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ABSTRACT

Tackling simulation optimization problems with non-convex objective functions remains a fundamental
challenge in operations research. In this paper, we propose a class of random search algorithms, called
Regular Tree Search, which integrates adaptive sampling with recursive partitioning of the search space.
The algorithm concentrates simulations on increasingly promising regions by iteratively refining a tree
structure. A tree search strategy guides sampling decisions, while partitioning is triggered when the number
of samples in a leaf node exceeds a threshold that depends on its depth. Furthermore, a specific tree search
strategy, Upper Confidence Bounds applied to Trees, is employed in the Regular Tree Search. We prove
global convergence under sub-Gaussian noise, based on assumptions involving the optimality gap, without
requiring continuity of the objective function. Numerical experiments confirm that the algorithm reliably
identifies the global optimum and provides accurate estimates of its objective value.

1 INTRODUCTION

Simulation optimization, also known as optimization via simulation (OvS), refers to a class of optimization
problems where the objective function values can only be evaluated through simulation, and the evaluations
are subject to stochastic noise. Such problems have wide applications in various domains, including
engineering design and hyperparameter tuning. For a comprehensive review of simulation optimization,
see Amaran et al. (2016), Fan et al. (2024).

When the decision variables are discrete, the problem is called Discrete OvS (DOvS). Many algorithms
for DOvS are based on random search strategies, such as the COMPASS algorithm (Hong and Nelson
2006). When the decision space is finite, the problem can be formulated as a multi-armed bandit problem,
with well-established methods like Upper Confidence Bound (UCB) aiming to minimize regret (Auer et al.
2002). Alternatively, when the goal is to accurately estimate the optimal value rather than minimize regret,
algorithms such as those proposed by Liu et al. (2019), Kun et al. (2024) are more appropriate. If the goal
is to identify the best alternative (or arm), the problem is generally referred to as a Ranking and Selection
problem. For comprehensive reviews of this setting, see Chen et al. (2015), Hong et al. (2021).

When the decision variables are continuous, the problem is known as Continuous OvS (COvS). A
wide range of algorithms has been developed to address COvS problems. Among these are stochastic
approximation algorithms (Kiefer and Wolfowitz 1952; Spall 1992; Wang et al. 2025a), response surface
methodologies (Chang et al. 2013), model-based methods (Hu et al. 2007), and random search algorithms
(Shi and Olafsson 2000; Andradéttir and Prudius 2010; Kiatsupaibul et al. 2018; Zhang and Hu 2022;
Wang et al. 2025). Different algorithms are suited to different COvS problem settings and offer distinct
convergence guarantees. Notably, many algorithms assume global continuity of the objective function, an
assumption that may fail in practice. In this paper, our focus is on random search algorithms, with the goal
of designing methods that are gradient-free, globally convergent, and capable of handling discontinuous
objective functions.
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We consider a class of random search algorithms that partition the search space into disjoint regions
to explicitly resolve the exploration-exploitation dilemma. This structural decomposition creates isolated
promising areas, enabling strategic navigation of the fundamental tension between exploring uncertain regions
and exploiting promising ones. The resulting partition structure enables discrete optimization algorithms
to be seamlessly embedded within this framework, thereby transforming continuous optimization problems
into the identification of optimal subspaces within discretized regions. Tree structures naturally embody
this paradigm, as they recursively split the domain according to criteria that progressively refine promising
regions. One of the most well-known decision tree algorithms is Classification And Regression Tree (CART),
introduced by Breiman et al. (1984). At each node, CART selects axis-aligned split directions to optimize
the Gini index for classification or mean squared error (MSE) for regression. Subsequent developments,
including random forests (Breiman 2001) and various theoretical advancements (Scornet et al. 2015; Wager
and Athey 2018; Mazumder and Wang 2023; Zhang et al. 2024), have improved predictive performance
and provided convergence guarantees for these models. However, despite their contributions to predictive
modeling, these advances often fail to address the unique challenges of simulation optimization, where the
ultimate goal is to identify the global optimum.

A key distinction between prediction and simulation optimization lies in sample usage: prediction
utilizes a complete sample set, whereas simulation optimization depends on samples generated iteratively.
This fundamental distinction raises a critical question: which point should be simulated next? A central
challenge in this setting is selecting the leaf node within a hierarchical tree structure, a key element in
effective space partitioning. In addressing this challenge, Monte Carlo Tree Search (MCTS) provides
a principled framework that adaptively balances exploration and exploitation. For instance, the Upper
Confidence Bounds applied to Trees (UCT) algorithm proposed by Chang et al. (2005), Kocsis and
Szepesvari (2006) exemplifies this approach. The practical success of UCT-based MCTS in complex
combinatorial environments, as demonstrated by systems like AlphaGo (Silver et al. 2016), highlights the
potential of tree-based strategies for tackling challenging optimization problems.

Specialized algorithms have been developed to adapt tree structures for optimization tasks. The
optimistic optimization algorithm for noise-free settings proposed by Munos (2011) and its extensions to
noisy settings Valko et al. (2013) rely on tree-based partitioning that employs random directional selection
combined with uniform splitting. However, due to their reliance on uniform partitioning, these algorithms
are not well-suited for adaptive splitting and tend to be less effective in isolating promising regions. In
contrast, adaptive partitioning strategies have been introduced for noise-free settings. These include using
linear regressors for space partitioning in neural architecture search (Wang et al. 2022), and distinguishing
between high- and low-value regions via sample-driven splits (Wang et al. 2020). Despite promising
experimental results, these methods lack theoretical guarantees.

The remainder of this paper is organized as follows. In Section 2, we formulate the simulation
optimization problem and outline the key assumptions. Section 3 introduces the concept of the Regular
Tree and details the criterion for its construction. In Section 4, we describe the Regular Tree Search and
explain how the UCT algorithm is integrated into it. Section 5 presents the theoretical foundations that
guarantee the global convergence of the algorithms under certain conditions. Finally, Section 6 presents
numerical results that validate the proposed algorithm, and Section 7 concludes the paper.

2 PROBLEM FORMULATION

We consider the following simulation optimization problem:

xeﬂ)l;&d{u(X) =E[Y|X =x]}.

Here, x € R? denotes the decision variable, X’ denotes the feasible domain, w(x) denotes the unknown

response surface of the simulation model, and Y represents the random output of a simulation model
evaluated at x. Since the conditional distribution of Y|X = x is unknown and p(x) has no closed form, we
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rely on running simulation experiments to generate independent samples of Y| X = x, denoted by Y (x):
V(%) = p(x) + €(x),

where €(x) is the zero mean simulation noise.

Our analysis focuses on the setting where the feasible domain X’ is a compact subset of R?. While our
theoretical framework can be adaptable to more general compact sets (as any compact set can be enclosed
in a sufficiently large hyperrectangle), we specifically consider the canonical unit hypercube X = [0, 1]¢
for analytical tractability.

A fundamental challenge in simulation optimization arises from the black box of u. Algorithms with
minimal structural assumptions are highly desirable. This enhances the algorithm’s applicability to a broad
range of real-world problems where prior knowledge of the objective landscape is limited or unavailable.
Many established algorithms, particularly those within the frameworks of Bayesian optimization and methods
ensuring global convergence, rely on the assumption of global continuity. Examples include the approaches
discussed in Frazier (2018) and Kiatsupaibul et al. (2018). Although this assumption facilitates theoretical
analysis, it is restrictive and may be violated in practical simulation settings. For instance, functions with
discontinuities might arise in specific system models. We consider the conditions focused on the optimal
point instead of global continuity.

Throughout this paper, we make the following assumptions:

Assumption 1 The simulation noise €(x) is sub-Gaussian with the variance proxy Cszg forallx € X, ie.,
E [e)‘e(x)] < e)‘ZCSQg/Q,V)\ cR.

Assumption 2 There exists a unique optimal point x* € X of yu satisfying p(x*) = supycy f4(x). The
function g exhibits local smoothness: there exists a constant C' > 0 such that for any x € X:

p(x") — p(x) < C-flx = x7|.

where || - || denotes the Euclidean norm.
Assumption 3 For any € > 0, there exists d(¢) > 0 such that for all x € X satisfying ||x — x*|| > ¢,

u(x) < p(x?) = 5(e).

The sub-Gaussian noise assumption is a standard condition in the simulation optimization literature.
Although the uniqueness condition in Assumption 2 could be relaxed to accommodate multiple optimal
points, we retain it to highlight our algorithmic innovation.

It is important to note that continuity does not imply Assumption 2. For example, the one-dimensional
function p(x) = 1 — /x is continuous on [0,1] but has an infinite derivative at its optimal point 0.
Assumption 2 is designed to capture the quantitative relationship between the optimal point and other
points, without imposing a global smoothness condition.

Assumption 3 is weaker than global continuity. To see this, suppose p is continuous on X with unique
optimal point x*. Then, for any € > 0, the set K, = {x € X : || x—x*|| > €} is compact by the boundedness
and closeness. By the Extreme Value Theorem, the continuous function p(x) attains its maximum on the
compact set K., denoted by M, = maxxcg, pu(x). Since x* is the unique global maximum of u(x) and

x* ¢ K, it follows that M. < pu(x*). Taking 6(e) = M > 0, then for any x € K., we have:
u(x) < M, = p(x") — 26() < p(x") — 3(e),

which directly verifies Assumption 3. Hence, Assumption 3 describes a local property of the optimum and
is strictly weaker than global continuity. Assumption 2 captures how the function rises toward the optimum,
while Assumption 3 ensures it declines beyond a neighborhood. Both express local characteristics of the
optimum without relying on global smoothness.
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3 REGULAR TREE

To address the theoretical limitations of the original CART algorithm, particularly the lack of convergence
guarantees, Wager and Athey (2018) introduce a set of definitions that ensure favorable statistical properties.
In this work, we adapt and extend these definitions into four definitions, honesty, random-split, c-spatial
balance, and f(c)-sample balance, to align with the specific requirements of simulation optimization.

Definition 1 A tree is honest if, for each training sample i, it only uses the response Y; to estimate the
value of the leaf or to decide where to place the splits, but not both.

The concept of honesty ensures that the data used to grow the tree is entirely independent of the
data used to estimate the leaf values. Although this separation may lose efficiency since it prevents using
each observation for both purposes, it guarantees that the sample mean estimated in each leaf node is an
unbiased estimator of the true expected value. In practice, we implement honesty by maintaining two
disjoint datasets, Sz and S7. The dataset St is used to estimate the values at the leaf nodes, while S 7 is
used to grow the tree (i.e., to determine the split direction and split value). Each leaf node L corresponds
to a hyperrectangle in the feasible domain. We define the random variable Y (L) through the following
two-step sampling procedure:

1. Sample x uniformly from L.
2. Generate Y according to the conditional distribution Py x_.

= ez 1{x;€L}Y; . .
LetY; = % denote the sample mean of responses in L computed from S7z. By construction,

we have
E[Yz] = E[Y/(L)].

Definition 2 A tree is random-split if, at each step of the tree-growing procedure, the probability that the
next split occurs along the j-th feature is bounded below by x/d for some 0 < k < 1, forall j = 1,...,d.

Definition 3 A tree grown by recursive partitioning is a-spatially balanced if, after each split, the Lebesgue
measure of the splitting coordinate in each child node is at least an « fraction of that in the parent node.

Random split ensures that every feature has a non-negligible chance of being selected at every split.
By imposing a uniform lower bound x/d on the probability of selecting any given coordinate, we prevent
the algorithm from systematically neglecting certain dimensions. This balance in feature selection is
essential for deriving probabilistic bounds on how the tree explores the feasible domain and ensuring that
all directions are sufficiently considered during the tree’s growth. «-spatial balance further controls the
geometry of each split. This condition prevents splits from creating one tiny region and one huge region,
instead guaranteeing that every split reduces the size of each subregion at a predictable rate. Together,
these two definitions ensure that the diameter of a leaf, defined as the Euclidean norm of its longest side,
converges to 0 in probability as the leaf’s depth increases. Intuitively, random-split spreads the splits across
all dimensions, while «-spatial balance prevents any single split from producing excessively imbalanced
partitions. Specifically, we have the following result:

Lemma 1 Let 7" be a random-split, a-spatially balanced tree, and let L be a leaf of T' with depth

c. Suppose that leaf L = ®?:1 [rj_,rj}, where 0 < rj_ < r;-“ < 1. Define the diameter of L as

diam(L) = \/ Z?zl(rj-' — ;)% For any A € (0,1), the following inequality holds:

' NG (1-N)Ee Xk
P [dlam(L) > Vd(l —a) d ] < dexp ~ 5 3°(

Definition 4 A tree is f(c)-sample balanced if the number of Z-samples in the leaf node at depth c is
bounded between 5f(c — 1) and f(c) — 1 for a positive function f(c) and 0 < 5 < 1/2.
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The function f(c) generalizes the concept of k-regularity from Wager and Walther (2015), where f(c)
is always a fixed constant. In contrast to the original CART setting, where the entire dataset is provided in
advance, simulation optimization involves data generated adaptively as the algorithm progresses. Due to the
presence of noise in the observations, accurately identifying the optimal point and estimating the optimal
value requires that the number of samples in each leaf increases as the algorithm progresses. Consequently,
in our framework, the number of samples in a leaf is linked to the depth of the leaf: deeper leaf nodes are
required to contain more samples to ensure statistical reliability.

A tree that satisfies all four definitions is called a Regular Tree. To construct such a tree, we need to
design a splitting criterion that explicitly enforces these four definitions. We propose a splitting criterion
that guarantees compliance with all four definitions, as detailed in Algorithm 1.

Algorithm 1 Regular Tree splitting criterion.

Input: Datasets Sz and S, spatially balanced parameter « € (0, 0.5], random-split parameter x € (0, 1],
rectangle L = ®?:1 [rj_, T;—} with depth ¢ where 0 < r;” < r;r < 1, and sample balanced parameter
f(e),8€(0,0.5) .

1: With probability «:
2:  Randomly select a direction j* € {1,2,...,d}.
3:  Select the best split value z* by optimizing the MSE on S 7 along j*-th direction:

Z" = argmin Y Vi =Y’ I{xi € I} + > (Vi —Y2)’1{x; € Lo},

ieJ ieJ
ensuring:
(I—a)rp + ar;& <z <ar,+(1- a)r;;, (1)
and
#{ieZl . x; € Li} > Bf(e), =12 2)

Here, L; = {x € R? : xU") < 2}, Ly = {x € R?: xU") > 2}, ¥}, Y5 are average responses of S
within child nodes L1, Lo.
4: Otherwise:
5:  Select the best split value z* and direction j* by optimizing the MSE:

25 % =argmin » (V; = V1)’ 1{x; € L1} + > (Vi - ¥2)’1{x; € Ly},
= eJ

ensuring (1) and (2). Here, L1 = {x € R? : x) < 2}, Ly = {x e R¢ : x> 2}, Y1,Ys are
average responses of S within child nodes L1, Lo.
6: Return: Split direction j*, split value z*, leaf nodes L1, Lo.

The setting of two disjoint datasets Sz and S 7 satisfies Definition 1. Moreover, the probability « for
randomly selecting a direction satisfies Definition 2, while constraint (1) satisfies Definition 3 and constraint
(2) satisfies Definition 4.

Using this criterion, we can grow a Regular Tree from the given data. The tree growing procedure
is presented in Algorithm 2. This algorithm begins by dividing the dataset S into two disjoint datasets
Sz and Sz, and recursively applies Algorithm 1 to split the space until each node with depth ¢ contains
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Bf(c—1) to f(c) — 1 samples from Sz. It can be shown that the tree grown by Algorithm 2 satisfies all
four definitions.

Algorithm 2 Grow Regular Tree.

Input: Dataset S = (x;, ;)" , spatially balanced parameter «, random-split parameter «, and sample
balanced parameter f(c), S.
1: Divide S into Sz and S with |Z| = [n/2] and |J| =n — |n/2].
2: Repeat: each current node L C [0, 1]¢ do
31 Use Algorithml with S% = {(x;,Y;) : i € Z,x; € L}, Sk = {(x;,Yi) : i € J,x; € L} to find the
split direction j*, split value z*. Divide L into L1, Lo.
4: Until: Each node with depth ¢ contains Sf(c — 1) to f(¢) — 1 samples in Sz.
5: Return: A Regular Tree.

4 REGULAR TREE SEARCH

The Regular Tree Search algorithm involves two stages. In Stage 1, design points are sampled uniformly
from the entire feature space X', while in Stage 2, they are selected sequentially. The algorithm is outlined
in Algorithm 3.

Algorithm 3 Regular Tree Search.
Input: Total sample budget NV, spatially balanced parameter «, random-split parameter ~, sample balanced
parameter f(c), 3, and stage 1 sample budget Ny < N.
1: Uniformly sample Ny points from the space X. Simulate at each point to get S. Set n = Nj.
Divide S into Sz and S with |Z| = [n/2] and |J| = n — |n/2]. Build up a Regular tree 7" using
Algorithm 2. Let £ be the set of leaf nodes of T
While n < N do
Select a leaf node L € £ using a tree search strategy.
Uniformly samples a point x,,11 from the space of leaf node L, simulate at point X, 41 to get Yy, 1.
St =Sz U (Xn-‘,-laAYn—&-l)- R
If #{i € Z,x; € L} = f(c), where c is the depth of L then
Uniformly sample max{f(c) — #{j € J : x; € L},0} points, simulate at each point once, set
n =n+max{f(c) — #{j € J : x; € L},0}, and add these points to S.
9: Use Algorithm 1 with St = {(x;,Y;) :i € T,x; € L}, Sg ={(x,Y;):i € J,x; € L} to find
the split direction j* and split value z*. Divide L into Ly, Lo.
10: L=LULU LQ\IA—/
11:  End if
122 n=n+1
13: End while
14: Return: The leaf node L* € £ with the largest sample mean

- 1{x; € L}Y;
L* = argmax ZZEI {xi ) l,
Lel ZieZ I[{XZ' € L}

and its corresponding optimal value estimate

_ - 1{x; € L*}Y;
7, — el ag @)

> ier H{xi € L*}

»

® NN h W

3)
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In Stage 1, we allocate an initial budget of Ny function evaluations to uniformly sample design points
from the entire feasible domain &X’. Each sampled point is simulated once, and the resulting dataset is split
into two disjoint subsets, St for estimating leaf values, and S for determining the split direction and
value. A Regular Tree can be grown via Algorithm 2. Stage 1 serves as a warm-up phase, designed to
provide an initial exploration of the space. This phase is analogous to the warm-up procedure in Bayesian
optimization, see, e.g., Frazier (2018). After this stage, we can construct an initial space partitioning of the
feasible domain. Increasing the budget allocated to Stage 1 allows for a finer initial partitioning, providing
a better global approximation. However, if the entire budget is exhausted during this phase, the algorithm
degenerates into a regression algorithm, aiming to predict the function over the feasible domain rather than
to identify optimal regions.

After Stage 1, the remaining sample budget is N — Ny. In each iteration, we select the next design
point to be simulated using the tree search strategy. A tree search strategy is to select a leaf node Lecr
while balancing exploration and exploitation. Once a leaf node L is selected, a new point is uniformly
sampled from its region and evaluated, and the resulting observation is added to SI If the number of
Z-samples in L reaches the threshold f(c), where ¢ denotes the depth of the leaf L, a refinement of the
partltlon is triggered. We uniformly sample pomts in L and add to S 7 until the number of J-samples in
L reaches the threshold f(c). Then we partition L into two new children, L; and Lo, using Algorithm 1.
The set of leaf nodes £ is then updated.

Once the budget is exhausted, the algorithm returns the leaf node L* € £ with the highest sample
mean of responses in Sz.

An effective tree search strategy for Stage 2 employs the UCT algorithm, which recursively selects
child nodes from the root (i.e., the feasible domain X’) until reaching a leaf node. UCT operates on a
selection criterion analogous to the UCB principle in multi-armed bandit problems, which is a highly
efficient approach widely adopted in tree search algorithms. At a parent node L with children node L,
and Lo, the UCB is computed for each child:

- 21
uch; =Yz, + G, (;gnp, 1=1,2,
l

where }_/Ll is the sample mean of responses in L; computed from Sz, n; is the number of samples in L;
within Sz, and n,, is the number of samples in the parent node L within Sz. The constant C) is a tunable
hyperparameter that controls the trade-off between exploration and exploitation. Setting C}, = 0 results in
a purely greedy search, which always selects the node with the largest sample mean. For the larger C),, the
algorithm reduces to a fully exploratory strategy that behaves like uniform sampling, eventually expanding
the entire tree. At each step, the child node with the larger UCB value is selected as the new L, and the
process continues until a leaf node is reached.

5 CONVERGENCE ANALYSIS

In this section, we establish the convergence properties of Algorithm 3. Our objective is to show that
as the simulation budget N increases, the algorithm identifies a region that concentrates around the true
optimal point x*, and the corresponding estimated optimal value converges to the global maximum g (x*).
Specifically, we prove that:

dist(Ly, x") Lo,
— P *
YL}‘\, — ILL(X )7
where L7, denotes the zone (leaf node) selected by Algorithm 3 with the largest sample mean when the

sample budget is IV, and dist(L};,x*) = infxers [[x — x*||. For the complete proof, see Wang et al.
(2025b).
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We begin with Lemma 2, which establishes that for any region L, the random variable Y (L) is
sub-Gaussian. This property plays a crucial role in our analysis, as it enables the use of concentration
inequalities to bound the deviation between the sample mean Y7, and its expected value E[Y (L)].

Lemma 2 Suppose that Assumptions 1 and 2 hold. For any hyperrectangle L C X, Y (L) is sub-Gaussian.

Theorem 1 states that the selected zone L7, asymptotically shrinks toward the true optimal point under
some conditions.

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold. Consider the tree search strategy that satisfies the
following conditions:

» The depth of each leaf is bounded between h~(N) and A (V).
e limy oo h™ (N) = 0.

. ht (N
+ limyooo 7wy =0

Then, dist(L3};,x*) converges in probability to 0.
Theorem 1 contains three conditions:

1. During the algorithm, the depth of any leaf node lies between A~ (N) and h*(N).
The tree search strategy is designed so that h~ (V) — oo as the total budget N — oo, ensuring
that the partition is refined ever deeper over time.

3. The ratio % — 0 as N — oo imposes a balance between the maximal tree depth h™ (V)
and the number of samples required for splitting. Intuitively, this condition prevents overfitting
due to overly deep trees without sufficient data, thereby maintaining a balance between partition

refinement and statistical reliability.

These three conditions imply that the sample balanced function f(c), which determines the number
of samples required to split a node at depth c, diverges as ¢ — oo. This ensures deeper leaf nodes receive
enough observations to yield statistically reliable estimates.

The exploration-exploitation trade-off in the UCT algorithm ensures that each node is selected infinitely
many times, implying that limy ., A~ (N) = oo. In practice, if h~ () and h™(N) are of the same order,
then setting f(c) to be the order of clogc satisfies the conditions of Theorem 1. However, designing a
tree search strategy that explicitly guarantees the desired behaviors of 4~ (N) and A (V) remains an open
problem and a promising direction for future research.

Building on Theorem 1, Theorem 2 establishes that the sample mean of the selected region, YL*N,
converges in probability to the true optimal value p(x*).

Theorem 2 Under the conditions of Theorem 1, YL;fV — p(x*) converges in probability to 0.

6 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to evaluate the performance of the Regular Tree Search
algorithm with UCT. We compare our algorithm with three global convergence algorithms: the ASR
algorithm from Andradéttir and Prudius (2010), and the IHR-SO and AP-SO algorithms from Kiatsupaibul
et al. (2018).

Consider the Rastrigin function:

d
u(x) =10d + Z[w? — 10 cos(27z;)],
i=1

where x = (21, ..., 14). The feasible domain is X = [—5, 5]%. The objective is to find the global minimum
at x* = (0,...,0) with pu(x*) = 0. This function has multiple local minima. Let ¢(x) ~ N(0,1).
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Table 1: Statistics of the true function value of the optimal solution estimate of four algorithms.

Quantile of value

d Algorithm Mean RMSE Best 25% 50% 75% Worst
Regular Tree Search  3.20 4.17 0.03 128 2.11 4.99 10.23

’ ASR 5.23 6.16 031 3.02 478 6.73 20.50
IHR-SO 36.54 36.74 22.61 3424 37.18 39.69 43.80

AP-SO 35.77 36.16 21.06 3352 37.06 39.77 43.83

Regular Tree Search 9.16  10.08 1.82 6.10 877 1222  20.15

5 ASR 26.63 2816 9.80 2037 2542 3136 52.27
IHR-SO 4579 4729 1741 39.17 4391 51.62 82.13

AP-SO 59.87 6092 1998 5252 6030 67.56 87.37

Regular Tree Search 27.86 30.08 9.58 19.02 27.21 3598 65.51

10 ASR 76.68 79.04 39.78 6234 73.60 88.46 134.56
IHR-SO 9228 93772 43.84 81.50 91.57 103.33 138.44
AP-SO 83.55 86.23 39.01 6823 8247 96.12 137.12

For illustration purposes, we consider a problem formulation that differs from our algorithm design by
converting the original maximization problem into a minimization problem. This change is equivalent to
solving the problem of maximizing the negative of the Rastrigin function.

The function is tested for different dimensions (d = 2, 5, 10) to evaluate the algorithm’s performance.
The total sample budget N is set to 500d. For Regular Tree Search, the first stage sample budget is set to
Ny = 150d. Smaller value of parameters «, x and 3, combined with larger C), promote exploration. We
adopt the default settings: the spatially balanced parameter o« = 0.1, the random-split parameter x = 0.1,
the UCT parameter C), = 2, splitting parameter § = 1/3. Theorem 2 suggests f(c) on the order of
clog ¢, although theoretical guarantees for the order of 4~ (N) and A+ (NN) remain incomplete. To balance
finite-sample performance against the risk of premature overpartitioning in early iterations, we define the
default sample balanced parameter f(c) = max(cloge, 15). The ASR, IHR-SO, and AP-SO algorithms
use the same parameter settings as Andradéttir and Prudius (2010) and Kiatsupaibul et al. (2018).

Each experiment is repeated 100 times. For each algorithm, we record the true function value of the
optimal solution estimates and the optimal value estimates. Since Regular Tree Search ultimately selects
a region, as shown in (3), we use the midpoint of the selected region as the optimal solution estimate to
facilitate comparison. The corresponding estimated optimal value is computed as in (4). The true function
value at the estimated optimal solution and the estimated optimal value for ASR, IHR-SO, and AP-SO
algorithms are computed in the same manner as described in Kiatsupaibul et al. (2018). We report summary
statistics over 100 replications, including the mean, Root MSE (RMSE), the best value, 25th, 50th, and
75th percentiles, as well as the worst value. Table 1 presents the performance statistics of the true function
value of the optimal solution estimates of four algorithms across different dimensions d, while Table 2
presents the corresponding performance statistics of the optimal value estimates.

For d = 2, Regular Tree Search outperforms the competing methods. The algorithm achieves a mean
true function value of 3.20 with an RMSE of 4.17, and its best-case performance is exceptionally low
at 0.03. The quantile values (1.28 at the 25th percentile, 2.11 at the 50th, and 4.99 at the 75th) exhibit
a narrow spread, indicating that Regular Tree Search not only delivers high accuracy but also maintains
robust and consistent performance. In comparison, ASR records a higher mean of 5.23 and RMSE of 6.16,
while both IHR-SO and AP-SO yield substantially larger mean values (36.54 and 35.77). A similar trend
occurs for optimal value estimates. Regular Tree Search attains a mean of 2.72 and RMSE of 3.79 with a
best-case value of 0.02, confirming its superior accuracy and consistency in low-dimensional settings.
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Table 2: Statistics of optimal value estimates of four algorithms.

Quantile of value

d Algorithm Mean RMSE Best 25% 50% 75%  Worst
Regular Tree Search  2.72 3.79 0.02 068 1.69 4.29 9.78

) ASR 5.23 6.17 034 401 485 6.74 20.64
IHR-SO 1970 1971 17.89 19.16 19.76 20.25 21.56

AP-SO 2143 2144 18.00 2099 2139 2198 23.89

Regular Tree Search ~ 8.97 9.91 129 6.07 855 1196 20.22

5 ASR 26.60 2813 982 2037 2540 3130 52.19
IHR-SO 41.51 41.55 37.66 40.26 41.51 4279 4640

AP-SO 48.88 4892 4517 47.09 4894 5038 55.39

Regular Tree Search 31.64 33.12 12.87 23.77 31.14 38.89 59.61

10 ASR 76.62 7898 39.57 6237 73772 8832 134.47

IHR-SO 84.83 85.02 7359 8094 84.19 88.57 101.80

AP-SO 93.95 94.18 8046 88.89 94.15 9791 106.99

When the dimensionality increases to d = 5 and d = 10, Regular Tree Search remains competitive
despite the challenges of higher dimensions. For d = 5, it has a true function value mean of 9.16 and
an RMSE of 10.08, with quantiles expanding from 6.10 at the 25th to 12.22 at the 75th. At d = 10, it
maintains a mean true function value of 27.86 and an RMSE of 30.08, with quantile values ranging from
19.02 (25th) to 35.98 (75th). In both cases, the competing algorithms experience sharper performance
deterioration (with ASR, IHR-SO, and AP-SO recording mean values of 26.63, 45.79, 59.87 at d = 5 and
76.68, 92.28, 83.55 at d = 10, respectively), while Regular Tree Search continues to deliver lower error
levels and more robust performance. Similar trends are confirmed by the optimal value estimates, where
Regular Tree Search maintains a lower mean and error level relative to its counterparts.

When comparing the true function value of the optimal solution estimate with the optimal value
estimates, a clear pattern emerges: both Regular Tree Search and SO algorithms exhibit noticeable gaps
between their estimated and actual values, whereas ASR shows virtually no discrepancy. This difference
arises because ASR performs multiple independent simulations at each design point and directly computes
its sample mean, while Regular Tree Search, IHR-SO, and AP-SO each run only one simulation per point
and then use different strategies to estimate the function value.

In particular, for d = 2 and d = 5, IHR-SO and AP-SO tend to underestimate the true function value.
This is likely because these algorithms estimate values by averaging over a neighborhood, which can weaken
the impact of the true optimum, especially if the function has sharp peaks. If the initial neighborhood size
is too large, the estimate may become inaccurate.

Regular Tree Search enforces an honest sampling rule, ensuring that within-leaf sample means are
unbiased estimators of the region’s average. However, this does not guarantee an unbiased estimate at the
center of the region. Consequently, in the d = 2 scenario, Regular Tree Search’s estimated optimal value
falls below the true optimal value for two reasons: first, we report the function value at the region’s center
rather than the region’s actual mean; second, because Regular Tree Search always selects the leaf with the
lowest estimated mean, this selection step introduces a negative selection bias in the reported optimal value
estimate. As dimensionality increases to d = 5 and d = 10, the relationship between estimated and true
values becomes less predictable. Sometimes, the estimates exceed the true values; sometimes, they fall
short. This increased variability can be attributed to the coarser partitioning required in higher dimensions,
which results in larger regions. When a region is large, the discrepancy between its center and its true
mean is also large, leading to estimation errors.
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7 CONCLUSION

This paper introduces Regular Tree Search, a class of random search algorithms for non-convex simulation
optimization that integrates adaptive sampling with adaptive space partitioning. The algorithm initiates
with a regular tree structure constructed from uniformly sampled points and iteratively selects leaf nodes
by dynamically balancing exploration and exploitation through a tree search strategy. A new sample is
drawn uniformly within the selected leaf, and when the number of samples in a node exceeds a threshold
determined by its depth, an adaptive splitting criterion triggers further partitioning, progressively focusing
the search on promising regions. The algorithm ultimately selects the best empirical solution from the
leaves when the sampling budget is exhausted. To guide the search process, the framework incorporates
the UCT algorithm. From a theoretical view, we establish global convergence under sub-Gaussian noise
assumptions, relying on conditions concerning the optimality gap rather than global continuity. Numerical
experiments validate the effectiveness of the algorithm, demonstrating its ability to accurately locate optimal
solutions and estimate their values in complex, noisy optimization settings.
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