that P

(
|S0| ≤M2−α−ζ

)
= o(exp(−Mγ)), as M→ ∞, where S0 = ∩t≥1St

0.
In fact, we can further improve upon Lemma 1 by considering the following stochastic characterization

of hubs. Given ζ > 0, let τ(t) =∆ max{u≤ t : |Su
0|> M

1
α
−ζ} be the last time the size of the hub is large

(w.r.t. threshold M
1
α
−ζ ) up until time t, under the convention that τ(t) = 0 when taking maximum over

the empty set. Lemma 2 bounds the time gap between the emergence of large hubs. The proof builds
upon extreme value theory and a straightforward coupling between supt≤T t− τ(t) and geometric random
variables.
Lemma 2 Let Assumptions 2 and 3 hold. Define the event Aα,ζ =∆ {hm̂ ≥ M

1
α
− ζ

2 }, where α > 1 is
the heavy-tailed index stated in Assumption 2 for the degree distribution. For each ζ ∈ (0,1− 1

α
),

there exists γ > 0 such that P
(
(Aα,ζ )

∁
)
= o

(
exp(−Mγ)

)
. Furthermore, there exists M0 > 0 such that

P(supt≤T t− τ(t)> logT | Aα,ζ )≤ 1/MT , ∀M ≥M0, T ≥ 1.
Remark 1 (Comparison to dense and light-tailed graphs) Xu and Klabjan (2024) considers dense E-R
graphs, where any pair of clients communicates on a regular basis (i.e., the expected degree of each graph
Gt is O(M2)). In this work, we show that under the presence of heavy tails in degree distributions, clients
can afford to collaborate over a much sparse O(M)-budget communication by sending messages to and
receiving messages from the hub center m̂ that integrates all information.

3.2 Information Delay over Sparse Graphs

The sparsity of graphs Gt makes existing analysis in Xu and Klabjan (2024) obsolete and calls for a new approach
to obtain detailed bounds regarding the information delay under sparse communication. Specifically, given some
non-empty subset of clients S⊆ [M], let S̄0 = S, and S̄t =∆ {m∈ [M] : m∈ S̄t−1; or ∃n∈ S̄t−1 s.t. (m,n)∈ Et}
for each t ≥ 1. That is, if all clients in S send a piece of message at time 1, which will be passed to
neighbors over graph Gt at each time t, then S̄t is the collection of clients that have received the message at
time t. Lemma 3 shows that, with high probability, the information delay uniformly for any client m ∈ [M]
is at most O

(
(logM)2

)
. Our proof strategy is to establish a coupling between the sizes of the graphs (Gt)t≥1

and a branching process, whose size grows geometrically fast in expectation.

Lemma 3 Under Assumption 3, there exists κ ∈ (0,∞) such that P
(
m /∈ S̄γ·κ·(logM)2

for some m∈ [M]
)
≤M−γ

holds for any γ > 0, M ≥ 1, and any non-empty subset S⊆ [M].

4 HOMOGENEOUS REWARDS

This section considers the homogeneous-reward setting. The algorithmic framework will be extended to
the heterogeneous-reward setting in the next section. Specifically, we propose the algorithm in Section
4.1, addressing the challenges from both heavy-tailed rewards and sparse graphs. Then, we establish the
theoretical effectiveness of the proposed algorithm in Section 4.2.

4.1 Algorithm

Under homogeneous rewards, we propose a new algorithm called HT-HMUCB (Heavy-Tailed HoMogeneous
Upper Confidence Bounds). See Algorithm 1 for the pseudo-code. The algorithm consists of several stages
that proceed in the following order.

Hub identification. A novel step in our algorithm concerns the identification of hub center m̂ =
argmaxm∈[M] |Nm(1)|, i.e., the client with the highest degree at time t = 1. Due to space limitations, we
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defer the details of this step to Algorithm 4 in the online supplementary material (Wang and Xu 2025), but
stress that it is quite intuitive: each client transmits its degree information (at time t = 1) across the entire
network, and this information is allowed to propagate sequentially over the graphs (Gt)t≥1 for a sufficiently
long period (more precisely, O

(
(logM)2

)
steps), so that we are high confidence that every client accurately

identifies m̂—the client with the highest degree at t = 1. Afterwards, all non-center clients will take actions
based on the reward information processed by and sent from the hub center m̂.

Arm selection. During this stage, the clients decide which arm to pull by executing a UCB-based strategy,
where each arm i is assigned a UCB index, formally expressed as µ̂m

i (t)+ρ
1

1+ε ( c log(t)
Nm,i(t)

)
ε

1+ε . Here, µ̂m
i (t) and

Nm,i(t) represent the global reward estimators and sample counts of arm i by client m, respectively, defined
in Rule 1 below. Constants ρ and ε are characterized in Assumption 1, and c is specified in Theorem 1.

Transmission. We define an information filtration Fm(t) as the information available to m up to time
t, which reads as Fm(0) = {(m,1),rm

a1
m
(1),Nm,i(1), µ̂m

i (1)},Fm(t) = ∪l∈Nm(t−1)Fl(t− 1). Each client m
communicates with its neighbors Nm(t) by sending a message, composed of (m, t),rm

at
m
(t), Nm,i(t), µ̂m

i (t),
and Fm(t), while collecting messages from its neighbors.

Information update. After pulling arms and receiving feedback from the environment, as well as
receiving information from neighbors, the clients proceed to update their information based on Rule 1
detailed below.
Rule 1 (Information update rule for HT-HMUCB)

1) Local estimation tm←l = max{s≤ t : (l,s) ∈Fm(t)}, Local sample counts: nm,i(t +1) = nm,i(t)+
1at

m=i 2) Global estimation

Sample counts: Nm,i(t +1) = ∑l∈Nm(t) nl,i(t +1)

if m is center (i.e., m = m̂), set µ̂
m̂
i (t +1) = MoMB({rl

i(s) : rl
i(s) ∈Fm̂(t)}),o.w., µ̂

m
i (t +1) = µ̂

m̂
i (tm←m̂)

Here, MoMB
(
(Xi)i∈[n]

)
denote the median of mean estimator with B batches, i.e., the median of

µ̂1, . . . , µ̂B defined by µ̂ j =
1
N ∑

jN
t=( j−1)N+1 Xt with N = ⌊n/B⌋. MoM estimators have been applied in Bubeck

et al. (2013) for UBC algorithms in single-agent settings. Our work further demonstrates its use for robust
estimation under heavy tails in multi-agent MAB problems.
Remark 2 (Comparison to prior works) Our algorithm differs from the existing ones in Dubey and Pentland
(2020) for homogeneous settings with heavy-tailed rewards in the following key aspects: (i) the clients
identify the hub center to maximize information efficiency, which is computationally more tractable than the
clique search in Dubey and Pentland (2020); and (ii) the clients take actions based solely on the information
from hub center, rather than maintaining global estimators individually.

4.2 Regret Analyses

In this section, we demonstrate the effectiveness of the proposed algorithm through regret analyses. Notably,
the tail index α for degree distributions in Assumption 2 plays a key role in our regret bound. First, we
establish Theorem 1 for α ∈ (1,2) by utilizing the deterministic characterization of hubs in Lemma 1.
Theorem 1 (α ∈ (1,2)) Let Assumptions 1–3 hold with 1 < α < 2. Let Algorithm 1 run under Rule 1. Given
ζ ∈ (0,2−α), there exists η > 0 such that, for any T and M, the event Aζ ,δ holds with probability at least
(1− 2η/M− η/T M), and we have E[RT |Aζ ,δ ] ≤ L+M ∑i∈[K](2c∆i logT/M2−α−ζ ·(∆i/2Cρ

1
1+ε )

1+ε
ε + π2

3 ∆i) = O((1+

2Mα−1+ζ ) ·ρ 1
ε ∑i∈[K] ∆

−ε

i · logT ), where L = 2κK(logM)2 logT , κ is the constant characterized in Lemma 3,

c = (16log2e1/8)
ε

1+ε , C = (12)
1

1+ε , B = 8log(e1/8T ) is the count of batches for MoM estimators, |S0| is the
size of S0 (see Lemma 1), and the event is defined by Aζ ,δ = A1

ζ ,δ ∩A2
ζ ,δ ∩A3

ζ ,δ with A1
ζ ,δ = {|S0| ≥M2−α−ζ},

A2
ζ ,δ = {nm,i(tm←l) ≥ nm,i(t)−κ logM logT ∀t ≤ T, ∀i,m, l}, and A3

ζ ,δ = {m̂(m) ̸= m̂ for some m ∈ [M]}
(see Algo. 4 in Online Material). In particular, E[RT |Aζ ,δ ]≤ O(Mα−1+ζ · logT ) = o(M) ·O(logT ).
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Algorithm 1 HT-HMUCB (Heavy-tailed Homogeneous UCB)
Initialization: For each client m and arm i ∈ {1,2, . . . ,K}, we set Nm,i(L+1) = nm,i(L); all other values at
L+1 are initialized as 0; let L be specified as in Theorem 1
for t = 1,2, . . . ,L do

Each client transmits the degree information at time t = 1 (i.e., |Nm(1)|) to their neighbors, so that after
L steps, it holds with high probability that each client accurately identifies m̂ = argmaxm∈[M] |Nm(1)|;

end
for t = L+1,L+2, . . . ,T do

for each client m do // UCB

1 at
m = argmaxi∈[K] µ̂

m
i (t)+ρ

1
1+ε ( c log(t)

Nm,i(t)
)

ε

1+ε and pull arm at
m and receive reward rm

at
m
(t)

2 end
3 The environment generates the graph Gt ; // Env
4 Each client m sends (m, t), rm

at
m
(t), Nm,i(t), µ̂m

i (t), Fm(t) to each client in Nm(t) // Transmission

5 for each client m do
6 for i = 1, . . . ,K do
7 Update nm,i(t),Nm,i(t) and µ̂m

i (t) by Rule 1 // Update
8 end
9 end

end

Proof Sketch. The proof hinges on the key observation that, with high probability, the hub size |S0| is
no less than M2−α−ζ ; see Lemma 1. The communication delay between the clients is then bounded by
Lemma 3, hence the clients in the hub enjoy the reduction in sample complexity. This is achieved by
utilizing a concentration inequality with respect to ∑m∈S0 nm,i(t) instead of nm,i(t), resulting in an individual
regret of order 1/|S0| · logT . Consequently, the total regret is of order M−|S0|/|S0| · logT .

We stress that, in Theorem 1, the dependency on α characterizes the relationship between the regret
and the heavy-tailed graph dynamics, and also reflects the reduction of complexity that is unique to our
heavy-tailed-graph setting. Additionally, the regret bound depends on ρ and ε (see Assumption 1), capturing
the influence of the heavy-tailed rewards. The dependency on optimality gaps ∆i’s is standard in MAB, but
in our case there is an additional ε-polynomial factor due to heavy-tailed rewards.

In fact, we can obtain even stronger regret bound—and even without the requirement of α ∈ (1,2)
in Theorem 1—by considering the the stochastic characterization of hubs St

0. This is demonstrated in
Theorem 2.
Theorem 2 (α > 1) Let Assumptions 1–3 hold. Let Algorithm 1 run under Rule 1. Given ζ ∈ (0,2−α)
there exists η > 0 such that, for any T , M, the event Aα,δ ,ζ holds with probability at least (1−η/M−η/T M),
and E[RT |Aα,δ ,ζ ] ≤ L+M ∑i∈[K](2c logT/M

1
α −ζ (∆i/2Cρ

1
1+ε )

1+ε
ε + π2/3)∆i = O(M1− 1

α
+ζ · logT ), where Aα,δ ,ζ =

Aζ ,δ ∩Aα,ζ , with the event Aα,ζ defined in Lemma 2, the event Aζ ,δ defined in Theorem 1, and parameters
L,κ,c,C,B specified as in Theorem 1.

Proof Sketch. The information delay characterized in Lemma 3 for sparse graphs still holds here.
Meanwhile, Lemma 2 proves that hub size |St

0|, despite being time-varying, is often times at least of order

M
1
α
− ζ

2 , which is even larger than the O(M2−α−ζ ) lower bound for the hub size developed in Lemma 1.
This tighter lower bound for the hub size leads to further variance reduction as clients can efficiently collect
information sent by an (often times) even larger hub St

0.

3196



Wang and Xu

Remark 3 (Comparison to Theorem 1) Given α > 1, the index 1− 1
α

for regret bound in Theorem 2 is
always smaller than the index 2−α in Theorem 1, due to the preliminary inequality −1

x ≤ 1− x for any
x > 1. This implies that, by considering a dynamic and time-dependent hub, the power-law index in our
regret bound is further improved upon the results in Theorem 1. This highlights the advantage of leveraging
the tighter characterization for notion of time-varying hub as in Lemma 2, thus enabling a regret bound of
even smaller order under more relaxed assumptions (i.e., without the requirement of α < 2).
Remark 4 (Comparison with existing literature on homogeneous MA-MAB) We begin by focusing on
the perspective of regret bounds and emphasizing the order w.r.t. M, as naive UCB already leads to a
regret of order logT . First, the regret bound in Dubey and Pentland (2020) is O(α(G)ρ

1
ε (∑i ∆

−ε

i ) logT )
and their algorithm relies on solving an NP-hard problem to find the clique (i.e., the largest independent
set). Here, the quantity α(G)—the independence number of graph G—may not admit an explicit form and
is still an active research topic. For connected graphs, some known bounds on α(G) are (Willis 2011)
α(G)≤M− M−1

∆
, where ∆ is the maximum degree and α(G)≥ M

1+∆
, thus implying RT ≤ O(M · logT ). In

contrast, we obtain an improved regret bound that is sub-linear in M. Specifically, since the slackness
parameter ζ in Theorem 2 can be set arbitrarily close to 0, our regret bound is almost of order O(M1− 1

α
+ζ ).

In particular, our bound is established for sparse graphs with expected degree (i.e., count of edges over the
graph) of order O(M). While Yang et al. (2023) establishes a regret bound of order O(logT ) independent
of M , the authors assume that the graph is connected or complete and only consider sub-Gaussian rewards.

Regarding assumptions, we emphasize: (i) we do not require the graph to be connected (or l-periodically
connected, as in Zhu and Liu (2023)); (ii) we allow the graph to change over time; and (iii) we address
sparse graphs. Points (i) and (iii) address significant gaps in existing works on multi-agent multi-armed
bandit problems, to the best of our knowledge, and point (ii) resolves an open problem identified in Dubey
and Pentland (2020), which suggested time-varying network analysis and tested this case numerically. Our
heavy-tailed reward assumption is in the same spirit as in Dubey and Pentland (2020). To the best of our
knowledge, our framework is the most general to date for homogeneous MA-MAB.

5 HETEROGENEOUS REWARDS

This section addresses the more general heterogeneous setting. Specifically, we present the algorithm in
Section 5.1 and the regret analysis in Section 5.2. The results are well beyond the scope of the existing
work on MA-MAB with random graphs and heterogeneous rewards (Xu and Klabjan 2024), the scope of
which is limited to Erdős–Rényi graphs with light-tailed, dense dynamics.

5.1 Algorithm

Under heterogeneous rewards, we propose a new algorithm, namely HT-HTUCB (Heavy-Tailed HeTerogeneous
UCB), as the presence of heterogeneity in rewards necessitates different approaches to the communication
and updates of information across clients. The pseudo-code is provided in Algorithm 2, with the details
of the burn-in period (i.e., the first L steps) collected in Algo. 3 of Online Material (Wang and Xu 2025)
(which is identical to that of Xu and Klabjan (2024)). The burn-in period prepares the clients with initial
rewards and graph estimators, enabling them to communicate and integrate information in the subsequent
learning stage. Specifically, during the burn-in period, clients pull each arm 1≤ i≤ K sequentially and
update the average reward of each arm as local reward estimators. Simultaneously, clients observe the
graph and update the edge frequency and average degree of clients. At the end of the burn-in period, the
clients output an initial global estimator, calculated as the weighted average of the local reward estimators
using the edge frequencies as weights.

Moving onto the learning period, clients employ UCB-based strategies to pull arms, communicate with
each other, and integrate the information collected from neighbors. The steps are executed in the following
order.
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Arm Selection. We still employ a UCB-based strategy, but the global estimator is constructed
differently, with an additional condition during the execution of the UCB-based strategy: nm,i(t) ≤
Nm,i(t)−2κ(logM)2 logT . This novel condition ensures that clients remain synchronized and accounts for
the longer information delay caused by heavy-tailed graph dynamics, which differs from (Xu and Klabjan
2024; Zhu and Liu 2023).

Transmission. This step is almost identical to that of Section 4.1, except for the message components.
Here, an information filtration Fm(t) reads as Fm(0) = {(m,1),rm

at
m
(1),Nm,i(1), µ̄m

i (1), µ̂
m
i (1)} and Fm(t) =

∪l∈Nm(t−1)Fl(t − 1). Each client m communicates with its neighbors Nm(t) by sending an message,
including (m, t),rm

at
m
(t), Nm,i(t), µ̄m

i (t), µ̂m
i (t) and Fm(t), while collecting messages from its neighbors.

Information update. Since the heterogeneity in rewards necessitates obtaining reward information from
all clients, we propose a new information update step to aggregate information, represented by Rule 2.
Rule 2 (Information update rule for HT-HTUCB)

1) Local estimation
Local sample counts: nm,i(t +1) = nm,i(t)+1at

m=i, Local estimator: µ̄m
i (t +1) = MoMB({rm

i (s)}1≤s≤t)

2) Global estimation with N = (12
1

1+ε )
1+ε

ε +1
tm←l = max{s≤ t : (l,s) ∈Fm(t)}, Nm,i(t +1) = max{nm,i(t +1),{Nl,i(t)}l∈Nm(t)};

µ̂m
i (t +1) = ∑l∈[M] P′t µ̂ l

i (tm←l)+dm,t ∑l∈[M] µ̄
l
i (tm←l), P′t = (N−M21/(ε+1))/MN21/ε+1, dm,t = (1−MP′t )/M.

Remark 5 (Comparison to existing work and Section 4.1) Compared to Section 4.1, the arm selection step
imposes an extra requirement that nm,i(t)≤ Nm,i(t)−2κ(logM)2 logT in UCB, which balances exploitation
and exploration given the noise in the global reward estimator µ̂ in the heterogeneous case. Secondly, we
remove the hub estimation step in the heterogeneous setting, and each client now must collect information
from all clients by message passing with through neighbors sets Nm(t). Lastly, we run Rule 2 instead of
Rule 1 for information update.

Notably, our UCB index µ̂m
i (t)+ρ

1
1+ε (c log(t)/Nm,i(t))

ε/1+ε is able to address heavy-tailed rewards, while
Xu and Klabjan (2024) considers µ̂m

i (t)+F(m, i, t) where F(m, i, t) =
√

C1 ln t/nm,i(t) (for sub-Gaussian
rewards) and F(m, i, t) =

√
C1 lnT/nm,i(t)+C2 lnT/nm,i(t) (for sub-exponential rewards). Also, we propose new

the information update rule due to the differences in reward and graph dynamics.

5.2 Regret Analysis

Importantly, we next demonstrate the effectiveness of Algorithm 2 by investigating the regret upper bound.
In particular, we stress that Theorem 3 does not rely on Assumption 2, meaning that the results address
both light-tailed and heavy-tailed degree distributions in the random graph model (1).
Theorem 3 Let Assumptions 1 and 3 hold. Let Algorithm 2 run under Rule 2. Then, for any T and M, we have
P(Aζ ,δ )≥ 1−7/T and E[RT |Aζ ,δ ]≤ 2κK(logM)2 logT +∑i∈[K] M∆i ·(max{ 2cN logT

(∆i/2ρ

1
1+ε )

1+ε
ε

,2κ logM logT})+

∑i∈[K] M∆i · (2π2

3 + 2κ(logM)2 logT ) = O(M logT ), where K is the count of arms, the event is defined

by Aζ ,δ = {nm,i(tm, j) ≥ nm,i(t)− κ(logM)2 logT ∀t ≤ T, ∀m, i, j}, N = (12
1

1+ε )
1+ε

ε + 1, and parameters
c,B,κ,ρ,ε are specified as in Theorem 1.

Proof Sketch. Note that we do not exploit the hub structure in this setting, as clients need to collect
information from all other clients rather than relying solely on a hub that contains only a subset of information.
Nevertheless, the information delay bounds in Lemma 3 for sparse graphs still hold. Using the estimators
constructed in Rule 2, which leverage neighbor information to collect and integrate global information,
we prove a concentration inequality for the global estimator µ̂ with respect to the global mean values:
|µ̂m

i (t)−µi| ≤ 2ρ
1/1+ε( Mc log(T )

minm nm,i(t)
)

ε

1+ε . This ensures that clients can identify the globally optimal arm using
UCB after 2cM logT/(∆i/2ρ

1/1+ε )
1+ε/ε steps with high probability. Another possible scenario is that, when clients

are not synchronized, they randomly select arms instead of using UCB (see Step 14 of Algo. 2), the regret
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Algorithm 2 HT-HTUCB (Heavy-Tailed Heterogeneous UCB): Learning period
Initialization: For each client m and arm i ∈ {1,2, . . . ,K}, we have µ̂m

i (L+1), Nm,i(L+1) = nm,i(L); all
other values at L+1 are initialized as 0 let L be specified as in Theorem 1
for t = L+1,L+2, . . . ,T do

for each client m do // UCB
10 if there is no arm i such that nm,i(t)≤ Nm,i(t)−2κ(logM)2 logT then
11 at

m = argmaxi µ̂m
i (t)+ρ

1
1+ε (c log(t)/Nm,i(t))

ε

1+ε

12 else
13 Randomly sample an arm from set {i : nm,i(t)≤ Nm,i(t)−2κ(logM)2 logT} and set it as at

m
14 end
15 Pull arm at

m and receive reward rm
at

m
(t)

16 end
17 The environment generates the graph Gt = (V,Et); // Env
18 Each client m sends (m, t), rm

at
m
(t), Nm,i(t), µ̄m

i (t), µ̂m
i (t), Fm(t) to Nm(t) // Transmission

for each client m do
19 for i = 1, . . . ,K do
20 Update nm,i(t),Nm,i(t) and µ̄m

i (t), µ̂
m
i (t) by Rule 2

21 end
22 end

end

of which is proved to be upper bounded by the last term of the regret bound in Theorem 3. As a result, the
total number of pulls of sub-optimal arms nm,i(t) can be bounded by O(logT ). Lastly, regret decomposition
shows that the regret is dominated by nm,i(t), and thus has the upper bound.

Remark 6 (Extension) We emphasize that Theorem 3 holds for both light-tailed and heavy-tailed random
graphs as it does not rely on Assumption 2. This also highlights a key difference between the homogeneous
and heterogeneous settings: in the homogeneous case, heavy-tailed hm’s lead to sample complexity reduction
compared to the light-tailed case (with regret of order O(M logT )), whereas the heterogeneous result holds
true for both light-tailed and heavy-tailed distributions for the attraction weight hm’s.
Remark 7 (Comparison to existing work) We analyze the order of the regret with respect to T , as the
absence of communication can lead to regret of order O(T ) (Xu and Klabjan 2025a). The most relevant
work (Xu and Klabjan 2024) establishes a regret upper bound of O(logT ) specifically for Erdős–Rényi
graph with light-tailed and dense dynamics. In particular, the dense connectivity in (Xu and Klabjan 2024)
requires any pair of clients connects with a rather high probability (of order O(1)) at any time step, which
limits practical applicability. Besides, their work covers some reward distributions that are heavier than the
sub-Gaussian class but still have finite moment-generating functions (MGFs). In contrast, we impose no
such assumptions on graph connectivity, consider sparse graphs with only O(M) total degree (instead of the
O(M2) total degree in (Xu and Klabjan 2024)), and allow for a significantly more general class of reward
distributions, potentially with infinite variance. On the other hand, Zhu and Liu (2023) achieves a regret
bound of the same order, but assumes a connected or periodically connected graph under sub-Gaussian
rewards, which may not hold for sparse graphs. Last but not least, our results close an open problem in
Dubey and Pentland (2020) regarding homogeneous rewards under heavy-tailed settings (Section 4.2), thus
bridging the gap in existing literature and addressing challenges posed by heavy-tailed graphs.
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6 DISCUSSION ON OPTIMALITY

Notably, our regret upper bounds in these new settings are optimal in terms of their order in T . In (Xu and
Klabjan 2025b), the authors show that in stochastic settings with time-invariant rewards, the regret lower
bound for any multi-agent multi-armed bandit with random graphs is of order logT . This matches the
upper bounds established here, confirming the T -optimality of our results. However, the lower bounds are
not known to be optimal in M, as no such result exists in the literature or in our paper—this remains an
open direction. We also note that the dependence on M in our bounds is smaller than in existing works that
rely on stronger assumptions (see above remark), indicating that our results improve upon prior work and
offer a practical advantage.
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