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ABSTRACT

Simulation-based methods for real-time decision-making have attracted increasing research attention, and
such problems are usually formulated as the simulation optimization problem with covariates. There are
generally two methods to address this problem. The first builds a relationship between the objective
function and the covariates, allowing a solver to quickly find the solution. The second directly builds
a relationship between the optimal solution and the covariates. In this paper, we focus on continuous
simulation optimization with covariates and investigate neural network-based implementations of both
methods. We demonstrate that even when the objective function is continuous, the optimal solution may
exhibit discontinuities with respect to the covariates, limiting the applicability of the optimal solution
method. In contrast, the objective function method remains effective and broadly applicable. We further
establish stability conditions under which the optimal solution method is valid. Numerical experiments are
conducted to support our theoretical findings.

1 INTRODUCTION

Simulation optimization is a powerful tool for analyzing and optimizing complex systems, relying on
simulation experiments to evaluate performance (Fu 2015; Fan et al. 2024). Since these experiments
often produce noisy outputs and are computationally expensive, traditional methods are usually designed to
address offline decision-making problem, where the input parameters of the simulation models are known in
advance and sufficient time is available to conduct extensive experiments before making decisions. However,
in practice, many problems require real-time decisions, where actions must be taken almost immediately.
For instance, in healthcare, personalized treatment plans must adapt instantly to patient-specific factors such
as age, sex, and baseline disease severity (Bertsimas et al. 2019; Shen et al. 2021). In finance, portfolio
risk must be assessed and classified within seconds as risk factors fluctuate (Jiang et al. 2020; Jiang et al.
2024). These scenarios highlight the growing need for fast, high-quality decision-making, motivating the
development of online simulation optimization techniques.

Recently, Hong and Jiang (2019) proposed the offline-simulation-online-application (OSOA) framework
to address the challenge of using time-intensive simulations for real-time decisions. The core idea is to
leverage extensive offline simulations to train predictive models, which are then deployed online once the
input parameters of the simulation models, also called covariates, are observed. This OSOA framework has
successful applications in, for example, real-time risk monitoring (Jiang et al. 2020), real-time derivative
pricing and hedging (Jiang et al. 2024), and online ranking and selection problem (Shen et al. 2021; Keslin
et al. 2024).

In addition to online ranking and selection problems, other types of online simulation optimization,
also known as simulation optimization with covariates, have also attracted increasing attention recently
(e.g., Zhang et al. 2021; Luo et al. 2024). Within the OSOA framework, two main types of methods
have been developed to address this problem. The first approach, known as the objective function method,
employs machine learning to model the objective function as a function of covariates. Once the covariates
are observed, this model provides an analytical approximation of the objective function, and standard
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optimization solvers can be applied to obtain the optimal solution. The development of predictive modeling
methods has been extensively studied in both the optimization and simulation literature. For example,
Hannah et al. (2010) proposed a method that constructs predictive models by weighting the stochastic
objective function using observed data. They assumed that the objective function is convex, which allows for
fast optimization using solvers. Bertsimas and McCord (2019) used methods such as k-nearest neighbors,
CART, and random forests to construct weight functions and estimate the conditional expectation of the
cost function given covariates through weighted averaging. Kannan et al. (2025) studied a sample average
approximation framework with covariate information to approximate the objective function. The framework
is flexible and supports parametric, nonparametric, and semiparametric regression techniques.

In contrast to constructing a predictive objective function model, the second approach to address
simulation optimization with covariates, known as the optimal solution method, directly learns a mapping
from covariates to optimal solutions, allowing immediate prediction of the solution for any given covariate.
For example, Ban and Rudin (2019) investigated the newsvendor problem with stochastic demand, where
the demand distribution is assumed to be influenced by observable features. As the optimization objective
depends on the given observed features, machine learning techniques could be employed to construct
a mapping relationship from covariates to the optimal order quantity. Bertsimas and Kallus (2020) and
Bertsimas and Koduri (2022) examined both the objective function method and the optimal solution method,
with the primary difference being that the former employs local machine learning methods, while the latter
utilizes global methods to construct predictive models. These studies mainly originate from the optimization
literature, focusing on problems where the cost function depends on uncertain parameters influenced by
covariates. The goal is to optimize the conditional expectation of the cost function given the covariates. In
practice, however, the joint distribution of the uncertainties and covariates is unknown, and only limited
observational data are available for estimating the optimal decision. These methods are fully data-driven.

In this paper, we focus on real-time decision-making problems in the simulation context. Unlike
data-driven settings, simulation-based decisions rely on stochastic models whose parameters are designed
to reflect the physical characteristics of real systems. By selecting different design parameters, simulation
samples associated with varying covariates can be generated to evaluate performance metrics of interest.
These methods are thus model-driven. Moreover, the covariates in our setting can be deliberately designed to
align with specific optimization objectives, further distinguishing this approach from data-driven methods.
Nevertheless, the predictive modeling techniques developed in previous studies are general and contribute
valuable tools for tackling simulation-based real-time decision problems.

We investigate two neural network-based methods for constructing predictive models. A key observation
is that the optimal solution with respect to covariates can be discontinuous or unstable, making solution-
based methods unreliable or inapplicable in certain cases. This phenomenon is reflected in real-world
examples—for instance, an aircraft’s control strategy may shift in response to environmental changes,
and such transitions often involve instability that requires specialized handling (Kirst and Wang 2024).
Similar challenges arise in autonomous driving (Song et al. 2024). Therefore, the applicability of optimal
solution method depends on specific stability conditions of the performance function of the stochastic
system. We propose a stability condition that helps ensure the validity of the neural network-based optimal
solution method to some extent. In contrast, when the optimal solution varies abruptly with covariates, we
recommend the neural network-based objective function method. Given sufficient simulation runs, training
a neural network to map covariates to objective values can better exploit structural patterns in the data,
leading to improved performance.

Our work is most closely related to Zhang et al. (2021) and Luo et al. (2024). Zhang et al. (2021)
explored using neural networks in both methods: approximating the mapping from covariates to optimal
solutions, and enhancing stochastic kriging models for fast evaluation of the objective function. However,
their method does not guarantee the conditions under which the approximated optimal solutions are valid.
Luo et al. (2024) focused on the optimal solution method, employing KNN and kernel methods to construct
predictive models that map covariates to optimal decisions. Assuming convexity and smoothness of the
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objective function, they ensure that the optimal solution is a smooth function of the covariates, which
provides theoretical guarantees for their method. In contrast, our work addresses the problem under
different assumptions. Notice that this paper treats the simulation model and neural network separately.
The simulation model is responsible for generating training data, while the neural network uses this data for
learning. There is no parameter or structural coupling between the two modules; their only connection lies
in the transfer of data. Related but distinct work includes the study by Zheng et al. (2025) on arrival process
modeling. In their proposed framework, the simulation model and neural network are coupled, which not
only increases the difficulty of theoretical analysis but also adds complexity to practical computation. To
address these issues, Zheng et al. (2025) proposed targeted solutions and provided corresponding theoretical
guarantees.

The remainder of the paper is organized as follows. Section 2 presents the problem formulation and
notation. Section 3 discusses the applicability conditions for the optimal solution method and summarizes
practical procedures for implementing the neural network-based objective function and optimal solution
methods. Section 4 presents numerical experiments, and Section 5 concludes with potential directions for
future research.

2 PROBLEM SETTINGS

We focus on a stochastic optimization problem of the following form

min
θ∈Θ

f (θ ,x) = E[F(θ ,x,ξ )], (1)

where θ ∈ Θ denotes the decision variable with Θ ⊂ Rdθ , x ∈ X denotes the covariate with X ⊂ Rdx , and
ξ represents the randomness, e.g., a stream of underlying random numbers in a stochastic simulation. Let
F(θ ,x,ξ ) denote the performance function of the stochastic system, given x. In general, the covariate x
may influence the random source ξ , which makes the analysis more complex. We leave such cases for
future work. In this paper, we assume that the covariates do not affect the random source. For convenience,
we refer to the optimization problem in (1) with covariate x as Px.

Generally, we assume that the simulation outputs F(θ ,x,ξ ) can be obtained for specific values of x
and θ . However, the analytical form of f (θ ,x) is unknown. Our goal is to solve this problem in real
time once the covariate x is observed. In this section, we present the formulations of two commonly used
methods within the OSOA framework and provide a detailed analysis of both methods in the next section.

2.1 Objective Function Method

Suppose that f̂ (θ ,x) is a predictive model used to approximate f (θ ,x). To obtain f̂ (θ ,x), we solve the
following optimization problem

min
f̂∈F

E
[
( f̂ (θ ,x)− f (θ ,x))2] , (2)

where F denotes the function space over which f̂ is optimized, and the mean squared error is used to
measure the approximation quality. In practice, alternative metrics may also be considered to enhance
performance. Note that the expectation in (2) is taken over both θ and x, meaning that they are sampled
from their respective domains according to appropriate probability distributions. Let pθ and px denote the
sampling distributions of θ and x, respectively. The optimization problem (2) is a theoretical formulation.
In practice, it is implemented by performing a large number of randomized simulation experiments. The
OSOA procedure for this method is described below.

Offline phase: Select appropriate probability distributions pθ and px, sample N design points of θ and
x, respectively, resulting in N sample pairs (θi,xi), i = 1,2, . . . ,N. For each sample pair, run Mi simulation
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experiments to obtain Mi samples of F(θ ,x,ξ ), then we can solve the empirical version of (2)

w∗ = arg min
w∈W

1
N

N

∑
i=1

(
f̂ (θi,xi;w)− 1

Mi

Mi

∑
n=1

F(θi,xi,ξn)

)2

. (3)

Note that we use f̂ (·, ·;w) to represent a parameterized function implemented by a neural network,
where W denotes the parameter space of the network. By updating w using standard machine learning
training procedures, we aim to find the optimal f̂ (·, ·;w) that best approximates the target function in F .

Online phase: When the observed value x̃ is obtained, since f̂ (·, ·,w∗) is in an analytical form, we
can invoke an optimization solver, e.g., Adam (Kingma and Ba 2014) and SciPy (Virtanen et al. 2020), to
solve the optimization problem and obtain the optimal decision θ̂ ∗, i.e.,

θ̂
∗ = argmin

θ∈Θ

f̂ (θ , x̃;w∗).

2.2 Optimal Solution Method

Compared to the objective function method, the optimal solution method has a simpler form. Suppose that
we can obtain the optimal decision by solving the simulation optimization problem with sufficient accuracy
using some standard methods such as stochastic approximation (SA) or sample average approximation
(SAA), see Fu (2015). It is evident that the optimal solution depends on x, and under certain assumptions,
the optimal solution can be regarded as a function of x (Luo et al. 2024). Let θ ∗(x) represent the true
mapping from x to θ ∗ that we aim to obtain. Our goal is to achieve the best possible approximation of
this mapping, denoted by h(x). We aim to solve an optimization problem of the following form

min
h∈H

Epx

[
(h(x)−θ

∗(x))2] , (4)

where H denotes the function space in which we optimize h, px denotes the sampling distribution of the
covariates, then the process of the OSOA for this method is given below.

Offline phase: Select appropriate probability distribution px, sample N design points of x. Then running
a number of simulation experiments and using standard method to solve the problems min

θ∈Θ

E[F(θ ,xk,ξ )],

k = 1,2, . . . ,N, so we obtain N optimal solutions θ ∗
k , k = 1,2, . . . ,N. Then we can solve the empirical

version of (4)

w∗ = arg min
w∈W

1
N

N

∑
k=1

(h(xk;w)−θ
∗
k )

2 . (5)

Here, we also employ a parameterized predictive model to approximate the target function in H .
Online phase: When the observed value x̃ is obtained, we can directly compute the optimal decision

through the following equation
θ̂
∗ = h(x̃;w∗).

3 ANALYSIS OF OBJECTIVE FUNCTION AND OPTIMAL SOLUTION METHODS

In this section, we first present an illustrative example that represents a class of continuous simulation
optimization problems with covariates. In these problems, the objective function is continuous with respect
to the covariates, whereas the optimal solution may exhibit discontinuities. We argue that, although neural
networks possess universal function approximation capabilities and are effective for constructing predictive
models, the optimal solution method is not well suited for such problems. Moreover, we highlight that
applying the optimal solution method requires the performance function to satisfy certain assumptions.
In contrast, we contend that the objective function method, implemented with neural networks, offers a
more effective approach for addressing this class of problems. We also propose a simple and practical
implementation of this method.
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3.1 An Illustrative Example

Consider a performance function of the following form

F(θ ,x,ξ ) = min

{
d

∑
i=1

(θi − xi)
2 + xd+1,

d

∑
i=1

(θi + xi)
2

}
+ξ , (6)

where the model consists of a deterministic component and an additive stochastic noise term. This implies
that the stochastic noise is independent of the covariates. We assume that the stochastic noise has a zero
expectation, which allows us to eliminate the randomness by taking the expectation. It is easy to obtain

f (θ ,x) = E[F(θ ,x,ξ )] = min

{
d

∑
i=1

(θi − xi)
2 + xd+1,

d

∑
i=1

(θi + xi)
2

}
.

Then we solve the following optimization problem

min
θ

{
min

{
d

∑
i=1

(θi − xi)
2 + xd+1,

d

∑
i=1

(θi + xi)
2

}}
. (7)

Notice that the optimal solution is influenced by the (d+1)th component of the covariate and undergoes
a sudden change near xd+1 = 0. When xd+1 > 0, θ ∗

i = −xi whereas when xd+1 < 0, θ ∗
i = xi. If the first

d-dimensional components of x are large, the variation of the covariate near xd+1 = 0 leads to a significant
abrupt change in the optimal solution.

The study most relevant to our problem is Zhang et al. (2021), in which neural networks were
used to approximate the mapping from covariates to optimal solutions. However, they did not verify
the applicability conditions of the optimal solution method. Although neural networks possess powerful
function approximation capabilities, accurately approximating in regions with abrupt changes may require
a large number of sample points. For complex systems in real-world applications, it is often difficult
to detect the existence of such discontinuous regions, making it infeasible to design effective covariate
sampling strategies tailored to these cases. Under such circumstances, employing the optimal solution
method becomes impractical. This limitation is demonstrated in the numerical experiments presented in
Section 4. Furthermore, we provide a set of assumptions under which the mapping from covariates to
optimal solutions is guaranteed to be stable and free of abrupt changes. These conditions, to some extent,
establish the applicability of the optimal solution method.

3.2 Stability Conditions for Optimal Solution with Respect to Covariates

We derive the applicability of the optimal solution method based on the perturbation analysis of optimal
solutions (Bonnans and Shapiro 2000). We first introduce some notations and assumptions for the problem
(1). Let v∗ =minθ∈ΘE[F(θ ,x,ξ )], θ̄ is said to be an ε-optimal solution of (1) if E[F(θ̄ ,x,ξ )]≤ v∗+ε . Note
that both v∗ and θ̄ may depend on the covariate x. Let dist(θ ,S) = infs∈S ||θ −s||. Recall that we refer to the
optimization problem in (1) with covariate x as Px. Suppose that problem Px0 has a non-empty set S0 of optimal
solutions for given x0. In addition, it is said that the second-order growth condition holds at S0 if there exist
a neighborhood N of S0 and a constant C > 0 such that E[F(θ ,x0,ξ )]≥ E[F(S0,x0,ξ )]+C[dist(θ ,S0)]

2.
Then we provide the following assumptions for F(θ ,x,ξ ).
Assumption 1 For all θ ∈ Θ, F(θ ,x,ξ ) is a.s. continuously differentiable in θ , and for all sufficiently
small ∥∆θ∥, it holds that |F(θ +∆θ ,x,ξ )−F(θ ,x,ξ )| ≤ g(ξ ) with E[g(ξ )]< ∞. The family of random
variables {

F(θ +h,x,ξ )−F(θ ,x,ξ )
||h||

: 0 < ||h||< δ

}
is uniformly integrable for some δ > 0.
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Assumption 2 ∀θ ∈ Θ∩N , F(θ ,x0,ξ )≥ F(S0,x0,ξ )+ c(ξ )[dist(θ ,S0)]
2 w.p.1 for 0 < E[c(ξ )]< ∞.

Assumption 3 ∇θ F(θ ,x,ξ ) is Lipschitz continuous w.p.1 in a neighborhood of x0 with the corresponding
Lipschitz constant L(ξ ) independent of θ ∈ N and E[L(ξ )]< ∞.
Assumption 4 Let θ̄ be the ε-optimal solution of Px, assume that ε = O(||x− x0||2).

Next, we need the following lemma given by Bonnans and Shapiro (2000).
Lemma 1 (Bonnans and Shapiro 2000, Proposition 4.32) Suppose that the second-order growth condition
holds at S0 for Px0 and E[F(θ ,x,ξ )]−E[F(θ ,x0,ξ )] is Lipschitz continuous modulus κ on N. Let θ̄ be an
ε-optimal solution of Px, then

dist(θ̄ ,S0)≤C−1
κ +C− 1

2 ε
1
2 . (8)

According to above lemma, we can obtain the following result for the stability conditions for the
optimal solution method.
Proposition 1 Let F(θ ,x,ξ ) be the performance function of the stochastic system. If Assumptions 1-4
holds, then dist(θ̄ ,S0) = O(||x− x0||).

Proof. According to Assumption 1, using uniform integrability and the dominated convergence theorem,
E[F(θ ,x,ξ )] is continuously differentiable in Θ andE[∇θ F(θ ,x,ξ )] =∇θE[F(θ ,x,ξ )]. For problem (1) and
given x= x0, Px0 has a nonempty set S0 of optimal solutions. Consider a neighborhood N of S0, continuously
differentiable implies E[F(θ ,x,ξ )]−E[F(θ ,x0,ξ )] is Lipschitz continuous modulus κ on N . By taking
the expectation of the inequality in Assumption 2, we have E[F(θ ,x0,ξ )]≥E[F(S0,x0,ξ )]+C[dist(θ ,S0)]

2

for some C > 0. Then by lemma 1, we have (8). By mean value theorem, Lipschitz modulus in (8) can
be estimated as

κ ≤ sup
θ∈N

||∇θE[F(θ ,x,ξ )]−∇θE[F(θ ,x0,ξ )]||

= sup
θ∈N

||E[∇θ F(θ ,x,ξ )−∇θ F(θ ,x0,ξ )]||

≤ E[L(ξ )||x− x0||] (9)

= O(||x− x0||). (10)

The inequality (9) holds by using the Lipschitz property of the assumption on ∇θ F(θ ,x,ξ ) and the integrable
Lipschitz constant L(ξ ) independent of θ ∈ N under Assumption 3. Finally, according to Assumption 4,
(8) and (10), we have dist(θ̄ ,S0) = O(||x− x0||), which completes the proof.

Proposition 1 indicates that when the performance function F(θ ,x,ξ ) possesses the properties described
in Assumptions 1-4, the optimal solution of problem (1) is Lipschitz stable with respect to variations in
the covariates, with the deviation between optimal solutions being of liner order. Furthermore, Proposition
1 is a sufficiently general result that, in theory, allows for the existence of multiple optimal solutions. In
fact, when the optimal solution is unique, Proposition 1 implies that the optimal solution is a Lipschitz
continuous function of the covariates, which ensures the feasibility of the neural network-based optimal
solution method. In the more general case where multiple optimal solutions may exist for a given covariate,
one can simply select a single optimal solution to construct a dataset mapping covariates to optimal solutions,
which can then be used to train a neural network predictive model.

Compared to the assumptions made in Luo et al. (2024), Assumption 1 imposes a weaker smoothness
assumption on the performance function. Furthermore, in contrast to the strong convexity assumption, the
second-order growth condition does not require explicit gradient information. These differences make our
assumptions more realistic and easier to satisfy in practice, thereby rendering the neural network-based
optimal solution method more broadly applicable.
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3.3 Summarized Implementation Procedures

Due to the complexity of stochastic systems and the lack of an explicit analytical form for the objective
function, establishing a stable relationship between the optimal solution and covariates is challenging.
Directly applying the optimal solution method thus carries high risk and may lead to decision errors. In
contrast, the objective function method offers greater robustness and generality. Neural networks, with
lower risks of model misspecification in complex predictive tasks, provide an effective means to implement
this method. In the offline phase, a predictive model is trained using simulation input-output data; in the
online phase, the trained network is used to optimize decision variables in real time with algorithms such
as Adam (Kingma and Ba 2014). The procedure is summarized in Algorithm 1.

Algorithm 1 Objective Function Method Using Neural Networks Under OSOA Framework.
1: Input: Domains Θ, X ; sampling strategies pθ , px over Θ and X ; number of design points N; number

of simulation samples on each design point Mi; learning rate η ; epochs of the optimization algorithm
T .

2: Offline Phase:
3: Sample design points {(θi,xi)}N

i=1 from Θ×X based on some sampling rules pθ and px.
4: for i = 1 to N do
5: Run Mi simulations to obtain {F(θi,xi,ξn)}Mi

n=1.
6: end for
7: Train model f̂ (θ ,x;w) by solving (3) using a standard method (e.g., Adam).
8: Online Phase:
9: Given an observation x̃ ∈ X , optimize θ ∈ Θ by minimizing f̂ (θ , x̃;w∗).

10: Initialize θ (e.g., randomly in Θ).
11: for t = 1 to T do
12: Compute prediction yt = f̂ (θt , x̃;w∗).
13: Compute gradient ∇θ f̂ (θt , x̃;w∗).
14: Update θt+1 using Adam optimizer with learning rate η .
15: Project θt+1 onto the feasible region Θ.
16: end for
17: Output: final θ̂ ∗ = θT+1 as the optimal decision.

In practice, to enhance accuracy and maintain real-time performance, multiple initial solutions and
parallel computing can be employed. Compared to the neural network-assisted stochastic kriging model of
Zhang et al. (2021), this implementation imposes fewer structural assumptions and offers greater flexibility,
making it more practical for real-world applications.

On the other hand, when sufficient knowledge about the problem structure is available and an accurate
mapping from covariates to the optimal solution can be established, the optimal solution method becomes
a more direct and efficient approach. In this case, a predictive model mapping covariates to the optimal
solution can be trained offline based on simulation data; during the online phase, the optimal decision for
any given covariates can be computed almost instantaneously, making this approach suitable for applications
requiring high real-time performance under limited computational resources. The detailed procedure for
the optimal solution method is summarized in Algorithm 2.

4 NUMERICAL EXPERIMENTS

In this section, we use the performance function (6) from Section 3.1 to compare the two methods. The
goal is to solve problem (7) via stochastic simulation. Both methods are tested under identical settings to
evaluate their performance in predicting the optimal solution.
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Algorithm 2 Optimal Solution Method Using Neural Networks Under OSOA Framework.
1: Input: Domain X ; sampling strategies px over X ; number of design points N; number of simulation

samples on each design point Mk.
2: Offline Phase:
3: Sample design points {xk}N

k=1 from X using px.
4: for k = 1 to N do
5: Run Mk simulations to obtain optimal solution θ ∗

k .
6: end for
7: Train model h(x;w) by solving (5) using a standard method (e.g., Adam).
8: Online Phase:
9: Given an observation x̃ ∈ X , compute θ̂ ∗ = h(x̃;w∗).

10: Output: θ̂ ∗ as the optimal decision.

Specifically, let dθ = d and dx = d +1, then we conduct experiments for d = 1,2,4,8,16,32. We set
the value range of each dimension to [−1,1], which means Θ×X = [−1,1]2d+1. Let the random source
ξ be a standard normal random variable (with mean 0 and variance 1). It should be noted that in our
experiments, F(θ ,x,ξ ) is used only to generate simulation samples and obtain the true optimal solution,
and no other information can be used when building the predictive model.
Offline Phase of Objective Function Method

As our goal is to build a predictive model from the covariates to the objective function, we first obtain
training and validation data for training our predictive model. We adopt the Latin Hypercube Sampling
(LHS) strategy to sample N design points {(θi,xi)}N

i=1 from Θ×X as the input of predictive model. For each
design point, we sample ξ for Mi times and we set Mi = 10,000. Then we compute (1/Mi)∑

Mi
n=1 F(θi,xi,ξn)

for each i as the output. Validation data are generated using the same strategy, and we adopt an early
stopping mechanism to prevent overfitting using validation data. The number of validation samples is set
to N/5.

Then we use a fully connected neural network with three hidden layers, each containing 512 neurons.
The input layer has 2d+1 dimensions, and the output layer has 1 dimension. Based on the above dataset
and model architecture, we train our model by minimizing the MSE loss to obtain our predictive model
f̂ (θ ,x;w∗

ob j), w∗
ob j denotes the parameters of the neural network model of objective function method.

Offline Phase of Optimal Solution Method
We adopt the same sampling strategy as objective function method to generate N covariate design

points {xi}N
i=1. For each xi, we sample ξ for Mi times and then solve the corresponding optimal solution

using the SAA method, thereby obtaining N optimal solutions {θ ∗
i }N

i=1 for model training. We generate
N/5 data pairs in a same way as validation dataset for overfitting prevention. We also use a fully connected
neural network as our model architecture, with three hidden layers, each containing 512 neurons. The input
layer has d+1 dimensions, and the output layer has d dimensions. Based on the above dataset and model
architecture, we train our model by minimizing the MSE loss to obtain our predictive model h(x;w∗

sol),
w∗

sol denotes the parameters of the neural network model of optimal solution method.
To demonstrate the impact of both the number of samples and the problem dimensionality, we set

d = 1,2,4,8,16,32 and N = 1000,5000,10000,50000,100000, resulting in 30 groups of experiments to
compare the performance of the two methods in handling optimal solution discontinuities. The optimal
solution of problem (7) with respect to the covariates is continuous or not, depending on the (d + 1)-th
component of the covariate. When the covariate xd+1 is close to 0, the optimal solution undergoes a sudden
change. We have already obtained two predictive models, f̂ (θ ,x;w∗

ob j) and h(x;w∗
sol). Therefore, we now

need to test the performance of these two models near xd+1 = 0 in an online setting.
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First, we need to generate online dataset. We still use LHS to generate Nonline covariate samples and we
set Nonline = 100. To examine the performance in the discontinuous region, we set the sampling range of
the (d+1)-th component xd+1 to [-0.001, 0.001], while keeping the other dimensions within their original
domain [-1,1] to simulate the discontinuity of the optimal solution with respect to the covariates. As a
result, we obtain Nonline covariate observations x̃i. Then, we can analytically compute the true optimal
solutions corresponding to these Nonline covariates to obtain the test dataset {(x̃i,θ

∗
i )}

Nonline
i=1 .

Next, we need to use the two predictive models to quickly estimate the optimal solutions under the
Nonline observed covariate values.
Online Phase of Objective Function Method:

For Nonline observed covariates x̃i in the online setting, we use the method described in Section 3.3 to
solve the following Nonline optimization problems:

θ̂
∗
i = argmin

θ∈Θ

f̂ (θ , x̃i;w∗
ob j).

Therefore, we obtain Nonline estimated optimal solutions θ̂ ∗
i , i = 1,2, . . . ,Nonline.

Online Phase of Optimal Solution Method:
The estimates of the Nonline optimal solutions are directly computed using the following formula:

θ̂
∗
i = h(x̃i;w∗

sol), i = 1,2, . . . ,Nonline.

Evaluation:
We compute the average optimality gap ∆ f over Nonline covariate test samples for each of the two

methods to compare their performance. The evaluation metric is calculated using the following formula:

∆ f =
1

Nonline

Nonline

∑
i=1

f (θ̂ ∗
i , x̃i)− f (θ ∗

i , x̃i).

Our experimental results are presented in Figures 1–4, which show the variation of the optimality gap
with respect to problem dimensions and sample sizes. Figure 1 illustrates the performance of the objective
function method. When the dimensionality of the decision variables is low, the method can achieve good
performance even with a small number of covariate sampling points. However, as the dimensionality
increases, more sampling points are required to construct an accurate predictive model. Figure 2 shows the
performance of the optimal solution method. The results indicate that all models exhibit significant decision
errors, and model performance does not improve with an increased number of sampling points; instead, it
demonstrates a certain degree of randomness. This suggests that although fully-connected neural networks
are generally chosen when functional relationships are unknown, they fail when confronted with unforeseen
abrupt changes. Therefore, forcibly using neural networks to fit unknown functional relationships without
sufficient understanding of the problem’s structure is an unstable approach.

Figure 3 compares the performance of the two methods when the number of covariate samples is set
to N = 100,000. The results clearly demonstrate that the optimal solution method performs poorly when
dealing with problems characterized by abrupt changes, while the objective function method continues to
maintain good performance.

We also conduct a preliminary verification of the conditions proposed in Section 3.2 under the same
experimental setup. In this experiment, we compare the performance of the optimal solution method
under two different settings: one where the conditions are satisfied and one where they are unsatisfied.
Specifically, in the satisfied setting, we deliberately avoid sampling test points in regions with abrupt
changes by setting xd+1 in range [0.5,1], ensuring that the optimal solution is Lipschitz continuous with
respect to the covariates. In the unsatisfied setting, test points are sampled in regions with abrupt changes,
as in the previous setup. The comparison between these two settings is presented in Figure 4.
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Figure 1: Objective function method performance. Figure 2: Optimal solution method performance.

Figure 3: Comparison of two methods. Figure 4: Satisfied vs. unsatisfied conditions.

The results demonstrate that when the optimal solution is a smooth function of the covariates, the
optimal solution method performs remarkably well. It is worth noting that in this experiment, the optimal
solution is in fact a linear function of the covariates, which satisfies a condition stronger than that assumed
in Proposition 1. Therefore, this experiment only verifies the necessity of these conditions. A rigorous
theoretical guarantee for neural network-based optimal solution method remains to be developed, which
will be the focus of our future work.

To further demonstrate the generality of the objective function method, we also plot the predictive
model approximated by the objective function method, along with the true objective function, in the
one-dimensional case, as shown in Figure 5. The figure shows that the objective function-based method
is capable of capturing the complex structural features of the true objective function based on simulation
data. This ability is a key reason why the method remains effective in the presence of discontinuities. In
practical applications, when the regularity of the underlying system (e.g., smoothness or continuity) cannot
be guaranteed, the objective function method offers a more robust alternative.

5 CONCLUSION AND FUTURE WORK

In this paper, we study two commonly used methods for simulation optimization with covariates under the
setting of continuous problems, with a primary focus on neural network-based implementations. We design
numerical experiments to illustrate that, for continuous simulation optimization problems with covariates,
even if the objective function itself is continuous, the optimal solution with respect to the covariates may
still exhibit instability or even discontinuity. In such cases, directly predicting the optimal solution becomes
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Figure 5: Approximation performance of the objective function method.

infeasible. We further point out that this method requires the performance function of the stochastic
system to satisfy specific assumptions, for which we provide a set of applicability assumptions based on
existing theories. In contrast, the objective function method is more general and can effectively handle
such instability.

It should be noted that this paper only considers the case where the random source is independent of the
covariates. More complex scenarios where covariates influence the random source remain to be investigated
in future work. When the structure of the optimization problem is unknown, using neural networks to
construct predictive models is a common choice due to their low risk of model misspecification. Although
neural network-based methods often perform well empirically, they typically lack rigorous theoretical
guarantees, which significantly limits their applicability. Therefore, developing corresponding theoretical
foundations remains an important research direction.
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