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ABSTRACT

Parallel Discrete Event Simulation (PDES) enables model developers to run massive simulations across
millions of computer nodes. Unfortunately, writing PDES models is hard, especially when implementing
reverse handlers. Reverse handlers address the issue of saving the entire state of Logical Processes (LPs), a
necessary step for optimistic simulation. They restore the state of LPs through reverse computation, which
reduces memory and computation for most common models. This forces model designers to implement
two tightly coupled functions: an event handler and a reverse handler. A small bug in a reverse handler
can trigger a cascade of errors, ultimately leading to the simulation’s failure. We have implemented a
strategy to check reverse handlers one event at a time. In a mature PDES model, we identified reverse
handling bugs that would have required processing approximately 1 billion events to manifest, which is
nearly impossible to detect using traditional debugging techniques.

1 INTRODUCTION

Parallel Discrete Event Simulation is a well-studied framework for modeling and simulation, with a focus on
scaling up simulations for parallel execution (?). Unlike time-stepped simulations that advance uniformly in
a locked-step fashion, PDES makes progress by processing events with timestamps at arbitrary, incremental
time intervals. This makes PDES particularly effective for models with sparse temporal activity patterns like
arrival and departure of flights, monetary transactions (?), agent-based modeling (?), city traffic simulation
(?), and computer network simulation (?).

PDES models are composed of two simple elements: Logical Processes and events. An LP is a self-
contained entity with local state variables that it alone can access. Any global variables in the system are
treated as immutable. LPs communicate through events scheduled at specific virtual times. When scaling
up, each LP is assigned to a different Processing Element (PE). A PE typically corresponds to a computing
core, either in the same computer node or across the network on other nodes. To allow the simulation to
advance and keep all LPs synchronized, two synchronization strategies exist: conservative and optimistic
approaches. Conservative approaches (?; ?) advance the simulation only when it is provably "safe" to do
so, for example, allowing the simulation on each PE to progress only by a short virtual time step. Any
violations of causality terminate the simulation. In contrast, optimistic approaches, such as Time Warp (?),
allow speculative execution beyond safe boundaries. In Time Warp, each PE processes as many events
as possible until communication with other PEs reveals that remote events should have been processed
earlier. At this point, any event that happened after the unprocessed remote events is rolled back, undoing
any effects and thus restoring causal consistency.

Notice that even though some models tolerate a certain amount of accumulated noise from lack of
proper rollback (?), most models are highly sensitive to errors introduced on rollback, as we showcase in
our experiments, in Section 3.

The Rensselaer Optimistic Simulation System (ROSS) is a framework and library for implementing and
executing PDES models (?). ROSS can be scaled up to millions of cores through optimistic execution (?).
To maintain simulation validity, ROSS incorporates a tie-breaker mechanism that guarantees deterministic
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execution when multiple events share identical timestamps, ensuring reproducible results across different
runs (?).

Since saving the entire state of an LP before event processing would be expensive for small simulations
and prohibitively expensive for large-scale simulations, ROSS employs reverse computation to rollback
the state of the LP. For this, developers must implement both (forward) event handlers and reverse event
handlers. Reverse event handlers apply the inverse operations of event handlers to restore the previous state
of the LP. This approach dramatically reduces memory and compute requirements, but creates a significant
programming challenge.

Correctly implementing reverse handlers is significantly tricky. Even minor mistakes, such as failing to
decrement a counter or restore a flag, are intolerable because the decision on when and how many events to
rollback is non-deterministic. Thus, minor errors introduce non-deterministic changes to the model, which
can lead to erroneous LP states and incongruent model states. In a turn of events, it is not segfault bugs
that are the hardest to detect, but minor ones. Minor mistakes are much harder to catch, correct or even
detect because they may not cause immediate simulation failures and can introduce subtle inconsistencies
that propagate through the simulation, leading to invalid results that appear plausible.

Identifying subtle reverse handler bugs is extremely challenging, regardless of the debugging approach
used. Errors might only occur after massively scaling a simulation, i.e, they could manifest after processing
hundreds of millions of events in parallel across dozens of computing nodes. This makes manual tracing
impractical. Furthermore, the distributed nature of PDES obscures the causal relationships between the initial
error and its eventual manifestation, where the initial inconsistency might occur in a different computing
node from which it manifests. This is why finding and fixing bugs requires significant developer effort,
from determining the conditions under which the bug manifests to tracking down where the bug actually
occurs.

In this paper, we present a straightforward yet effective strategy for checking the correctness of reverse
handlers in optimistic PDES. Our approach systematically validates that each reverse handler properly
restores LP states, catching inconsistencies before they propagate through the simulation. We implement
and test our strategy using ROSS and CODES — a mature HPC network simulation framework built on
ROSS. CODES presents an ideal test case due to the maturity of the code, the complexity of its LPs, and
its (over)use of dynamically allocated memory.

The remainder of this paper is structured as follows. Section 2 details our strategy, including consider-
ations and limitations. Section 3 presents experimental results demonstrating our approach’s effectiveness,
including detection of subtle bugs in CODES that would have required processing approximately one billion
events before manifestation. Section 4 goes through the literature of debugging PDES. Finally, Section 5
concludes with a summary of our results.

2 STRATEGY TO CHECK REVERSE HANDLERS

This section describes our approach for validating reverse handlers in optimistic PDES. We first present
our strategy (Subsection 2.1), then some implementation details in ROSS (Subsection 2.2), and finally, we
discuss important considerations and limitations (Subsection 2.3).

2.1 Strategy

The fundamental challenge in developing reverse handlers is ensuring they perfectly restore an LP’s state
after rollback. Our approach systematically checks this property for every processed event during simulation.
The strategy is straightforward: save the state of the LP before processing an event, then process the event
and rollback it with the reverse event handler. The new state of the LP must be the same as the state that
was saved! Algorithm 1 illustrates the strategy.

Telling the developer what failed and why helps reduce debugging time compared to traditional
approaches, where identifying the source of non-determinism might require analyzing billions of events.
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Algorithm 1: Strategy to check for proper behavior of reverse handler.

/* When processing each event e */
prev_state := deep copy LP state (including random number seed state);

process(LP, e);

post_state := deep copy LP state;

rollback(LP, e) ; // Using reverse-handler
check(prev_state, LP) ; // Report failure if states are not equal
process(LP, e);

check(post_state, LP) ; // Report failure if states are not equal

cleanup_state(prev_state);
cleanup_state(post_state);

Traditionally, one would try to find smaller model configurations that display erroneous behavior and,
from there, poke the model until something reveals the source of the bug. This is not only tedious and
labor-intensive, but also highly impractical when a bug is spurious and only appears at large scales. Thus,
we must provide the developer with as much information as possible about a failure when comparing two
LP states that should be identical (the previously stored state and the current state).

Therefore, when a check fails, execution must halt immediately, and diagnostic information will be
generated. In our case, useful debugging information includes: the LP identifier, current event count, type
of check failure (pre-state mismatch, post-state mismatch, or RNG inconsistency, the contents of both
states, and the event processed. We found that this information helps the developer find exactly what part
of the LP state was not properly restored.

Notice that: even though the reverse handler is designed to be executed only when rollback is necessary,
i.e, in optimistic parallel simulations, we can run a simulation in sequential mode and inject our strategy
at the event process. This significantly simplifies a possible parallel implementation of our strategy, yet
it can capture most reverse handler bugs. Note that checking the reverse handlers in sequential instead of
parallel environments might lead to even subtler bugs not being captured. We explore these situations in
Subsection 2.3.

Implementing this strategy on complex models that allocate memory dynamically requires significant
involvement from the model developer. For simple LP structures that contain only primitive data types
and statically allocated memory, bitwise comparison of LP states may be sufficient. However, dynamic
memory allocation, nested structures, and complex data structures might require additional effort to copy
and compare the state of LPs. In these cases, developers must implement the following functions:

1. Deep-copy to create a complete copy of an LP.

2. Deep-free to clean and free a copy of an LP.

3. Deep-check to compare original and restored LP states.

4. Deep-print to generate meaningful diagnostic output when inconsistencies are detected.
2.2 Implementation Experience

Integrating our strategy into ROSS was straightforward, requiring approximately one week of developer
time to implement the core functionality and fix a bug in the tie-breaker mechanism that was highlighted
by the strategy. The ROSS architecture, because of its maturity, has been designed in a modular way that
allows this debugging strategy as a new event scheduler execution mode. Our implementation added a
fourth execution strategy: the sequential reverse handler check. ROSS previously implemented four other
modes: sequential, parallel optimistic, parallel conservative, and optimistic debug. (Optimistic debug is
an execution mode implemented in ROSS that helps developers find reversibility bugs.). It operates in a
sequential mode, similar to ours. It runs the simulation forward until there is no more space to schedule
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additional events, and then rolls back all events to the start of the simulation. Without being able to check
which event cascaded a bug, this mode provides the developer with far less information to determine the
source of a reversibility bug. However, it may allow for finding reversibility errors if the final LP state
differs from the initial LP state.

However, implementing the necessary deep-copy, deep-check, and deep-print functions for complex
models proved considerably more challenging. For our CODES case study, this process required approx-
imately one month of development effort and resulted in approximately 3,500 lines of additional code.
This effort was driven by two primary factors. First, ROSS is implemented in C and allocates memory for
model LPs without knowledge of how that memory will be used. This separation between the simulation
engine and the model implementation allows ROSS to be model-independent and as fast as possible, but
complicates comprehensive state management.

Second, while CODES incorporates some C++ components, it predominantly uses C-style data structures
and memory management. This includes classical data structures implemented in C headers, such as a
Linux kernel-inspired linked list (derived from Linux’s list.h) and a hashtable implementation built on top.
These deeply embedded data structures required careful, manual implementation of copy, check, and print
operations.

For models implemented in languages with built-in serialization, reflection, or deep-copy capabilities,
this implementation burden would be significantly reduced. However, for C-based models like CODES,
developers must manually track and manage all dynamically allocated memory and complex data structures
within their LPs. Despite this implementation overhead, the benefits of detecting subtle bugs that might
otherwise require billions of events to manifest justify the development investment.

2.3 Limitations and Considerations

While our strategy effectively identifies many reverse handler errors, several important limitations should
be acknowledged. We identify five such cases:

Bugs might only appear in parallel execution,

Developers need to determine what in the LP state has to be copied and checked,
Checking a single event at a time might miss some (subtler) bugs,

The overhead of the deep LP operations, and

Not all event types in all conditions might be checked.

NS

Let us explore each one of these limitations:

First, we implemented the strategy in sequential mode and thus it cannot detect bugs that manifest only
during parallel execution. Two significant examples of where parallel execution could bring up errors that
do not occur in sequential include: incorrect handling of global variables, and failure to correctly process
“impossible states” that arise during optimistic simulation.

To prevent non-deterministic errors showing up, global variables should be seldom used in PDES.
There are two possible ways to handle global variables in PDES: to use them as read-only, or to alter
them only when processing non-rollbackable functions, such as the commit function or an operation at the
GVT computation. The commit function is an additional function on an LP, besides the event handler and
reverse event handler. The commit function is only executed after it can be guaranteed that the event will
not be rolled back. The commit function is only executed once while the event handler can be executed
more than once. Thus altering any global variables should only be done, if absolutely necessary, at commit
functions.

As Nicol and Liu noted in “The Dark Side of Risk™ (?), optimistic simulation can temporarily produce
LP states that would never occur in sequential execution due to out-of-order event processing. When these
states later encounter rollbacks, reverse handlers must properly restore previous states even from these
“impossible” configurations. Our implementation is sequential and cannot replicate these conditions.
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Second, developers must carefully determine which components of the LP state to check. Not all
components require to be reversed. Some fields may serve as temporary storage used only during event
processing. Others might be designed to track information needed precisely for the reverse computation
itself. Some other components may be updated only by the commit function, making them irrelevant to
the reverse handler check. Thus, the developer has to determine which components make up the model
and have to be rolled back, and which do not need to be taken into consideration.

Third, our strategy checks only the processing and rollback of a single event. Some rare bugs may
only appear when processing multiple events and rolling back all of them. Consider an LP containing
a fixed-size array and an index tracking the number of values stored in the array. Let’s assume that an
event handler for this LP does one of two things: adds a value to the array (and increments the index) or
removes a value from the list (and decrements the index). A naive reverse handler that only adjusts the
index without restoring array contents would pass our single-event processing check! Yet it will fail if
we process two events: one removing an element from the array and one adding an element to the array.
Notice that rolling back these two events using our naive reverse handler would result in an array with
(potentially) different contents than what it started with before processing the events.

Similarly, dynamic memory allocation can create subtle issues. If an event handler deallocates memory
and then a reverse event handler reallocates memory of the same size, the operating system might reuse
the same memory address. In this scenario, we might assume that the new LP with recycled memory and
a copy of the LP look to be the same LP state, but in fact, they are the same just by happenstance. If the
reverse handler were given a different chunk of memory, we could have realized that the reverse handler
did not correctly recreate the state of the LP.

Four, copying complex LPs can be a time-consuming process. After all, the purpose of reverse
computation is to forgo the memory and computation burden of copying and restoring LP states. This
overhead, as we explain in our results, can reduce the simulation speed by one or two orders of magnitude.
This might be an issue if an event is processed only after billions of previous events have been processed,
and thus it could take a significant amount of time before we run a long enough simulation that triggers
the event.

Five, our implementation relies on running a simulation and checking whether the reverse handlers
work properly on that specific run. If a specific simulation path or event type is not executed, it cannot be
checked. Because our strategy requires an upfront effort from the developer, subsequent checks are cheap.
Thus, if the developer finds an initial configuration that seems buggy, they can easily check whether there
are any reverse event handler bugs by running the strategy on the new configuration.

An advantage of our methodology is that it is platform-agnostic; the reverse handler check can be
implemented in any (synchronous and time-warp-based) PDES library. Yet we ran all our experiments
in a Linux environment. Although this might limit the applicability of our results, we posit that the core
limitations we have discussed will be evident in any system. It is possible that memory managers on
different platforms affect, in subtle ways, the memory recycling scenarios we discussed in limitation three.
What this means is that a cross-compatible PDES model running on two different platforms might encounter
different reverse handler bugs.

Despite these limitations, our approach captures many common reverse handler bugs based on our
experience. In the next section, we present experimental results demonstrating the effectiveness of our
technique on a mature, complex PDES model, where it identified subtle errors that would have required
processing approximately one billion events before manifesting as simulation failures.

3 EXPERIMENTS AND RESULTS

To evaluate our reverse handler checking strategy, we applied it to CODES, a large-scale, mature PDES
application. This section describes our experimental environment (Subsection 3.1), the application of
our strategy to increasingly complex models (Subsection 3.2), and notable bugs we discovered and fixed
(Subsection 3.3).
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3.1 Experimental Setup

All experiments were conducted on an NVIDIA Grace Hopper GH200 chip equipped with 72 physical
cores and 500 GiB of RAM located at the Center for Computer Innovation (CCI) in Rensselaer Polytechnic
Institute (RPI).

CODES, our test case, is a mature and complex High-Performance Computing (HPC) network simulator
implemented in C/C++ built on top of ROSS. CODES simulates the behavior of large-scale HPC networks
under various traffic patterns, some of which mimic real scientific applications executed in HPC systems.
It implements detailed models of network topologies and routing protocols.

In our experiments, we simulated dragonfly networks (?) of different sizes (72, 1056 and 8448 nodes)
running two representative scientific applications: Jacobi3D and MILC. MILC was run for a total of
200 iterations and Jacobi3D for 25. These applications were configured to interfere with each other by
allocating them randomly in the simulated network (?). In CODES there are three LP types: router nodes,
computer nodes, and terminal nodes (which are Network Interface Controllers (NICs) for the computer
nodes). Table 1 summarizes the topology parameters and LP allocation for each network configuration.

Table 1: Dragonfly network configurations and LP allocation.

Nodes Topology Parameters LP Distribution
p a h g | Compute | Terminal Router Total
72 2 4 2 9 72 72 36 180
1056 4 8 4 33 1056 1056 264 2376
8448 8 32 1 33 8448 8448 1056 17952

p = terminals per router, a = routers per group, h = global channels per router, g = total groups

For optimal PDES performance, LPs in CODES are typically mapped to the same PE if they communicate
frequently. Our LP allocation strategy follows a repeating pattern: we allocate compute node LPs, terminal
(NIC) LPs, and one router LP to consecutive positions, then repeat this pattern across all routers in the
group. For example, for the 72-node network, we allocate ID 0 and 1 to the 2 first two compute node LPs,
then ID 2 and 3 to the first 2 NIC LPs, and lastly ID 4 to the first router. This ensures that tightly coupled
LPs (particularly compute nodes and their corresponding NICs) remain co-located when possible.

LPs belonging to the same dragonfly group should ideally be assigned to the same PE to minimize
inter-PE communication and reduce rollbacks. For the 72-node network with 9 groups, optimal PE counts
are 1, 3, or 9, as these are divisors of the group count and allow complete groups to be assigned to individual
PEs. Similarly, for both 1056 and 8448-node networks with 33 groups, optimal PE counts are 1, 3, 11,
and 33. Table 2 shows how Processing Elements (PEs) are allocated across the available hardware cores
for different experimental configurations. Each PE is allocated to its own computer core; we do not use
threads and all communication is done through MPL

Table 2: Processing element allocation on hardware architecture.

Network | PEs Used | LP Density

72-node 3 60 LPs/PE
72-node 9 20 LPs/PE
1056-node 33 72 LPs/PE

8448-node 33 544 LPs/PE
8448-node 55 326 LPs/PE

In our stress test configuration, we deliberately ran the 8448-node network on 55 PEs, which forces
suboptimal LP distribution. Since 33 groups cannot be evenly divided among 55 PEs, some compute node
LPs become separated from their corresponding NIC LPs, and router nodes within the same dragonfly
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group are split across different PEs. This suboptimal mapping increases the frequency of rollbacks, creating
more opportunities to test reverse handler correctness under stress conditions.

3.2 Bug Detection and Fortified Models

Our journey into debugging CODES started when we tried scaling CODES up from a small 72-node
simulation into a 1056-node simulation and found out some jarring inconsistencies. When running a
72-node dragonfly network on 3 PEs, everything appeared to work properly, with consistent results across
multiple runs (see left side of Table 3). However, when we scaled up to a 1056-node configuration running
on 33 PEs, we encountered significant non-determinism.

As shown in Table 3 (right side), the number of net events processed in the 1056-node configuration
is not stable across different runs with identical inputs. More concerning still is that in 5 out of 10 runs
the simulation terminated prematurely without segfaulting or producing any clear error messages.

Table 3: Total number of net events after running two dragonfly networks ten times while keeping the
initial conditions the same. Running CODES before fixing any reversibility bugs.

Run # 72-node 1056-node
Net events processed | Net events processed | Premature end
1 357636915 8129411742 No
2 357636915 8129452588 No
3 357636915 2949055904 Yes
4 357636915 8129565619 No
5 357636915 1604444856 Yes
6 357636915 8129743388 No
7 357636915 8129557666 No
8 357636915 8058353041 Yes
9 357636915 1604444856 Yes
10 357636915 3806348122 Yes

Figure 1 illustrates this premature termination. The top graph shows a run where both applications
(MILC and Jacobi3D) completed all iterations as expected, while the bottom graph shows Jacobi3D stopping
prematurely while MILC completed its run. Notice that the runtime of a 1056-node simulation that ran to
completion was of about 1700 seconds. Saving and going through traces for 33 cores over the span of 30
minutes is a gargantuan task.

Facing these issues, we implemented all necessary deep functions for the LPs in CODES. We then
ran the new sequential mode (reverse handler check) on a small 72-node dragonfly network capped to a
small number of iterations for each application (MILC and Jacobi3D). Despite the smaller configuration
showing no obvious signs of error in normal parallel execution (3 PEs), our approach (running in sequential)
uncovered five significant bugs in CODES’ reverse handlers.

The fixes for these bugs required only about 20 lines of code changes, yet they completely eliminated the
non-deterministic behavior in the larger simulations. After implementing the fixes, we ran the previously
problematic 1056-node configuration again, and it executed deterministically every time, consistently
processing exactly 8,129,787,720 net events.

To further validate our fixes, we conducted a stress test with an even larger configuration: an 8448-node
dragonfly network running on 55 PEs. This configuration deliberately increased the number of rollbacks
through suboptimal LP-to-PE mapping. Even under the larger model with more rollbacks and possible
erroneous states to uncover, the simulation ran deterministically every time (same number of total net events
and network statistics across multiple runs).
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Figure 1: Number of job iterations and their duration for MILC and Jacobi in 1056-node dragonfly. Top,
MILC and Jacobi3D ran to completion (run number 4 in Table 3); bottom, Jacobi3D stopped prematurely
and MILC ran to completion (run number 9 in Table 3).

3.3

Types of Bugs Discovered

Our strategy allowed us to find several bugs in CODES in record time (even when accounting for the time
that it took to implement the deep LP functions). These bugs can be classified into:

1.

Catastrophic: A single bug caused the premature termination of the simulation. Each iteration for

each of the applications consists in a sequence of (simulated) MPI operations, some of which are

“MPI all reduce” operations. To handle them, a counter inside each LP would keep track of them.

The counter was never properly rolled back by the reverse handler. Yet, the reverse handler was

seldom executed, leading to the false believe that the bug did not exist when executing the small

simulations.

Noise/nondeterminism: These bugs would not cause the premature termination of the simulation.

Instead, they would add noise and small errors to the simulation. We found two types of this kind

of bug:

(a) Failure on counter rollback: There were multiple instances where reverse handlers failed to
properly decrement or increment counters during reverse computation. These small arithmetic
errors would accumulate over time.

(b) Determining the conditional branch taken by the event handler: In one occasion, an assumption
on a data structure lead to a reverse handler that would reverse the incorrect conditional branch
taken by the (forward) event handler.

A particularly subtle bug to highlight is one that barely produced any indications of its existance. The
conditions for it to trigger were rare. After incrementally checking most LP types, and fixed most bugs,
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we noticed that the number of net events between two runs of a 1056-node network differed by only two
events out of eight billion events! As with most bugs we found, the error came from a failure to decrement
(or increment) a single counter.

Besides the bugs found in CODES, the strategy helped us to find out a bug within ROSS itself. As a
first test of the utility of the strategy, we tested it on a simple model (phold). We were able to catch all
bugs we introduced to phold for testing, but weirdly enough, the strategy would detect a bug outside of
phold. The bug came from a flaw in the implementation of the tie-breaker mechanism. The tie-breaker
mechanism ensures deterministic event processing when multiple events share the same timestamp by
assigning a random signature value during event scheduling. We identified a specific condition where
the random number generator state was not properly restored: when an event was scheduled beyond the
simulation end time.

ROSS optimizes memory usage by immediately discarding events that are scheduled beyond the
simulation end time instead of storing them. Yet, ROSS failed to track how many of these events had been
dropped. Consequently, when rolling back the event that scheduled these dropped events, the random number
generator state was not properly restored. In simulations without timestamp ties, this bug would never
manifest. However, for models with event timestamp ties, the improper rollback of the random generator
state could lead to subtly different event sequences across runs, breaking the simulation’s deterministic
guarantee.

These bugs had been dormant possibly for over a decade. Git blame is an utility that allows us to see
when an implicated line of code was last modified. Thus, we are able to determine that the ROSS tie-breaker
bug was dormant since the initial implementation of the mechanism, in 2021, 4 years ago. Dating the
CODES bugs is substantially more difficult because of the sheer magnitude of changes in the model and
its assumptions since any implicated line was introduced. Although the implicated lines could be traced
back to 2015 (10 years ago), it is not clear whether the bug was present at the moment of implementation
or if it was introduced later when an assumption in the code was broken. Regardless, reversibility bugs
can stay dormant for years until they are finally triggered.

It is then not at all surprising that we uncovered these bugs in mature and complex PDES models,
which demonstrates that even widely scrutinized PDES applications can contain subtle reversibility bugs.
Our strategy provides the developer with a simple tool to identify and correct these errors before they
manifest in large-scale simulations even years in advance.

4 RELATED WORK

Debugging PDES applications presents unique challenges, particularly for optimistic simulations where
reverse computation plays a critical role. Existing approaches can be roughly categorized into three main
strategies: trace-based debugging, checking determinism of simulation, and checkpoint-replay techniques.

Trace-based approaches like Lanese et al. and Li et al. attempt to capture program behavior by
automatically injecting logging statements for variables of interest (?; ?). Lanese et al. developed a
debugging framework which inserts fprintf statements to track state changes when handling events. An
additional tool was developed to go through the history of changes of each variable of interest and review
their individual changes. Similarly, Li et al. built a tool for Erlang that logs both variable changes and
the order in which messages are processed. With this information they can revisit what happened in the
execution after.

While effective for small-scale simulations, these methods face significant limitations when applied to
large PDES models. The volume of trace data becomes unmanageable as model size increases.

A different approach is checking for determinism across multiple runs. Schordan et al. developed a
highly sensitive PDES model where any changes on event processing order would be detected (?). In their
model every LP has two matrices, each is altered every single time an event is processed. This is akin to
counters for tracking the number of events processed by an LP. At the end of the simulation, a final matrix
is computed from all individual LPs. This final matrix serves as a unique signature of the event processing
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order (and the number of them), which allows the model developers to precisely check for determinism.
The developer runs the same experiment multiple times under the same starting conditions and should
obtain on every single run the same signature.

This approach complements our work by providing an additional checking method for determinism. We
currently use the total net number of events processed as a proxy for determinism. After all, if an event is
incorrectly processed it might alter the number of events it induces later on in the simulation and it will alter
the total number of events (assuming no event ties ever occur without the tie-breaking mechanism being
active). Thus, to gain additional trust that the order of events stays the same across different simulation runs,
the developer can implement the signature, matrix-based model in their computation from Schordan et al.
However, this highly sensitive, matrix-based method cannot pinpoint alone the source of non-determinism
even if it detects it, because it only verifies the end result rather than the specific events or handlers causing
inconsistencies.

Most closely aligned with our work are checkpoint-replay approaches like (?), which combine state
saving with functions that check the state of the model. By checkpointing the model state at intervals and
using binary search to isolate bugs, these methods can identify specific events causing model corruption.
The key challenge with this approach lies in implementing effective checks that can detect subtle state
inconsistencies (like a single bit flip or a counter that was not correctly reversed). In our work, we check for
state inconsistencies by comparing two states element by element. In checkpoint-replay, one is expected
to determine if an (isolated) state is correct or incorrect (i.e, we do not compare it against another state),
an ostensibly hard task.

Our approach differs from these previous works by focusing specifically on validating reverse handlers
in optimistic simulation. We systematically check each event handler/reverse event handler pair during
simulation. This provides immediate feedback about state inconsistencies produced by reverse event handlers
at their source, significantly reducing the debugging effort required.

5 CONCLUSION

In this paper, we presented a simple yet powerful strategy for checking reverse handlers in PDES. By sys-
tematically validating state consistency through forward-rollback-forward cycles for every event processed,
our approach detects subtle errors that might otherwise remain hidden until the right conditions trigger it,
such as significantly scaling a simulation up, which could happen even years in advance. The effectiveness
of this approach has been demonstrated on CODES, a mature and complex HPC network simulator, where
we uncovered several critical bugs including one that manifested only after processing approximately
one billion events and another that produced discrepancies of just two events out of eight billion in 30
minute runs. We even identified a subtle bug in ROSS’s tie-breaker mechanism itself, demonstrating that
core simulation infrastructure is susceptible to reverse computation errors that can undermine determinism
guarantees.

While implementing our strategy required integrating a new execution mode into ROSS and developing
custom deep-copy functions for CODES’s complex LP structures, this one-time investment significantly
reduces the effort typically required to track down non-deterministic behavior. By checking each event
individually and operating in sequential mode, our approach identifies errors precisely at their source rather
than after propagation. As PDES continues to expand to more domains and modeling scenarios, helping
developers to find bugs becomes critical for them to work on more important tasks than debugging.

Future work could extend our checking strategy to optimistic parallel execution in two ways. The first
involves performing our check within the optimistic simulation loop on each PE. Just as we injected an
additional reverse and a forward event handler call for every event, we can do the same for each loop within
each PE. The second alternative would be to process events in batches, reverse them collectively, and then
reprocess them. This batch approach might catch additional bugs that only emerge during multiple event
interactions, but would make isolating specific problematic events harder.
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