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ABSTRACT

In this work, we introduce DES-Gymnax, a novel high-performance discrete-event simulator implemented in
JAX. By leveraging the just-in-time compilation, automatic vectorization, and GPU acceleration capabilities
of JAX, DES-Gymnax can achieve 10x to 100x times performance improvement over traditional PYTHON-
based discrete-event simulators like Salabim. The proposed DES-Gymnax can feature a Gym-like API that
facilitates seamless integration with reinforcement learning algorithms, addressing a critical gap between
simulation engines and Al techniques. DES-Gymnax is validated on three benchmark models, i.e., an
M/M/1 queue, a multi-server model, and a tandem queue model. Experimental results demonstrate that
DES-Gymnax maintains simulation accuracy while significantly reducing execution time, enabling efficient
large-scale sampling crucial for reinforcement learning applications in operations research areas. The
open-source code is available in the DES-Gymnax repository (Yun, Jun, and Xiangfeng 2025).

1 INTRODUCTION

Discrete-event simulation (DES) serves as a critical modeling and analysis tool widely applied in operations
research tasks closely related to national economies, such as supply chain management (Manuj, Mentzer,
and Bowers 2009), warehouse planning (Agalianos, Ponis, Aretoulaki, Plakas, and Efthymiou 2020),
and factory scheduling (Wu and Wysk 1989; Greasley 2005). discrete-event simulators constitute the
core tools enabling efficient execution of these simulation tasks. Despite the availability of powerful
commercial engines (e.g., Anylogic (Borshchev 2014), Arena (Allen 2011) and open-source alternatives
(e.g., Unity-SimuLean (Pernas-Alvarez and Crespo-Pereira 2024)), the integrating of artificial intelligence
(AI) techniques, particularly reinforcement learning (RL) (Sutton and Barto 1998) and large language models
(LLMs) (Sanderson 2023) into DES processes remains a pressing challenge. meet two key requirements:
(1) providing standardized interfaces that enable seamless interaction between Al algorithms and the
environment to facilitate training, and (2) delivering high simulation performance to support extensive
training—especially for Al algorithms like reinforcement learning, which demand substantial sampling and
efficient simulation capabilities (Yu 2018; Zhang et al. 2021).

The widespread adoption of Python in Al research, coupled with the standardization of the OpenAl Gym
interface (Brockman, Cheung, Pettersson, Schneider, Schulman, Tang, and Zaremba 2016) for reinforcement
learning (RL) environments, highlights the strategic value of Python-based discrete-event simulators (DES)
for Al integration. Frameworks such as SimPy (Zinoviev 2024) and Salabim (van der Ham 2018), along
with initiatives like QGym (Chen et al. 2024), represent significant steps toward bridging DES with Al
methodologies. Nevertheless, these platforms often face critical limitations—including long simulation run
times and inadequate support for parallel execution—which hinder their effectiveness in RL applications
that demand large-scale data generation.

While traditional DES research has explored performance improvements through parallel comput-
ing (Fujimoto 1990), distributed systems (Legrand 2001), and GPU acceleration (Chapuis et al. 2015),
these techniques are frequently incompatible with Python-based Al workflows. In the Al domain, high
simulation efficiency is essential for solving complex tasks. Frameworks like OpenSpiel (Lanctot et al.
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2019) have employed hybrid approaches combining C++ simulation cores with Python APIs to improve
the efficiency. However, such designs encounter challenges including cross-language performance bottle-
necks and limited GPU compatibility. Recent advancements in Python-native high-performance simulation
environment for RL training, such as Isaac Gym (Makoviychuk et al. 2021), Brax (Freeman et al. 2021),
Pgx (Koyamada et al. 2023), and Gymnax (Lange 2022), leverage the JAX library (Bradbury et al. 2018) to
deliver efficient, scalable simulation environments. By utilizing JAX’s automatic vectorization, Just-In-Time
(JIT) compilation and multi-device support, implementing parallelized sampling of simulation tasks and
significantly enhancing sampling efficiency during RL training.

Simulator Parallel | Support GPU | Gym-like API | Python-Original

Simpy (Zinoviev 2024) X X X v

Salabim (van der Ham 2018) X X X v

QGym (Chen, Li, Che, Dong, Peng, and X X v v
Namkoong 2024)

SimX (Thulasidasan, Kroc, and v X X X

Eidenbenz 2014)
DES-Gymnax v v v v

Table 1: Comparison of various Python-based discrete-event simulators.

This paper introduces DES-Gymnax, a novel discrete event simulator implemented using the JAX
library. DES-Gymnax is designed to combine scalable simulation capabilities with useful compatibility
for AI applications. Key characteristics of DES-Gymnax include: 1) Efficient Simulation Performance:
By leveraging JAX’s core features—automatic vectorization, Just-In-Time (JIT) compilation, GPU/TPU
acceleration, and functional programming support—DES-Gymnax achieves substantial computational ef-
ficiency. This enables support for large-scale, compute-intensive tasks such as reinforcement learning
(RL) training; 2) Al-Friendly Design: DES-Gymnax incorporates a standardized API adhering to the
Gymnasium (formerly Gym) interface conventions. This design choice promotes straightforward integra-
tion with contemporary Al algorithms and frameworks, enabling rapid prototyping and deployment of
RL agents interacting with simulated environments. To validate the effectiveness of DES-Gymnax, we
implemented three representative queuing models: the M/M/1 queue, a multi-server system, and a tandem
queue. These benchmarks were used to assess both the computational efficiency and the fidelity of the
simulation. Results demonstrate that DES-Gymnax provides significant speed advantages over traditional
Python-based simulators like Salabim, while maintaining accuracy in event-driven dynamics. In addition,
Table 1 presents a qualitative comparison between DES-Gymnax and other Python-based discrete event
simulation frameworks. This analysis shows that DES-Gymnax uniquely combines four critical proper-
ties—parallelism, hardware acceleration, Al-friendly design, and pure Python implementation—making it
particularly suitable for simulation-driven Al research.

The primary contributions of this paper are as follows: (1) Development of DES-Gymnax: A high-
performance, parallelized, and Al-friendly discrete-event simulator built on JAX, tailored for operations
research and Al applications; (2) Significant Performance Improvements: Experimental results demon-
strate that JAX-DES outperforms Python-based discrete-event simulators like Salabim, achieving 10 to 100
times speedups in large-scale simulation tasks; (3) Facilitation of AI and Operations Research Synergy:
By furnishing a standardized Gym-compatible interface, DES-Gymnax lowers the barrier for integrating
DES methodologies with advanced Al techniques, thereby fostering innovation, especially in RL-based
control and optimization of simulated systems.

2 RELATED WORK
2.1 Discrete-event Simulator

The efficacy of DES implementations critically depends on the underlying efficiency and scalability
characteristics. Traditionally, discrete-event simulators have been constrained by their inherently sequential
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execution model, where events must be processed in strict temporal order. This sequential nature poses
significant computational limitations when simulating large-scale, complex systems, often resulting in
prohibitively lengthy execution times for practical applications.

To overcome these performance constraints, researchers have developed Parallel discrete-event Sim-
ulation (Fujimoto 1990) (PDES), which involves decomposing monolithic DES models into multiple
concurrent sub-models that can execute independently. Critical to this methodology is the implementation
of sophisticated time synchronization algorithms that maintain temporal causality and ensure simulation
correctness across distributed execution contexts. Contemporary PDES frameworks leverage diverse compu-
tational architectures—including multi-core CPUs, distributed systems (Legrand 2001), and GPU (Chapuis,
Eidenbenz, Santhi, and Park 2015) to achieve substantial performance improvements. Despite these compu-
tational advantages, many state-of-the-art PDES solutions present significant usability barriers, particularly
regarding their limited integration with Python—the predominant programming language in Al research.
This interoperability gap significantly impedes the seamless incorporation of advanced decision-making
algorithms, such as RL algorithm, within simulation environments.

Recent years have witnessed the emergence of Python-based DES simulators featuring graphical
interfaces and compatibility with Al frameworks like OpenAl Gym (Brockman, Cheung, Pettersson,
Schneider, Schulman, Tang, and Zaremba 2016). These developments have facilitated the application of
RL methods to simulation-based problems. However, most Python-compatible simulators remain bound by
sequential processing limitations, with only a small subset supporting parallel execution paradigms. Existing
solutions such as SimX (Thulasidasan, Kroc, and Eidenbenz 2014) and Simulus (Liu 2020) offer limited
parallelism but suffer from poor compatibility with modern Al libraries due to maintenance deficiencies.
This technological gap highlights the urgent need for a robust, Python-compatible PDES framework that
integrates seamlessly with modern Al methodologies to support sophisticated decision-making in large-scale,
computationally intensive simulations.

2.2 JAX in Simulation

JAX (Bradbury et al. 2018) has emerged as a transformative Python library that combines accelerator-
oriented array computation with powerful program transformation capabilities, specifically designed for
high-performance numerical computing and large-scale machine learning applications. Its impact extends
across numerous Al domains, including optimization acceleration (Blondel et al. 2022) and efficient
sampling in RL algorithms (Lange 2022; Koyamada et al. 2023). Given that RL, particularly online
methods—fundamentally relies on simulation environments for training, JAX has been increasingly integrated
into RL simulation pipelines to enhance computational efficiency.

Current JAX implementations span diverse simulation domains, including board games (Koyamada et al.
2023), physics engines, and environments for research in robotics, human perception, materials science, and
other simulation-intensive applications (Freeman et al. 2021). Gymnax (Lange 2022) represents a promi-
nent example of this integration, providing JAX-accelerated implementations of various RL environments
encompassing classic control problems, bsuite benchmarks, MinAtar environments, and numerous classic
and meta-RL tasks. Its gym-compatible API facilitates seamless adoption by researchers familiar with
standard RL frameworks. Additionally, Gymnax provides companion baseline implementations through
Gymnax-BLines, enabling rigorous algorithm evaluation within JAX-accelerated environments. Beyond
this, frameworks such as Foragax (Chaturvedi et al. 2024) further extend JAX’s applicability to agent-based
modeling, highlighting its versatility across diverse simulation paradigms.

The proposed DES-Gymnax framework can extend this paradigm by inheriting Gymnax’s intuitive
API while introducing JAX acceleration specifically tailored for discrete-event simulation. This approach
not only significantly enhances simulation performance but also provides a framework that aligns with
the methodological requirements and expectations of the Al research community, thereby bridging the
longstanding gap between high-performance simulation and advanced Al techniques.
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Figure 1: The DES-Gymnax framework provides a powerful simulator for discrete-event simulation. Its
discrete-event Simulator Engine utilizes a Process Scheduling module to create corresponding simulation
processes. Leveraging JAX’s auto-vectorization capabilities, the framework enables parallel processing of
jobs, while JAX’s multi-device support facilitates parallelization across hardware. A gym-like API provides
a standardized interface for seamless integration with RL and other Al algorithms.
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3 THE DES-GYMNAX FRAMEWORK

This section elaborates on the DES-Gymnax framework, detailing its core design principles, its utilization
of JAX for performance enhancement, and the architecture of its discrete-event simulator engine. The
overall architecture of DES-Gymnax is depicted in Figure 1.

3.1 Design Principles

The development of DES-Gymnax has been guided by four fundamental design principles that collectively
optimize its performance for Al applications: (1) Python-Native Implementation: DES-Gymnax is
constructed entirely within the Python ecosystem, facilitating seamless integration with existing Al workflows
while maintaining flexibility for customization; (2) Parallel Execution Architecture: The framework
incorporates comprehensive support for parallel execution across computational resources, significantly
enhancing simulation efficiency when training Al policies; (3) GPU Acceleration: DES-Gymnax leverages
hardware acceleration through GPU computing to efficiently process batched simulations, enabling the
generation of thousands of parallel training samples; (4) AI-Friendly Interface: DES-Gymnax exposes
a Gym-Like API. This provides a familiar and convenient interface for Al researchers and practitioners,
thereby streamlining the integration of sophisticated decision-making algorithms (like RL agents) within
the simulation environment.

3.2 JAX Acceleration

JAX offers several key features for high-performance computing, including just-in-time (JIT) compilation,
automatic vectorization, multi-device support, and automatic differentiation. DES-Gymnax leverages the
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first three to enable scalable, parallel discrete-event simulations. As our setting does not require gradient-
based optimization, automatic differentiation is not utilized. The following paragraphs describe how each
of these features contributes to the performance and scalability of DES-Gymnax.

3.2.1 Just-In-Time Compilation

JAX’s just-in-time (JIT) compilation via jax.jit transforms Python functions into XLA (Accelerated
Linear Algebra) optimized routines. This compilation process is particularly beneficial for simulation,
where the same computational patterns are repeatedly executed with different inputs. For DES-Gymnax, JIT
compilation provides several advantages: The JIT compilation eliminates Python’s interpretation overhead,
resulting in performance comparable to compiled languages like C++. It converts high-level Python code into
optimized machine instructions that execute directly on the target hardware without the performance penalties
associated with interpreted languages. The compilation process enables optimizations such as function
inlining, loop unrolling, and constant folding, which are particularly effective for the repetitive calculations
common in simulation. By analyzing the computational graph of the simulation functions, JAX can identify
and eliminate redundant operations, merge multiple operations into more efficient compound operations, and
pre-compute values that don’t change across iterations. This approach ensures that the performance-critical
path of simulation execution benefits from the full suite of JAX’s optimization capabilities.

3.2.2 Auto Vectorization

JAX’s vectorization capabilities through jax . vmap (vectorized mapping) allow DES-Gymnax to efficiently
process batches of simulations in parallel. This vectorization transforms functions that operate on single
simulations into functions that process batches of simulations simultaneously, utilizing the parallel computing
capabilities of modern hardware. For RL applications, this means that thousands of environment rollouts
can be performed in parallel, dramatically reducing the time required for data collection during training.
The vmap transformation is particularly powerful because it preserves the simplicity of writing code for
a single simulation while enabling efficient batch processing. Developers can focus on the logic of their
simulation model without the complexity of manual parallelization, yet still benefit from the performance
advantages of vectorized execution. Vectorization is especially effective on GPUs, which are designed for
performing the same operations across large arrays of data. By structuring the simulation to take advantage
of this capability, DES-Gymnax achieves significantly better hardware utilization compared to sequential
approaches.

3.2.3 Multi Device Support

JAXs transparent support for GPU acceleration allows DES-Gymnax to execute simulations on specialized
hardware without requiring environment-specific code modifications. This hardware flexibility is achieved
through JAX’s array handling, which automatically manages device memory transfers and execution. For
simulation-intensive applications, GPU acceleration can provide 10-100 times performance improvements
over CPU execution.

3.3 Discrete-event Simulator Engine

The core of DES-Gymnax is its event-driven simulation engine, responsible for managing the scheduling
and processing of events according to their timestamps. A detailed examination from the perspective of
DES reveals how our implementation builds upon established DES principles while strategically adapting
them for compatibility with and acceleration by JAX. Traditional DES frameworks typically require users
to define simulation entities and their associated properties—for instance, in an M/M/1 model, parameters
such as server service rates and customer arrival rates must be specified. Timestamps are assigned to events
to determine their occurrence times and establish precedence relationships. Most DES implementations
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adopt an event-scheduling approach, advancing simulation time discretely based on the next scheduled
event, thereby updating the system state only when necessary. Conventional simulators often implement
this logic using structures like priority queues and procedural functions (e.g., a process () method) that
execute events sequentially based on time, often involving mutable state updates.

DES-Gymnax adheres to this fundamental event-driven architecture but introduces crucial innovations for
JAX compatibility and performance. Specifically, it employs a functional approach to Process Scheduling
for handling event logic within a single simulation instance and utilizes Job-Level Tracking combined with
JAX’s vectorization capabilities to achieve massive parallelization across multiple independent simulation
instances. These components are detailed below.

3.3.1 Process Scheduling

Traditional discrete-event simulators typically implement process scheduling through mutable data structures
such as priority queues, with object-oriented designs that directly modify system state during event execution.
These conventional approaches rely on imperative programming patterns with explicit conditional branching
to manage event sequencing and state transitions, often using pointer-based structures that are incompatible
with accelerator hardware. DES-Gymnax reimagines process scheduling within JAX’s functional paradigm
through three integrated components.

Environment Configuration uses immutable dataclasses to define simulation parameters like any other
discrete-event simulators. Listing 1 gives an example for M/M/1 Model.

Listing 1: JAX array based EnvParams for M/M/1 Model.

@struct.dataclass
class EnvParames (environment.EnvParams) :
"""Parameters for configuring the simulation environment."""
max_timestap: int = ...
clerk_processing_time: float = ..
customers_arriving_time: float = ..
initilized_time: float = datetime () .timestamp(...)

Event Scheduler utilizes immutable JAX arrays containing events with their corresponding timestamps,
serving as the system state representation and replacing conventional mutable priority queues employed
in most discrete-event simulators. Listing 2 shows an environment state example for the M/M/1 Model.
During each iteration, the simulator executes the step_env function based on the current system state,
allowing the simulation to progress by processing the event with the minimum temporal distance from
the current clock_time, following established discrete-event simulation principles. Subsequently, the
system updates its state and generates a new immutable EnvState object compatible with JAX operations.
In contrast to conventional discrete-event simulators that simulate entire processes continuously based
on predetermined time intervals, DES-Gymnax offers event-granular simulation, providing system state
information at each event occurrence. This approach facilitates the integration of decision-making processes
during simulation execution, creating an Al-friendly environment for training RL and other Al algorithms.

Listing 2: JAX array based EnvState for M/M/1 Model.

@struct.dataclass

class EnvState (environment.EnvState) :
customers_in_the_queue: float
last_customer_enter_time: float
last_clerk_processing_time: float
clock_time: float
served_customers: float

Event Resolution transforms traditional imperative control flow into functional constructs using JAX’s
conditional primitives, as shown in Listing 3. It employs 1ax . cond for efficient branching without Python
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control flow, preserving JIT compatibility. The algorithm compares the expected arrival time of the next
customer with the processing completion time of the current one to determine the next event: an arrival,
a completion, or a rare simultaneous occurrence. Each branch delegates to a handler that updates the
environment state in a pure, side-effect-free manner. Instead of a mutable priority queue, the next event is
selected by comparing event timestamps directly within the data, and resolved using functional branching.
The simulation runs as a loop over discrete event steps, implemented using lax.scan, which repeatedly
calls process_next_event while threading the immutable environment state. This enables the entire
simulation to be compiled, vectorized, or parallelized using JAX’s transformations such as jit and vmap.

Listing 3: JAX conditional event resolution logic for M/M/1 Model.

def resolve_event_case() :
return lax.cond(

expected_next_arriving_time < expected_next_processing_time,

lambda _: self.updatWhileCustomerArrive (key, state, params),

lambda _: lax.cond/(
expected_next_arriving_time > expected_next_processing_time,
lambda _: self.updateWhileClerkProcess (key, state, params),
lambda _: self.handleEqualTime (key, state, params),
operand=None)

3.3.2 Job-Level Tracking and Parallelization

Conventional discrete-event simulators typically execute simulations in a sequential manner, necessitating
bespoke parallel implementations that frequently entail intricate thread management, message passing in-
terfaces, or distributed computing architectures. For instance, integrating simulators with general-purpose
parallel frameworks such as MPI presents significant limitations, as MPI exclusively supports CPU paral-
lelization, rendering GPU parallelization exceedingly challenging to implement. DES-Gymnax introduces
a job-level abstraction that fundamentally transforms this paradigm by encapsulating individual simulation
instances as discrete computational units, where each job represents a single, independent discrete-event
simulation duplication, initialized with distinct random seeds and configurations, and executed indepen-
dently. This implementation leverages the jax.vmap function to utilize JAX’s automatic vectorization
capabilities. Unlike traditional parallel computing libraries such as OpenMPI, which require explicit thread
management and typically parallelize at the process or thread level, vimap operates at the function level,
enabling the transformation of a single-instance simulation function into a batched form that executes
multiple duplications in parallel. This batching is deeply fused with JAX’s just-in-time (JIT) compila-
tion and hardware acceleration pipelines, allowing efficient parallel executions using single-instruction,
multiple-data (SIMD) paradigms.

Listing 4: Parallelization with jobs and JAX’s automatic vectorization.

def simulate (params, max_time=10000) :
"""Run a single job with the given parameters"""
state = initialize_simulation (params)

def step_fn(state, _):
next_state = process_next_event (state)
return next_state, next_state

final_state, trajectory = jax.lax.scan(
step_fn, state, jnp.arange (max_steps))
return final_state, trajectory

def batch_simulate (rng_input, env, env_params) :
batch_simulate_fn = jax.vmap (rollout, in_axes=(0, None, None))
return batch_simulate_fn (rng_input, env, env_params)
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3.3.3 Gym-Like API

DES-Gymnax provides a familiar, Gym-Like interface that simplifies integration with existing RL algorithms
and frameworks. The core API implements the standard Gym interface methods which are inherited from the
Gymnax environment architecture. This API design follows the well-established OpenAl Gym convention,
providing a consistent set of methods for RL researchers: reset_env () : Initializes or resets the simulation
to its starting state, returning both the initial observation and internal state; get_obs () : Extracts relevant
features from the internal state to form observations for the agent, including queue length, simulation
time, customer throughput, and waiting time metrics; step_env () : Advances the simulation by applying
an action and resolving the next event, then returns the new observation, reward, termination status, and
auxiliary information; action_space and observation_space: Define the format and constraints
of valid actions and observations, enabling automatic validation and standardized agent interfaces.

This standardized interface ensures that DES-Gymnax environments can be readily used with popular
RL libraries like gymnax-blines, without requiring custom adaptations. The implementation leverages JAX
features like lax.stop_gradient to prevent unnecessary gradient computation for non-differentiable
operations, optimizing training efficiency. Researchers familiar with the Gym interface can quickly apply
their existing knowledge to discrete-event simulations without a steep learning curve, while benefiting from
the performance advantages of JAX acceleration.

4 EXPERIMENT

We conducted comprehensive experiments to evaluate the performance of DES-Gymnax. This section
presents performance results across diverse simulation scenarios under various computational settings
(CPU-only and GPU-accelerated). We benchmark DES-Gymnax against the established Python-based
discrete-event simulator Salabim, including comparisons with Salabim’s MPI implementation to assess
parallel processing capabilities.

4.1 Experiment Setup

To rigorously evaluate DES-Gymnax’s performance, we implemented a series of controlled experiments
using three distinct simulation scenarios: the M/M/1 model, M/M/C model, and tandem queue model.
Experiments were conducted on both consumer-grade and high-performance computing platforms. For
small-scale experiments, we utilized a MacBook Pro with 16GB RAM and an M1 Pro 8-core CPU. Large-
scale performance testing was conducted on a virtual machine provisioned on a GPU server with 24 CPU
cores, 128GB RAM, and an NVIDIA A100 GPU with 80GB VRAM. To emphasize, the three benchmark
scenarios are illustrated in Figure 2 and described below:

[ ()
)\—) @—) )\ Waiting )\ - @_’ @_>

Area

o S
Area H2
(a) M/M/1 Model. (b) M/M/C Model. (c) Tandem Queue Model.

Figure 2: The three scenarios in the experiment.

*  M/M/1 Model: A fundamental single-server queuing system characterized by:
— Arrival Process: Customers arrive according to a Poisson process with a mean rate of A.
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— Queue Discipline: A single queue holds waiting customers, served in First-In, First-Out (FIFO)
order. Queue capacity is typically assumed to be infinite unless specified otherwise.

— Service Process: A single server processes customers with service times drawn independently
from an exponential distribution with a mean service rate of L.

* M/M/C Model: A multi-server queuing system with C identical servers operating in parallel,
characterized by:

— Arrival Process: Customers arrive according to a Poisson process with a mean rate of A.

— Queue Discipline: New customers join the shortest available queue.

— Service Process: C identical servers operate in parallel. Each server processes customers with
service times drawn independently from an exponential distribution with a mean service rate
of u (per server).

* Tandem Queue Model: A multi-stage service system where customers proceed sequentially through
multiple service nodes:

— Arrival Process: Customers arrive at the first stage according to a Poisson process with a mean
rate of A.

— System Structure: Customers flow sequentially through N distinct service servers.

— Service Process (per stage): Each server i typically operates as an independent queue. Service
times at stage i are drawn independently from an exponential distribution with a mean service

rate of U.
Table 2: Simulation parameters for performance testing.
Parameter Description M/M/1 Model | M/M/C Model | Tandem Queue Model
A Arrival rate (customers/minute) 4.8 4.8 4.8
u Service rate (customer/minute) 2 2 2
c Number of servers 1 2 2

4.2 Performance Testing Results

Our experimental results validate the substantial performance gains achieved by DES-Gymnax over con-
ventional Python-based simulators like Salabim. The specific parameters employed for all simulation
scenarios are summarized in Table 2. And we use workers’ to refer to the number of parallel simulation
instances—executed via vectorization (e.g., using vmap) in DES-Gymnax or distributed across processes
using MPI in Salabim—used to evaluate simulation throughput. Note that non-steady-state parameters
were intentionally used for these benchmarks, leading to unbounded queue growth. This choice focused
the evaluation on raw simulator throughput and efficiency, not steady-state system analysis. Across the
tested configurations, DES-Gymnax consistently achieved speedups ranging from 6 to 10 times compared
to Salabim under baseline execution conditions (e.g., single-core CPU). When leveraging GPU acceleration
across 1,000 parallel simulation instances (or workers’), this performance gap widened dramatically, with
DES-Gymnax demonstrating speedups of approximately 100x relative to Salabim.

Figure 3(a) illustrates performance comparisons for the M/M/1 Model. With just 10 workers, DES-
Gymnax achieved a 10 times speedup over Salabim. When scaled to 1000 GPU-accelerated workers,
DES-Gymnax delivered nearly 100 times performance improvement, completing simulations in an average
0f 0.0346 seconds compared to Salabim’s 3.0455 seconds. Notably, the MPI implementation exhibited scaling
limitations beyond 100 workers. For the M/M/C model, Figure. 3(b) shows similar performance patterns.
DES-Gymnax maintained a 10 times speedup with 10 workers and exceeded 100 times improvement with
1000 GPU-accelerated workers (0.0328 seconds versus Salabim’s 4.2480 seconds). The MPI implementation
again demonstrated scalability constraints beyond 100 workers.

The result on tandem queue model showed consistent acceleration trends as depicted in Figure. 3(c).
DES-Gymnax achieved a 6 times speedup with 10 workers and approximately 60 times improvement
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Figure 3: Average used times for different simulators on different scenarios and the memory use for bank.

with 1000 GPU-accelerated workers (0.0598 seconds versus Salabim’s 3.5312 seconds). Similar to other
scenarios, MPI scaling deteriorated beyond 100 workers.

4.3 Correctness and Memory Usage

Beyond raw performance metrics, we validated the simulation accuracy of DES-Gymnax by comparing
its results with theoretical values derived from queueing theory, following the stationary analysis outlined
in (Allen 1978). Table 3 makes 10 simulations with 10,000 events using different random seed, and the results
show that the DES-Gymnax can get the correct simulation for the M/M/1 model. To further verify statistical
accuracy, we conducted detailed experiments with the M/M/C model using A = 3, u = 3, and n = 2 servers.
As shown in Figure 4, we performed both small-scale (2 simulations, 2 workers, 200 events) and large-scale
(10 simulations, 10,000 events) validation runs. The large-scale results yielded mean waiting times of
W =22.03740.223 and mean queue lengths of L = 1.09940.011, closely approximating the theoretical
values of W = 26.667 and L = 1.333, thereby confirming the statistical validity of our simulation approach.
Besides, Figure 3(d) illustrates memory consumption patterns in the M/M/1 model. We observed non-linear
memory growth as worker count increased, due to increased resource contention, system overhead, and
complex concurrency interactions that emerge in highly parallel simulation environments.
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A (per/min) | p (per/min) | W(s) W(s) L(per) L(per)
3 6 10.00 | 10.012 + 0.010 0.50 0.502 + 0.002
1.5 3 20.00 | 20.000 + 0.000 0.50 0.499 + 0.002
1.5 2.4 41.67 | 49.348 + 4.902 1.04 1.231 + 0.159
1.5 2 90.45 | 97.352 + 7.82 2.26 2403 + 0.163
1.5 1.5 Null increasing Null increasing

Table 3: Simulation Correctness for the M/M/1 Model. W and L represent the theoretical waiting time
and queue length, respectively, while W and L denote their simulated counterparts. Error bars (£) indicate
standard errors. "Null" signifies that the steady-state values could not be computed due to system instability;

theoretically, the queue grows without bound, which is also observed in practice.

Rollout for Worker: 0 at time: 08:33:34 | Events: Queue 1 served a customer.

Rollout for Worker: 1 at time: 08:31:48 | Events: Queue 0 served a customer.
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Figure 4: Simulation Results for the M/M/C Model.

5 CONCLUSION

DES-Gymnax represents a significant advancement in discrete-event simulation, offering high performance,
parallelization, and Al-friendly capabilities. The integration of JAX’s JIT compilation, automatic vector-
ization, and multi-device support enables DES-Gymnax to achieve substantial speedups in large-scale
simulation tasks. The standardized Gym-like API facilitates seamless integration with RL libraries, fos-
tering deeper integration of DES with Al techniques. Future work will focus on further performance
optimization, particularly in parallel processing of Queue Networks, and the addition of benchmarks for
RL methods to test sample efficiency in decision problems like job scheduling. We will also explore how to
better handle decomposition of complex Discrete Event Systems (DES), which remains an open problem.
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