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ABSTRACT

Gradient-based methods are well-suited for derivative-free optimization (DFO), where finite-difference (FD)
estimates are commonly used as gradient surrogates. Traditional stochastic approximation methods, such as
Kiefer-Wolfowitz (KW) and simultaneous perturbation stochastic approximation (SPSA), typically utilize
only two samples per iteration, resulting in imprecise gradient estimates and necessitating diminishing step
sizes for convergence. In this paper, we combine a batch-based FD estimate and an adaptive sampling
strategy, developing an algorithm designed to enhance DFO in terms of both gradient estimation efficiency
and sample efficiency. Furthermore, we establish the consistency of our proposed algorithm and demonstrate
that, despite using a batch of samples per iteration, it achieves the same sample complexity as the KW
and SPSA methods. Additionally, we propose a novel stochastic line search technique to adaptively tune
the step size in practice. Finally, comprehensive numerical experiments confirm the superior empirical
performance of the proposed algorithm.

1 INTRODUCTION

Stochastic optimization aims to find the minimization (or maximization) of a function in the presence of
noise. Specifically, in this paper, we consider solving the following unconstrained stochastic optimization
problem:

min
x∈X

f(x) = E[F (x)], (1)

where X ⊆ Rd is a convex set, f : X → R is the true performance, and F is the response function. This
problem has a wide range of application, including simulation optimization (Chang et al. 2013; Hu and
Fu 2025) and reinforcement learning (Fazel et al. 2018). Among problem (1), a difficult but important
case lies in the lack of the closed form of f(x), and only estimates of the output function are available.
That is, for any x ∈ X , we can only get an unbiased but noisy estimate of f(x), i.e., F (x). Such problem
is derivative-free optimization (DFO, sometimes referred to as black-box optimization). As the problem
becomes complex, the DFO will become increasingly important, and Golovin et al. (2017) mention that
“any sufficiently complex system acts as a blackbox when it becomes easier to experiment with than to
understand”.

Much literature has discussed the methodology development of DFO. The first category of algorithms
are heuristic methods. For instance, the Nelder-Mead simplex algorithm, a direct-search-based method, is
widely applied in practical scenarios (Barton and Ivey Jr 1996). A key limitation of these algorithms is
the lack of theoretical convergence guarantees (Spall 2005). Another line involves transforming stochastic
problems into deterministic ones, taking advantages of deterministic optimization. For examples, sample
average approximation (Kim et al. 2015) generates many sample paths and uses the sample mean to estimate
the unknown expectation; metamodels such as response surface methodology and Gaussian process are also
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used to fit the unknown function (Hong and Zhang 2021). Recently, model-based trust region methods, which
integrate model fitting and trust region techniques, have been developed to address simulation optimization
problems. Notable examples include the interpolation-based trust-region approach (NEWUOA) (Powell
2006), stochastic trust-region response-surface method (STRONG) (Chang et al. 2013) and adaptive
sampling trust-region algorithm (ASTRO) (Shashaani et al. 2018). Interested readers may refer to Audet
and Hare (2017) and Larson et al. (2019) for a survey of these methods.

Although our focus is on derivative-free approaches, Audet and Hare (2017) comment that “if gradient
information is available, reliable and obtainable at reasonable cost, then gradient-based methods should
be used.” On the other hand, Shi et al. (2023) and Wang et al. (2025) perform lots of experiments, showing
the efficiency of gradient-based methods with finite-difference (FD) gradient surrogates. Therefore, we
would like to consider gradient-based stochastic search algorithm to solve (1) in this paper. Note that under
some smoothness conditions, (1) can be solved by the following iteration

xk+1 = ΠX

(
xk − ak∇̂f(xk)

)
, (2)

where xk and xk+1 are the current solution and next prediction, respectively, ∇̂f(xk) is the estimate of
the true gradient ∇f(xk) at k-th iteration, ak > 0 is the step size, and ΠX (·) is the projection operator
onto the feasible region X .

Under the black-box setting, the gradient estimate in (2) is usually substituted by FD gradient and in
this case, (2) can date back to the Kiefer-Wolfowitz stochastic approximation (KWSA) algorithm (Kiefer
and Wolfowitz 1952). Due to the variance of the FD estimate, the step size should tend to 0 to ensure the
convergence. A similar method in high dimension is the simultaneous perturbation stochastic approximation
(SPSA) method (Spall 1992; Spall 1997). In practice, the initial step size is crucial and an inappropriate
step size will lead to poor performance. Note that when the simulation error is sufficiently small, the
performance of KW-type methods is satisfactory (Shi et al. 2023). Therefore, a possible improvement
is using more samples to increase the accuracy of the FD estimate. The above idea is inspired by the
mini-batch method, which serves as an improvement over stochastic gradient descent or the Robbins-Monro
(RM) algorithm (Robbins and Monro 1951). However, the “batch-based” idea is rarely used in DFO and
complexity analysis is still open (Shashaani 2024). Most existing methods consider only a fixed perturbation
scheme (Bollapragada et al. 2024), which leads to biased gradient estimates. As a result, the complexity
analysis typically focuses on convergence to a neighborhood of the optimum, rather than to the optimum
itself. In this paper, we fill the gap and strengthen the convergence results.

The first challenge, when using the FD gradient, lies in the construction of an accurate batch-based FD
estimate. Fox and Glynn (1989) and Zazanis and Suri (1993) study the convergence of the standard batch-
based FD estimator and provide the theoretically optimal perturbation size by minimizing the mean squared
error (MSE). However, the optimal perturbation is related to the structure information of the blackbox and
we do not know it when using the FD estimator. To overcome this issue, Li and Lam (2020) propose a
two-stage method, estimating the perturbation in the first stage and then generating remaining samples at
the estimated perturbation to give the expectation-minimization FD (EM-FD) estimator. Recently, Liang
et al. (2024) propose a correlation-induced FD (Cor-FD) estimator, using all samples in a batch to estimate
the perturbation and then recycling them to estimate the gradient. Cor-FD is available when the batch
size is small and it is shown that Cor-FD possesses a reduced variance, and in some cases a reduced bias,
compared to the optimal FD estimator.

Given that Cor-FD is efficient when the budget is limited, it is suitable for batch-based DFO algorithm.
However, selecting an appropriate batch size in each iteration is crucial. Specifically, if the batch size is too
small, the descent direction may lack sufficient accuracy, limiting adjustments to minor corrections along
this direction. Conversely, if the batch size is too large, samples may be wasted, as the descent direction does
not require excessive precision. In fact, the most efficient algorithms should employ a progressive batching
approach in which the batch size is initially small, and increases as the iteration progresses (Bollapragada
et al. 2018). For this purpose, the adaptive sampling condition called the norm condition (Bollapragada
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et al. 2024) has been proposed, which sets the batch size based on the signal-to-noise ratio (i.e., the ratio
between the true gradient and the gradient estimate error).

In addition to estimate the gradient, another challenge lies in selecting an appropriate step size: too
small leads to slow convergence, while too large may cause divergence. Existing stochastic line search
methods based on a relaxed Armijo condition (Shi et al. 2023) often yield suboptimal step sizes due to the
presence of noise in function evaluations, and can only guarantee convergence to a neighborhood of the
optimum (Berahas et al. 2019). To address this, we propose increasing the number of simulations when
evaluating candidate step sizes, enabling a more accurate assessment under the relaxed Armijo condition.

The rest of the paper is organized as follows. In Section 2, we give some backgrounds about the
gradient-based stochastic optimization. Section 3 presents the adaptive sampling condition, the stochastic
line search and the complete algorithms based on constant step sizes. In Section 4, we present the main
results about the algorithm in Section 3. Sections 5 applies our algorithm to solve DFO problems, followed
by conclusions in Section 6.

2 PRELIMINARIES

2.1 Gradient-Based Stochastic Search

To find the optimal solution x∗ of (1), the classical method is gradient-based stochastic search (also known as
stochastic approximation). Specifically, x∗ can be obtained by the recursion (2). Without loss of generality,
we assume that X = Rd and remove the projection operator. Then, the recursion is

xk+1 = xk − ak∇̂f(xk). (3)

There are two key elements in (3): the step size ak and the gradient estimate ∇̂f(xk). If the unbiased
gradient estimate ∇F (xk) can be obtained, then (3) is the RM algorithm, which is the origin of the
stochastic gradient descent. In this paper, we assume that one can only get the zeroth-order information
with noise and the first-order information is unavailable. In this case, the gradient estimate ∇̂f(xk) is
usually substituted by the FD method. Such methods include the KW and SPSA methods, which obtain
∇̂f(xk) with only 2 samples at each iteration. Consequently, the variance of ∇̂f(xk) is large and the
step size ak should tend to 0 to ensure the recursion goes towards the optimal solution x∗. Although it
is shown that the convergence rate of the KW and SPSA algorithms can reach O(1/k2/3), where k is the
iteration number, the convergence rate may be unattainable in practice. Even when there is no noise, using
the diminishing step size may lead to degeneration, as can be seen in Example 2.1.
Example 2.1 (Broadie et al. (2011)) Consider finding the infimum point of the deterministic function
f(x) = 0.001x2 with the KW method:

xk+1 = xk − ak
f(xk + hk)− f(xk − hk)

2hk
.

If we set ak = θa/k and hk = θh/k
1/4 with θa = 1 and θh = 1, respectively, then the KW algorithm

becomes xk+1 = xk(1− 1/(500k)). Starting with x1 = 1, we have

xk+1 =

k∏
i=1

(
1− 1

500i

)
= exp

(
k∑

i=1

log

(
1− 1

500i

))
≥ exp

(
−

k∑
i=1

1

500i

)
≥ O

(
1

k0.002

)
,

where the first inequality is because for any x ∈ (0, 1), log(1 − x) ≥ −x. Therefore, the MSE cannot
converge faster than O

(
k−0.004

)
, which is significantly slower than the theoretically optimal rate of the

KW algorithm O
(
k−2/3

)
.
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To address the problem in Example 2.1, one approach is to carefully adjust the initial value of the
step size, θa, to prevent degeneration in the algorithm’s convergence rate. Along this line, Broadie et al.
(2011) propose a scaled-and-shifted KW (SSKW) method, which adaptively tunes both the step size and
perturbation by introducing 9 additional hyperparameters. Another approach is to use a constant (or non-
diminishing) step size, which demands a highly accurate gradient estimate, requiring more samples to
compute ∇̂f(xk). In this paper, we focus on the second method and use the correlation-induced central
FD (Cor-CFD) estimate as the surrogate of ∇̂f(xk) in (3). The benefit of this surrogate is that Cor-CFD
possesses a variance reduction property and its performance is close to (or even better than) that of the
optimal CFD estimate. Consequently, this surrogate is efficient when the sample size is limited and is
suitable for the initial stage of the optimization. For the completeness, we briefly outline the construction
of the Cor-CFD estimator below. For more details, interested readers may refer to Liang et al. (2024).

2.2 Correlation-Induced Central Finite Difference

In this section, we introduce the Cor-CFD estimate. For simplicity, we assume d = 1 because when d > 1,
we can apply Cor-CFD across all the coordinates or randomized directions. Consider the k-th iteration and
denote xk by the point of interest and nk by the total sample pairs used for gradient estimation (i.e., 2nk

function evaluations). The conventional CFD estimate is

gnk,hk
(xk) =

1

nk

nk∑
i=1

Fi(xk + hk)− Fi(xk − hk)

2hk
,

where hk is the perturbation and (Fi(xk + hk), Fi(xk + hk)) is a sample pair. Under mild conditions, the
expectation and variance of gnk,hk

(xk) can be easily calculated:

E[gnk,hk
(xk)] = ∇f(xk) +Bkh

2
k + o(h2k), Var[gnk,hk

(xk)] =
σ2
k

2nkh
2
k

+ o

(
1

h2k

)
, (4)

where Bk = ∇(3)f(xk)/6 with ∇(3)f(·) being the third derivative of f(·) and σ2
k = Var[F (xk)]. To

minimize the MSE (= Bias2 +Variance), the optimal perturbation is h∗k = (σ2
k/(4nkB

2
k))

1/6, which relies
on the unknown constants Bk, σk and is more challenge than the estimation of ∇f(xk).

To set an appropriate perturbation in practice, the Cor-CFD method generatesRperturbationshk,1, ..., hk,R
randomly from a pilot distribution P0. Without loss of generality, assume nk = bkR. Then, for each
perturbation hk,r(r = 1, ..., R), bk sample pairs (Fi(xk +hk,r), Fi(xk−hk,r))(i = 1, ..., bk) are generated
and all of the CFD estimates are shown in Figure 1.

F1(xk+hk,1)−F1(xk−hk,1)
2hk,1

F1(xk+hk,2)−F1(xk−hk,2)
2hk,2

· · · F1(xk+hk,R)−F1(xk−hk,R)
2hk,R

F2(xk+hk,1)−F2(xk−hk,1)
2hk,1

F2(xk+hk,2)−F2(xk−hk,2)
2hk,2

· · · F2(xk+hk,R)−F2(xk−hk,R)
2hk,R

...
...

. . .
...

Fbk
(xk+hk,1)−Fbk

(xk−hk,1)

2hk,1

Fbk
(xk+hk,2)−Fbk

(xk−hk,2)

2hk,2
· · · Fbk

(xk+hk,R)−Fbk
(xk−hk,R)

2hk,R

Figure 1: All of the CFD estimates generated by the Cor-CFD method.

By resampling the CFD estimates bk times with replacement at each perturbation hk,r, we obtain the
estimates ofE[gbk,hk,r

(xk)] and Var[gbk,hk,r
(xk)], denoted byE∗[gbk,hk,r

(xk)] and Var∗[gbk,hk,r
(xk)], respec-

tively. If follows from (4) that the bias and variance of gbk,hk
(xk) are linear with respect to h2k and 1/(bkh

2
k).

345



Liang, Liu, and Zhang

Therefore, regressing [E∗[gbk,hk,1
(xk)], ...,E∗[gbk,hk,R

(xk)]] on [1, ..., 1] and [h2k,1, ..., h
2
k,R] gives the esti-

mates [∇̂′f(xk), B̂k]. Regressing [Var∗[gbk,hk,1
(xk)], ...,Var∗[gbk,hk,R

(xk)]]on [1/(2bkh2k,1), ..., 1/(2bkh
2
k,R)]

gives the estimate σ̂2
k. Then, we can set the estimated optimal perturbation ĥk =

(
σ̂2
k/
(
4nkB̂

2
k

))1/6
.

After choosing the perturbation, the Cor-CFD method reuses all of the CFD estimates shown in Figure
1 by adjusting their location and scale. Our goal is that the expectation and variance of the transformed CFD
estimates are similar to those of the optimal CFD estimates. Specifically, for i = 1, ..., bk and r = 1, ..., R,
we transform the CFD estimates in Figure 1 to

hk,r

ĥk

[
Fi(xk + hk,r)− Fi(xk − hk,r)

2hk,r
− ∇̂′f(xk)− B̂kh

2
k,r

]
+ ∇̂′f(xk) + B̂kĥ

2
k. (5)

Finally, the Cor-CFD estimate of ∇f(xk) is defined as (1/nk)
∑bk

i=1

∑R
r=1 (5).

3 PROPOSED ALGORITHM

Here and after, at k-th iteration, we denote nk by the number of sample pairs at each coordinate and gk(xk)
by the corresponding Cor-CFD estimate. Back to (2), although we have selected an appropriate method to
surrogate the gradient, there are still two questions should be addressed. The first question is how to set
nk at k-th iteration and the second question is how to set the step size ak. In Section 3.1, we consider the
first question and propose an algorithm with constant step sizes. In Section 3.2, we consider the second
question and propose a heuristic line search technique.

3.1 Adaptive Sampling

For the first question, note that we aim to ensure that the estimated gradient aligns with the descending
direction, meaning the angle between gk(xk) and∇f(xk) is acute. However, this is not fully achievable due
to the inherent uncertainty in gradient estimation. To address this, a straightforward method is increasing
nk to reduce the uncertainty. Equivalently, we can incorporate the uncertainty by defining a confidence
region for ∇f(xk), ensuring that all d-dimensional vectors within this region align with the descending
direction. Specifically, let Fk = σ{x1,x2, ...,xk} be the σ-field generated by x1,x2, ...,xk. Denote
bk = E[gk(xk)|Fk] − ∇f(xk) and ϵk = gk(xk) − E[gk(xk)|Fk], which are the bias and noise terms,
respectively. Then, consider the confidence region

[l,u] :=
[
gk(xk)− bk −

√
E[ϵk ◦ ϵk|Fk]/θ, gk(xk)− bk +

√
E[ϵk ◦ ϵk|Fk]/θ

]
,

where ◦ denotes the element-wise product,
√
E[ϵk ◦ ϵk|Fk] is a d-dimensional vector with each element

denoting the standard deviation of the corresponding element in gk(xk), and θ is a user-specified hyperpa-
rameter. To ensure all d-dimensional vectors in the confidence region are the descent direction, we increase
nk until min

{
E[l|Fk]

⊤∇f(xk),E[u|Fk]
⊤∇f(xk)

}
≥ 0. Equivalently, this condition holds when both(

∇f(xk)±
√

E[ϵk ◦ ϵk|Fk]/θ
)⊤
∇f(xk) ≥ 0, which can be derived from

E[||ϵk||2|Fk] ≤ θ2||∇f(xk)||2 (6)

using the Cauchy-Schwarz inequality.
In fact, (6) represents an efficient sampling condition, indicating that the variance must be sufficiently

small. This condition controls the noise-to-signal ratio in gradient estimation, thereby improving its
reliability. (6) is called the norm condition and has been considered by Bollapragada et al. (2018) and
Bollapragada et al. (2024). To apply this condition, we need to identify surrogates for E[||ϵk||2|Fk] and
||∇f(xk)||. Note that E[||ϵk||2|Fk] represents the sum of variances across all coordinates. We can employ
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sample variance to estimate the variance of each component of gk(xk) and subsequently E[||ϵk||2|Fk].
Despite the existence of the correlation, it is efficient to use the sample variance because it has been shown
that the correlation in Cor-CFD tends to reduce the variance (Liang et al. 2024). For ||∇f(xk)||, ||gk(xk)||
can be chosen as an appropriate surrogate. Specifically, the estimated version of (6) is∑d

i=1 σ̂
2
i

nk
≤ θ2||gk(xk)||2, (7)

where σ̂2
i is the sample variance of (5) at i-th coordinate in the k-th iteration, which is an estimated upper

bound of the true variance. Then the algorithm with constant step size is proposed (see Algorithm 1).

3.2 Stochastic Line Search

In practice, it is difficult to set an appropriate step size because the optimization problem is a blackbox.
To address this issue, a stochastic line search method has been proposed to adjust the step size (Berahas
et al. 2019; Shi et al. 2023), inspired by the backtracking line search in deterministic optimization.

Specifically, the classical stochastic line search in Berahas et al. (2019) begins with an initial step size
ak = ã at k-th iteration and determine whether

F (xk − akgk(xk)) > F (xk)− l1ak||gk(xk)||2 + 2σF (8)

holds, where 0 < l1 < 1 is a parameter. If (8) holds, then the function value at next predicted step is
significantly larger than that at the current step and the step size should not be chosen. In this case, we
shrink ak → l2ak, where l1 < l2 < 1. The procedure will stop until (8) does not hold. Note that the
simulation noise σF can be substituted by the upper bound. For example, if it is very large, then (8) will
never hold and the stochastic line search outputs the constant step size ã.

After the stochastic line search (8), we get a step size which is not too “bad” (a “bad” step size means
that the next predicted value is much larger than the current value), but is not guaranteed to be “good” (a
“good” step size means that the next predicted value is not larger than the current value). In other words,

Algorithm 1: Cor-CFD-based DFO Algorithm with Constant Step Size
Input: Total number of function evaluations S, initial sample pairs n0, starting point x0, adaptive

sampling threshold θ and step length a > 0.
Output: The ultimate estimate xk.

Initialization: Set k ← 0, s← 0.
while s < S do

foreach coordinate i = 1, ..., d do
Compute gradient estimate gk,i(xk) using Cor-CFD with nk sample pairs, where gk,i(xk)

denotes the i-th component of gk(xk).
Compute the sample variance σ̂2

i .

if (7) does not hold then
Increase nk to ⌊

∑d
i=1 σ̂

2
i /
(
θ2||gk(xk)||2

)
⌋+ 1, where ⌊·⌋ represents the largest integer

that does not exceed ·.
Add ⌊

∑d
i=1 σ̂

2
i /
(
θ2||gk(xk)||2

)
⌋+1−nk sample pairs to update gradient estimate gk(xk).

Set nk = ⌊
∑d

i=1 σ̂
2
i /
(
θ2||gk(xk)||2

)
⌋+ 1.

Update xk+1 ← xk − agk(xk).
Update s← s+ 2dnk and k ← k + 1.

return xk
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(8) is conservative and only used to exclude the “bad” cases. Similar to (8), we present a new criterion:

F (xk − akgk(xk)) ≤ F (xk)− l1ak||gk(xk)||2 − 2σF . (9)

The intuition of (9) is that it indicates that the function value at the next predicted step is significantly
smaller than that at the current step. Note that condition (9) may not always hold, particularly when
the current solution is near the optimal value. However, increasing simulation replications to reduce the
black-box function’s uncertainty will eventually satisfy condition (9). Specifically, there exists a number
N such that

1

N

N∑
i=1

Fi(xk − akgk(xk)) ≤
1

N

N∑
i=1

Fi(xk)− l1ak||gk(xk)||2 − 2
σF√
N

(10)

because when N →∞, it is identical to f(xk − akgk(xk)) ≤ f(xk)− l1ak||gk(xk)||2 which closes to the
standard line search criterion and holds under mild conditions. Conditions (9) and (10) require using many
samples to assess the appropriateness of the step size. This effort is justified because, near the optimal
solution, maintaining algorithmic progress requires highly accurate step-size selection. Note that when
N →∞ and ak → 0, (10) always tends to hold, and if a step size is small enough, it is also a “good” step
size (see Theorem 1 for theoretical evidences). Thus, in practice, it is enough to evaluate condition (9) for
a finite number of times (i.e., N ≤ N0, where N0 is a user-specified parameter). If it remains unsatisfied,
we shrink the step size. Additionally, we enforce a lower bound on the step size to avoid it becoming too
small.
Remark 3.1 Stochastic line search is similar to the “shifted” procedure in Broadie et al. (2011), as both
methods reduce a “too large” step size until it becomes appropriate. However, these two methods are
fundamentally different. The “shifted" procedure in Broadie et al. (2011) is based on KWSA, with the
step size sequence defined as θa/k

γ , where γ > 0 is a hyperparameter. In contrast, stochastic line search
is based on the standard line search used in deterministic optimization. In stochastic line search, the step
size does not necessarily decrease at a fixed rate and it may decrease, not change or even increase. The
only requirement is that the predicted value of the next iteration is smaller than the current function value
to some extent. As a result, stochastic line search is more flexible.

4 THEORETICAL RESULTS

In this section, we present the convergence results of Algorithm 1. Firstly, we state some assumptions,
which suppose that the objective function F (x) is smooth and strongly convex, satisfying the following
regularity conditions.
Assumption 4.1 (Differentiability) The function f(x) is fifth continuously differentiable on X and
∇5f(x) ̸= 0 for any x ∈ X .
Assumption 4.2 (Lipschitz smoothness) The gradient of f(x) is M -Lipschitz, i.e., there exists a constant
M > 0 such that ||∇f(x1) − ∇f(x2)|| ≤ M ||x1 − x2|| for all x1,x2 ∈ X , where || · || denotes the
Euclidean norm.
Assumption 4.3 (Strongly convex) There exists a constant m > 0 such that λ(x) ≥ m for all x ∈ X ,
where λ(x) denotes the smallest eigenvalue of the Hessian matrix H(x) := ∇2f(x).

Assumption 4.1 is used for the theoretical completeness of the Cor-CFD method. Note that when X
is a compact set, Assumption 4.2 holds automatically if Assumption 4.1 holds. Assumption 4.3 ensures
that (1) has a unique solution x∗. Assumptions 4.2 and 4.3 are standard conditions when studying the
convergence results of the gradient-based method (Scheinberg 2022; Hu and Fu 2025). Specifically, these
two assumptions mean that M and m are the upper and lower bounds for all eigenvalues of the Hessian
matrix.
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In the following, we present Theorem 1 to show the convergence result of Algorithm 1. Note that in
Theorem 1, we use the condition max{E[||bk||2|Fk],E[||ϵk||2|Fk]} ≤ θ2||∇f(xk)||2 which is different
from (6). This condition is introduced solely for the convenience of the proof. It is reasonable because if we
use Cor-CFD gradient estimate, E[||bk||2|Fk] and E[||ϵk||2|Fk] have the same order. While the conventional
CFD estimate can also be used without affecting the convergence result, its performance depends on the
manual choice of perturbation, which may reduce the algorithm’s stability and adaptability in black-box
settings. Conversely, the Cor-CFD method automatically yields a high-quality gradient estimate with a
variance reduction effect.
Theorem 1 (Iteration complexity) Suppose that Assumptions 4.1, 4.2 and 4.3 hold. Let x0 be the initial
point and at k-th iteration, letmax{E[||bk||2|Fk],E[||ϵk||2|Fk]} ≤ θ2||∇f(xk)||2, where 0 < θ < m/(2M)
is a threshold. If 0 < ak = a ≤ 1/((2θ2 + 2θ + 1)M) for any k ≥ 0, then we have

E
[
||xk − x∗||2

]
≤ (1− (m− 2θM)a)k ||x0 − x∗||2. (11)

The proof of Theorem 1 can be found in Liang et al. (2025). Observe that 0 < (m − 2θM)a < 1
when 0 < θ < m/(2M) and a ≤ 1/((2θ2 + 2θ+ 1)M). Under these conditions, xk converges linearly in
expectation to the minimum point x∗. Theorem 1 generalizes the convergence result of standard gradient
descent. Notably, as θ → 0, the gradient estimate in each iteration approaches the true gradient at the
current solution. Consequently, the right hand side (RHS) on (11) converges to (1 −ma)k||x0 − x∗||2,
where 0 < a < 1/M . The optimal case occurs as a→ 1/M , with E[||xk−x∗||2] converging to 0 at a rate
comparable to a geometric series, featuring an exponent approaching m/M . This result aligns perfectly
with deterministic gradient descent.

It is important to note that focusing solely on the iteration complexity is insufficient. For instance,
when θ → 0, the gradient descent result is recovered, but this requires the batch size to be infinity at
each iteration to satisfy the adaptive sampling condition. Therefore, it is crucial to consider both the
iteration complexity and the associated sample complexity, i.e., the total stochastic function evaluations
required to get an ϵ-accurate solution. We employ the metric that xk is said to be an ϵ-accurate solution
if E

[
||xk − x∗||2

]
≤ ϵ. Note that the number of stochastic function evaluations at any iteration k is

Sk = 2dnk, where nk is the number of sample pairs at each coordinate. In the following, we present
Theorem 2 to analyze the sample complexity of Algorithm 1.
Theorem 2 (Sample complexity) Under the same conditions as those in Theorem 1. Let d = O(1). Denote
S(ϵ) by the total stochastic function evaluations to get an ϵ-accurate solution. If the third derivative∇3f(x)

and the function noise σ(x) are bounded below away from 0, then we have E[S(ϵ)] ≥ C1ϵ−3/2 + C2,
where C1 and C2 are constants that depends on the threshold θ, step size a, problem dimension d, unknown
function and the simulation error. Specifically,

C1 =
4d
(
CθM2

)−3/2

3ā−3/2 log(1/ā)
, C2 =

4d
(
CθM2||x0 − x∗||2

)−3/2

3 log(1/ā)
,

where ā = 1− (m− 2θM)a, Cθ = θ2/C and C depends on the function f(·) and simulation noise.

Proof. Let ηk := xk − x∗. Denote K(ϵ) by the number of iteration to get an ϵ-accurate solution. From
Theorem 1, we should let (1− (m− 2θM)a)K(ϵ) ||η0||2 ≤ ϵ, which is equivalent to

K(ϵ) ≥ log ϵ− log ||η0||2

log ā
, (12)

where we denote 1 − (m − 2θM)a by ā for the sake of convenience. Then, S(ϵ) =
∑K(ϵ)−1

k=0 Sk =

2d
∑K(ϵ)−1

k=0 nk. According to the properties of Cor-CFD, max{E[||bk||2|Fk],E[||ϵk||2|Fk]} ≤ Ckn
−2/3
k ,
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where Ck is a constant depending on the third derivative ∇3f(xk), the function noise σ(xk) and the
dimension d. To satisfy the adaptive sampling condition, we should let

Cn−2/3
k ≤ Ckn

−2/3
k ≤ θ2||∇f(xk)||2, (13)

where the first inequality is because that the third derivative ∇3f(x) and the function noise σ(x) are
bounded below away from 0 (see Liang et al. (2024) for more details). Taking expectation on both sides
of (13) gives E

[
n
−2/3
k

]
≤ CθE

[
||∇f(xk)||2

]
, where Cθ = θ2/C. It follows Taylor expansion that

∇f(xk) = ∇f(x∗) +H(x†
k)ηk = H(x†

k)ηk,

where x†
k lies on the line segment between xk and x∗, and the second equality is because ∇f(x∗) = 0.

Then we have

E
[
||∇f(xk)||2

]
= E

[
η⊤
k H

⊤(x†
k)H(x†

i )ηk

]
≤M2E

[
||ηk||2

]
≤M2āk||η0||2.

Therefore, E
[
n
−2/3
k

]
≤ CθE[||∇f(xk)||2] ≤ CθM2āk||η0||2. By Jensen’s inequality, we have E[nk]

−2/3 ≤

E
[
n
−2/3
k

]
, which gives that E[nk] ≥

(
CθM2āk||η0||2

)−3/2. Because S(ϵ) = 2d
∑K(ϵ)−1

k=0 nk, we have

E[S(ϵ)] ≥2d
(
CθM2||η0||2

)−3/2
K(ϵ)−1∑
k=0

ā−3k/2 ≥ 2d
(
CθM2||η0||2

)−3/2
∫ K(ϵ)−1

0
ā−3u/2du

≥2d
(
CθM2||η0||2

)−3/2
∫ log ϵ−log ||η0||

2

log ā
−1

0
ā−3u/2du = C1ϵ−3/2 + C2,

where the second inequality is due to the relationship between the summation and integral, and

C1 =
4d
(
CθM2

)−3/2

3ā−3/2 log(1/ā)
, C2 =

4d
(
CθM2||η0||2

)−3/2

3 log(1/ā)
.

According to Theorem 2, achieving an ϵ-accurate solution requires at least O
(
ϵ−3/2

)
function eval-

uations. In other words, for a given total budget S , the MSE of our algorithm is O
(
S−2/3

)
, matching

the optimal performance of the KW algorithm (Hu and Fu 2025). This result stems from combining the
Cor-CFD estimate with the adaptive sampling condition, which ensures that an appropriate number of
samples are generated at each iteration, maximizing the use of sample information. For a fixed total budget,
reliable gradient estimation allows the algorithm to maintain consistently sufficient descent, even with a
reduced number of iterations. Furthermore, because the step size does not need to approach 0, the algorithm
circumvents the degeneration scenario illustrated in Broadie et al. (2011).

5 NUMERICAL EXPERIMENTS

In this section, we test the performance of our algorithm on two types of problems which are both constructed
from deterministic optimization with added noise. The first type of problem is a simple power function
f(x) = 0.001x2 with a noise N (0, σ2(x)), where σ(x) = 0.001. This problem is used to illustrate the
convergence rate of our method. The second type of problem is the Rosenbrock function defined as

f(x1, x2) = 100(x2 − x21)
2 + (x1 − 1)2.
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Figure 2: Comparison of the convergence rate of our algorithm and KWSA for the first type of problem.

The unique minimum (1, 1) lies in a narrow, parabolic valley (x1, x
2
1). Although the valley is easy to

find, it is difficult to find the minimum even when there is no noise. In this problem, we set F (x1, x2) =
f(x1, x2) +N (0, 1). Note that these two problems do not satisfy Assumption 4.1 because the fifth order
derivative is equal to 0, but they serve to “stress test” our algorithm.

Our Algorithm is marked as “AdaDFO” across all the experiments. For the first type of problem, we
set x0 = 10. The results are shown in Figure 2, where “Constant Step 45” and “Constant Step 1” represent
Algorithm 1 with step sizes 45 and 1, respectively, and the KWSA algorithm is applied without considering
the noise. Figure 2 shows the number of function evaluations on the horizontal axis and the MSE of the
current solution on the vertical axis. A line with a slope of −2/3 is included for visualization. As shown
in the figure, when adaptive sampling is coupled with a constant step size, the observed convergence rate
is consistent with Theorem 2. Even in the absence of noise, however, the KWSA algorithm fails to achieve
its theoretical optimum convergence rate. Furthermore, we find that incorporating a stochastic line search
prevents degradation in the convergence rate of the AdaDFO algorithm, which recovers the O(S−2/3),
where S denotes the number of function evaluations. Although AdaDFO performs slightly worse than the
constant step-size baseline (due to smaller step sizes returned by stochastic line search), its performance
closely matches that of constant-step versions, supporting the effectiveness of stochastic line search.

Table 1 reports the optimality gaps (OGs) of the second type of problem, defined as f(x∗
k)− f(x∗),

where x∗ is the optimal solution and x∗
k is the final solution before termination. SD denotes the standard

deviation, and SR denotes the success rate, defined as the proportion of runs where f(x∗
k) < f(x0) over

1000 replications. Table 1 demonstrates the effectiveness of AdaDFO under noise. It consistently achieves
100% success rate across all budgets, with its OG steadily decreasing from 2.85 to 0.32, highlighting both
accuracy and robustness. Some key points from the table to note:

• NoAdaDFO denotes the method without adaptive sampling and use 20k samples at k-th iteration.
As shown in the table, its performance is inferior to that of AdaDFO.

• NM stagnates early, with average OG being around 6.59, indicating difficulty in handling noisy
Rosenbrock function.

• STRONG and ASTRO show improvement with increased evaluations. However, their convergence
remains slow. Even at the highest budget, their OGs are much larger than that of AdaDFO.

• NEWUOA outperforms others at 2× 103 evaluations but converges slowly. When evaluations are
2× 104 and 2× 105, its performance is inferior to that of AdaDFO.
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Table 1: Optimality gap of different methods for the second type of problem.

Function Evaluations 2× 103 2× 104 2× 105

Method Mean SD SR Mean SD SR Mean SD SR

AdaDFO 2.85 2.69 100% 0.51 0.99 100% 0.32 0.34 100%
NoAdaDFO 4.91 2.17 100% 1.39 2.06 100% 0.34 0.71 100%
NM 6.59 0.25 100% 6.58 0.22 100% 6.59 0.22 100%
STRONG 16.74 0.02 100% 4.99 0.55 100% 4.91 0.71 100%
ASTRO 6.48 0.22 100% 6.42 0.21 100% 6.25 0.82 100%
NEWUOA 1.98 0.70 100% 0.67 0.57 100% 0.61 0.52 100%
SPSA 3.55 – 99.2% 1.08 – 98.4% 0.13 – 98.7%

• The mean OG of SPSA is calculated by averaging OGs of successful trails. Although SPSA can
attain a small OG, its gradient estimates are unstable due to using only two evaluations per iteration,
occasionally leading to algorithm failure (success rate < 100%).

6 CONCLUSIONS

In this paper, we propose a batch-based DFO algorithm by combining the Cor-FD gradient estimate with
an adaptive sampling condition. This combination allows us to obtain an appropriate gradient surrogate for
KW-type stochastic approximation method. We prove that, under mild conditions, the use of a properly
chosen constant step size ensures convergence. Additionally, we derive the sample complexity of our
method, which demonstrates that its convergence rate does not deteriorate compared to the KWSA method.
In the black-box scenario, we introduce a new stochastic line search technique to adaptively tune the step
size. Numerical experiments confirm the effectiveness of our proposed algorithm, showing that it is suitable
for solving DFO problems.
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