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ABSTRACT 

Digital twins can enable the intelligent operation of computer numerical control (CNC) machine tools. The 
data for the digital twin are collected from the machine controller, sensors, or other Internet of Things (IoT) 

devices. Creating a valid digital twin for a specific purpose requires identifying and specifying the right 
types and quality of data. However, challenges exist, such as unlabeled data and a lack of clarity on the 
sufficiency of data required to build a digital twin for a specific purpose. This paper discusses the data 
types, sources, and acquisition methods for creating digital twins for machine tools with different 
capabilities. Depending on the purpose, any digital twin can be categorized as descriptive, diagnostic, 
predictive, prescriptive, or autonomous. Data requirements for each of these categories are discussed. This 

paper can be used as a guide for developing and validating different types of digital twins for CNC machine 
tools. 

1 INTRODUCTION 

This section provides a background and description of the role of data in the development of digital twins 
of CNC machine tools. It also describes the challenges of data selection, scoping, and preparation for 
different types of digital twins of machine tools.  

1.1 Background 

The introduction of digital twins to CNC machine tools is transforming how machines are managed and 
maintained. In addition, digital twins are helping enhance the quality of machined products, reduce waste, 
and improve the sustainability and productivity of machining operations. As a result, CNC machine tool 
digital twins are becoming more prevalent. Major machine tool manufacturers are developing digital twins 
of these machines to support decision-making during product development, design, production, and service.  

A digital twin is a representation of the structure, functions, and behavior of a physical system, product, 
phenomenon, or process in the digital world in real-time. The architecture of the digital twin of a machining 
system has multi-dimensional viewpoints, including the machine tool, the machined part, the material 
removal process, and the cutting tool. However, most machine tool digital twins focus on one dimension.  

Data are critical in constructing virtual models, building cyber-physical connections, and executing 
intelligent operations for any of the above dimensions. For example, the linear axes of a machine tool are 

composed of a linear motor, sliding system, guideline, cooling system, and other components. However, 
the information about each element is visible only through data, making data acquisition the key to studying 
the equipment. Data requirements for a digital twin are the specifications of what data must be collected, 
accessed, fused, stored, manipulated, analyzed, and used to build the digital twin models. Our previous 
research developed a digital twin of a Pocket NC machine tool with emphasis on methods, tools, and 
standards (Kibira et al. 2024). This paper explores the data requirements for developing a digital twin with 

a focus on machine tool data. Ren et al. (2024) observed that current digital twin research focuses on 
algorithm design and development driven by the digital twin’s purpose but pays little attention to the data 
requirements. Some studies have addressed technical aspects of data and its acquisition for various 
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applications. Examples include Zhang et al. (2022), who explore the basic principles and methods for digital 
twin data gathering, interaction, storage, association, fusion, and evolution. Tong et al. (2020) address 
methods to collect data from a machine tool, including sensors and measurement devices. Data sources for 

a digital twin of a machine tool have been described as internal data, external data, control system data, and 
production data (Sicard et al. 2023). There is limited literature discussing the data requirements for 
developing machine tool digital twins.  

1.2 Objectives and Motivation 

The challenges to identifying and using data to build a digital twin include dealing with unlabeled data, a 
lack of clarity on the sufficiency of data, and a lack of knowledge on preparing validation data sets (Weiss 

and Brundage 2021; Kibira and Weiss 2022). Dihan et al. (2024) observe that the abundance and variety of 
the data enhance the accuracy and authenticity of the digital twin. However, large data sets require 
identifying and scoping because the needed data should not only be complete for the digital twin purpose 
but also relevant, focused, and obtained on time (Zhang et al. 2022).  

Completeness of data refers to the coverage of all relevant data for the specific objective of the digital 
twin. The motivation of this paper is to provide a guide to the identification of data for various applications 

of the digital twin for a machine tool. For example, machine tool manufacturers often specify a subset of 
available data through a standard such as MTConnect. If some data items cannot be directly obtained 
through the standardized interface, they could be obtained using virtual sensors. Figure 1 illustrates an 
example of data acquisition from a machine tool and its usage in the digital twin.  

1.3 Contribution, Scope, and Organization of the Paper 

Few publications focus on the data required for building a digital twin of a machine tool. Emphasis has 

been placed on real-time data collection, communication, and analysis without first categorizing and 
identifying the range of data necessary for a digital twin with a specific purpose (Tong et al. 2020). 
Performing a data requirements analysis explores complete and valid reference data sets. Although this 
paper does not provide an exhaustive coverage of all possible digital twin data, it offers an analyst a guide 
on what data they require to build a digital twin of their machine tool for a given set of services. Digital 
twin services are defined at a high level, and a developer will first determine where their intended services 

fall to select the most relevant data needed. Other factors relevant to developing effective digital twins, such 
as data quality, sensor synchronization, preprocessing, edge computing, and low-latency requirements, are 
out of scope. 

The rest of the paper is organized as follows. Section 2 presents related work; Section 3 overviews data 
sources from machine tools and associated standards; Section 4 discusses data required for different digital 
twin categories; Section 5 provides an example of data for a descriptive digital twin; Section 6 is the 

discussion, conclusion, and future work.  

2 RELATED WORK  

This section reviews the relevant literature. Tong et al. (2020) describe data acquisition methods for 
processing and analysis. They describe data acquisition methods where signals are related to machine tool 
kinematics, dynamics, acoustics, thermodynamics, optics, energy consumption, and vision. Data are 
classified as attribute, real-time control, and condition data. Cai et al. (2017) discuss techniques for 

deploying sensors to capture machine-specific features for modeling and developing digital twins of 
machine tools. The focus is on integrating manufacturing information from controllers and sensory data 
into virtual machine tools to improve their accuracy and capabilities. Three categories of data and 
information are recorded and passed on for information extraction: the machine data stream, the sensor data 
stream, and the machine health status. Hänel et al. (2021) identify basic information and data models 
necessary for a digital twin of machining operations. Data categorizations are workpiece data, process data, 

technology data, machine tool data, and tool data. 
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Figure 1: Data acquisition, usage, and exchange between a CNC machine tool and its digital twin. 

Lai et al. (2021) provide a classification of machining data for developing a digital twin. There are four 

categories: property data, process planning data, sensory data, and control system data. Pantelidakis et al. 

(2024) demonstrate data acquisition, processing, and distribution, and virtual representation for a digital 

twin of a Pocket NC machine tool. Both online and offline digital twins are investigated, and the offline 

digital twin is demonstrated for collision detection during machining operations. 

The review shows no standard or organized structure for identifying data for building digital twins of 

CNC machine tools. Each case identifies its own data. Most discussions on data requirements have been 

done in the context of digital twins for general application, not a machine tool digital twin. Examples are 

the categorization of data for the digital twin and a methodology to support the identification of data from 

outside of the physical system (Hildebrandt et al. 2022) and Yan et al. (2023), who investigated data 

requirements for a digital twin through sourcing from multiple recipients. 

3 RELATED STANDARDS AND DATA SOURCES 

This section overviews standards that support digital twin development for manufacturing applications and 
the different sources of data for machine tool digital twins. It also discusses typical machine tool 
components from which data are collected. 

3.1 Related Standards  

Literature includes case studies of digital twins for machine tools. However, each case study follows a 
different approach to developing the digital twin because there is no unified approach, including 
terminology and related guidelines. There are also no technical standards related to digital twins of machine 
tools leading to the adoption of high-level manufacturing digital twin standards (Cabral et al. 2023; Kibira 
et al. 2024). Some of the applicable manufacturing digital twin standards are: 

 
• ISO 23247: This series of standards provides a generic development framework that can be 

instantiated for case-specific implementations of digital twins in manufacturing (ISO 23247, 2024).  
• ISO 14306: This standard defines the syntax and semantics of a file format for 3-dimensional (3D) 

visualization and interrogation of geometry and product manufacturing information derived from 
Computer-aided design (CAD) systems using visualization software tools (ISO 14306, 2024).  
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• ISO 14649: This series of standards supports data modeling and data transfer between 
CAD/Computer-aided manufacturing (CAM) systems and CNC machines. It is also called the 
Standard for the Exchange of Product Model Data for Numerical Control (STEP-NC). Part 1 

provides an overview and fundamentals (ISO 14649-1, 2003). 
• IEC 63278-1:2023 defines the structure of a standardized digital representation of an asset, called 

Asset Administration Shell (AAS), which enables uniform access to information and services (IEC 
63278-1, 2023). 

• Data collection standards that can support the development of machine tool digital twins include 
MTConnect, Message Queuing Telemetry Transport (MQTT), OPC Unified Architecture (OPC 

UA), blockchain, Open API, and Modbus TCP (Hsiao et al. 2021).  
 

Further development for the digital twin data standard should focus on (1) data structure and 
communication, (2) cybersecurity, and (3) open data. The interoperability of digital twins, with clear 
definitions of inputs and outputs, connections, communication, and data exchange, is a significant factor in 
a heterogeneous environment.  

3.2 Data Sources  

Data for machine tool digital twins can be obtained from different sources, as elaborated below: 
 
• Physical sensors: Sensors provide data that is internal to the system. These sensors include servo-

control systems, position/angle encoders, torque, current, and voltage sensors. Many of the sensors 
are integrated into the machine design. Others are IoT devices, mobile devices, and wearable 

devices. 
• Controller: Machine controllers are the primary source of data. Data collected includes axis 

positions, spindle speed, tool offsets, current machine status (running, paused, alarm), alarms and 
error codes, cutting tool data, and program execution status.  

• Virtual sensors: Virtual sensors are needed when it is impossible to measure the data directly. 
Virtual data must be inferred from directly collected data through simulations and computations. 

Doerrer et al. (2022) modeled a virtual sensor to detect vibrations at the tool center point based on 
internal machine data.  

• External data: These are data from outside the machine tool that can influence its operation. They 
are obtained by measuring the working conditions: thermometers, vibration displacement sensors, 
accelerometers, vibration displacement sensors, a microphone, acoustic emission sensors, an RFID 
reader for code recognition, energy consumption sockets, and industrial cameras (Tong et al. 2020). 

• Production data includes information such as part history, quality, and machine reliability. It also 
contains data such as the number of cuts performed by a specific machine tool, the number of 
defects or rejects, surface roughness, or the processing time for each operation. 

• Data from production systems: Existing applications in an industrial environment are Computer-
aided Process Planning (CAPP), Enterprise Resources Planning (ERP), Supervisory Control and 
Data Acquisition (SCADA), and Manufacturing execution system (MES). 

3.3  Machine Tool Components 

Most research efforts for digital twins of machine tools focus on the moving parts since they consume the 
most energy and are more liable to wear and tear. Considering a machining center and milling machine, the 
major components include the servo motor, spindle motor, Automatic Tool Changer (ATC), coolant pump, 
carousel rotation, fan, unloaded motor, jog axis, spindle, tool magazine, tool changer, coolant pump, and 
machine table (Kordonowy et al. 2002; Avram et al. 2011). Figure 2 shows major CNC machine tool 

components. 
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Figure 2: CNC Machine tools and some of their components from which data are collected. 

4 DATA REQUIREMENTS FOR DIFFERENT DIGITAL TWIN TYPES 

A digital twin can be developed to fulfill multiple objectives such as monitoring, aggregating, analyzing 

data, visualizing data, obtaining insights from data, predicting future state and behavior, and providing 
decision support (Stadtmann and Rasheed 2024). Digital twins are context-dependent, so the capabilities 
and data integrated into a digital twin depend on the intended purpose (Shao and Helu 2020). However, 
digital twins play larger roles as their capabilities and the set of services that they deliver increase. Sundby 
et al. (2021), and Altamiranda et al. (2019) use the concept of ‘‘capability level’’ to categorize and analyze 
the levels of functionality of digital twins and the required data sets. The levels used in this paper are 1-

descriptive, 2-diagnostic, 3-predictive, 4-prescriptive, and 5-autonomous. These digital twin types are 
connected to their physical counterparts. 

However, a digital twin can also be developed to support testing, optimizing, and identifying potential 
design issues before the system is built. The required data are obtained from CAD models of the machine 
tool, kinematic simulations, dynamic modeling, G-codes, or finite element analysis. These digital twins, 
also called digital twin prototypes, not only provide for design validation and performance analysis but also 

virtual commissioning (Norberger et al. 2020). This section discusses data requirements for digital twins at 
different capability levels. The identification of data includes description, sources, the purpose of collecting 
this data, and the data format. 

4.1 Descriptive Digital Twins 

Descriptive digital twins mirror and describe the physical system and enhance understanding of the 
prevailing state of a system. The data are obtained from the controller, sensors, and other sources. While 

not providing or recommending a course of action, the visualization of the status provided by descriptive 
digital twins helps to detect an anomaly or problem so that appropriate actions can be taken. The data 
required for building descriptive digital twins includes that which helps model the physical system and 
provides visualization capabilities. The data should also be in a suitable format for developing the digital 
twin. A standard such as ISO 14306 helps define the syntax and semantics of collected data for 3D 
visualization (ISO 14306, 2024). The relevant data are (1) workspace data, (2) data of the machine, tool, 

and workpiece, (3) machine tool dynamic data, (4) CNC program data, and (5) production plan data. These 
data are described next. 

3005



Kibira, and Shao 
 

 

4.1.1 Workspace Data 

Description: Workspace data refers to the information that defines the three-dimensional space within 
which the machine tool operates. This includes the reach of its axes and limitations based on its geometry 

and the machine footprint within the workcell or factory layout. These data are provided as CAD models. 
Purpose: Workspace data provides boundaries of the machine tool's workspace in relation to other 
equipment, such as material handling. This data also ensures that the designed part can be machined within 
the machine’s capabilities, avoiding collision and maximizing efficiency.  
Source: The source of these data is the original designs of the workcell or the factory. Direct measurements 
of the existing or proposed workspace expansion plans can also provide this data.  

Format: Various formats are available, including those that are standardized, such as ISO 10303 (ISO 
10303, 2024), also called STEP (Standard for the Exchange of Product Model data). Others are IGES (Initial 
Graphics Exchange Specification), STL(Stereolithography), and DXF (Drawing Exchange Format), which 
are considered “neutral” formats allowing data exchange between various CAD applications. Others include 
JSON (JavaScript Object Notation), XML (Extensible Markup Language), and spreadsheets. 

4.1.2 CAD Data of the Machine Tool, Cutting Tool, and Workpiece 

Description: These are the data for the machine tool 3D CAD model. Each machine tool can be described 
by its kinematic model. These data are used to model, visualize, analyze, and program the machine tool’s 
movements during CNC machining to simulate toolpaths and optimize manufacturing processes. 
Purpose: The purpose of this data is to allow engineering designers to accurately represent the machine 
tool’s geometry, work area, tooling positions, and other features. These data enable virtual testing and 
optimization before the machine tool is built. 

Source:  The source of these data is the machine tool vendors, who often provide the machine CAD data. 
Usually, the data is also available through manufacturers’ websites or a dedicated download service. There 
are also websites such as SketchUp, Free3D, and GrabCAD, which are cloud-based platforms for sharing 
CAD models. Workpiece data are available in the product or part design with embedded Product and 
Manufacturing information. 
Format: The models and embedded data are often available in STEP or a similar format. 

4.1.3 Machine Tool Dynamic Data 

Description: These are the machine tool data that change with time. This category also refers to data related 
to forces and torques that cause the motions during the machining process. These data include cutting force, 
motor torque, energy consumption, vibration, and noise levels. 
Purpose: In the context of descriptive digital twins, these data are monitored and compared with expected 
values to understand the health state and performance of the machine tool. 

Source: The main source of these data is the machine tool, often from the interior, using sensors. 
Format: Machine data are often provided in XML or a spreadsheet.  

4.1.4 Computer Numerical Control Program Data 

Description: The CNC program data provides commands to control the operation of the machine tool. It 
translates part design specifications into coded instructions (G-code) that direct the movements of the 
cutting tool to manufacture a part according to the part’s design. Each “G” command signifies a specific 

geometric operation such as linear movement, circular interpolation, or rapid positioning. 
Purpose: The purpose of this data is to direct the position of the tooltip on the part within the working 
envelope or workspace.  
Source: These data are generated from the CNC control program or G-code. Although this program can be 
generated by direct programming, engineers more often use CAM software for this purpose. 
Format: The format of CNC programs and data is ASCII code in a plain text file. 
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4.1.5 Production Plan Data 

Description: The production data provides information about the status of production orders, which is 
compared with the original production plan. Data are needed from all stages of the production cycle, such 

as the number of parts completed, rejected, and those that need rework. Key performance indicators, such 
as schedule attainment, availability, quality rate, and overall equipment effectiveness, monitor and assess 
the production plan.  
Purpose: The purpose is to track the efficiency of the operation of equipment as well as the frequency of 
nonscheduled equipment stops during production. 
Source: The source of this data is the historical production information and production plans 

Format: Various data formats are available for structuring this data, including JSON (JavaScript Object 
Notation), XML (Extensible Markup Language), databases (e.g., SQL), or spreadsheets (e.g., EXCEL). 
Specialized manufacturing software (e.g., ERP) often has its specialized formats. 

4.2 Diagnostic Digital Twins  

Diagnostic digital twins help identify why an unexpected event happened or why it is happening to the 
asset. The digital twins created for prognostics and health management monitor degradations, detect 

anomalies, and diagnose failures and their cause(s). Diagnosis requires data from at least two levels of 
sensing: machine-level sensing and individual component sensing. Machine-level sensing data establishes 
that something is wrong with the machine tool. Component-level data, on the other hand, determines the 
source and cause of the observed machine degradations. These levels of sensing are illustrated in Figure 3. 

4.2.1 Upper-level Sensing Data for CNC machine tools. 

Description: The data to sense machine tool performance include tool position accuracy, velocity accuracy, 

repeatability, cutting forces, spindle speed, energy consumption, vibration, and noise levels.  
Purpose: The purpose of upper-level sensing data is to indicate the machine’s state regarding behavior or 
performance. 
Source: These data are obtained from the machine controller, CNC program, or direct measurements using 
sensors. Energy consumption is obtained through metering at the CNC’s electrical power input port. 
Machine vibration and temperature data are obtained through accelerometers and temperature gauges. 

Format: The format is the same as that for the descriptive digital twin. 

4.2.2 Lower-level Sensing 

Description: The lower level of sensing is where data is analyzed to determine a relationship between 
observed machine tool behavior and the machine tool component(s) responsible for that behavior. The data 
includes vibration peak amplitude, acoustic emission frequency spectrum, and ultrasonic emission. 
Temperature data include motor temperature, spindle bearing temperature, and coolant temperature. Power 

consumption data, such as motor power draw and fluctuations in power usage. The cutting tool data such 
as tool status, tool wear, and surface finish. Other relevant data are overheating, chatter, mechanical wear 
in the machine components (bearings, guideways), spindle runout, and gear backlash. 
Source: These data are derived from the interior components of machines, especially those that are prone 
to failure. See Figure 2 for CNC machine tool components. 
Format: The format is the same as that for the descriptive digital twin. 

4.3 Predictive Digital Twins  

Description: The predictive digital twin’s aim is to forecast the system’s future state, which supports 
decision-making. Cai et al. (2017) identified three main types of data for machine tool prediction: machine 
control data, sensor data, and machine status data. The operator specifies machine control data, including 
coolant level, tool number, cutter location, and spindle speed. Sensor data consists of vibration, current 
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acoustic emission, and power. Machine status includes on/off, busy, and idle. Most of these data are the 
same as that for diagnostic digital twins. However, larger volumes of this data are required to build the 
needed predictive models. 

Purpose: The purpose is to predict future states of the machine tool to facilitate scheduling downtime for 
testing or maintenance. Predictions especially help guide production and maintenance scheduling by 
recommending replacing components just before their lifetimes expire to prevent wasting valuable 
productive time. 
Source: These data are obtained from the machine controller, numerical control program, or sensors. 
Format: The format is the same as that for the descriptive digital twin. 

 

Figure 3: Major Levels of sensing to support machine tool diagnosis. 

4.4 Prescriptive Digital Twins 

Description: “Prescription” is the recommendation of the optimal course of action or strategy and the reason 
for selecting that course of action. Prescriptive digital twins are mainly built on what-if analysis through 
simulation and uncertainty quantification (Stadtmann et al. 2023). Most of the required data are the same 
as that for predictive digital twins. It includes the data to assess the current and anticipated health states of 
equipment, the status of production orders, and machine tool loading. In addition, historical labeled data is 

required on machine control data, sensor data, and machine tool behavior and performance to train 
prescriptive models. 
Purpose: The purpose of prescriptive digital twins is to recommend the course(s) of action to realize or 
achieve the intended purpose(s) and goal(s) of the digital twin.  
Source: The sources of equipment data for prescriptive digital twins are maintenance logs, manufacturer 
recommendations, and similar equipment. Production data are obtained from the production equipment 

workload. Degradation data, which provides anticipated health states of equipment, are obtained from 
published data of similar mechanisms that are installed in machine tools such as linkages, brakes, clutches, 
preselection mechanisms, sliding mechanisms including cams, screws, racks, bearings, cams, gears, and 
motors. 
Format: The format of the data is the same as that for descriptive digital twins, but differences may exist 
depending on the application and specific case. JSON is one of the most standard data formats for digital 

twins. Other formats include XML, Digital Twin Definition Language (DTDL), and Apache Parquet. 

4.5 Autonomous Digital Twins 

Description: An autonomous digital twin operates independently with minimal human intervention, 
monitoring, analyzing, and making decisions based on new data streams to improve accuracy and adapt to 
changing conditions (Latifah et al. 2024). Further, autonomous digital twins support a machine tool to adapt 
to changes in conditions, such as the part’s design, level of production, or the cutting tool (Zhang et al. 
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2024). Prediction and self-optimization are particularly essential for autonomous digital twins. The 
predictions are compared with the real values in real-time to determine prediction accuracy and update the 
prediction models. The data required includes what is needed for prescriptive digital twins but needs to be 

integrated in real-time for analysis and the application of decision-making algorithms and data-driven 
models. In addition to the real-time production data, historical data and surrounding conditions are 
particularly important. 
Purpose: The purpose of autonomous digital twins is to speed up the decision-making process and improve 
efficiency by learning from incoming data to refine the predictions and decision-making capabilities. 
Autonomous digital twins reduce costs and enhance product quality. 

Source: The data comes from the machines. These data include the machine data stream, the sensor data 
stream, and the machine health status. 
Formats: The formats include spreadsheets, CSV, PDF-ECG, and XML-based formats. 

5 DATA FOR DESCRIPTIVE DIGITAL TWIN OF A POCKET NC MACHINE TOOL 

A simulation model provides visualization capabilities, which enhance verification/validation, system 
understanding, and decision-making for a descriptive digital twin. This section provides a case study of 

streaming data from a machine tool to create a descriptive digital twin of a machine tool.  

5.1 Machine Tool Description and Features 

The machine tool is a Pocket NC milling machine, which executes tasks through three translational and two 
rotational movements. Linear motions are those made in a straight line, i.e., X, Y, and Z axes. Rotary 
motions take place about a fixed point or axis. Figure 4 shows the major moving components of the Pocket 
NC machine tool (left) and the digital representation (right). 

5.2 Identification of Digital Twin Data 

• Workspace data: The workspace consists of two robot arms for material handling, the Pocket NC 
machine tool for producing parts, and a Coordinate Measuring Machine (CMM) for inspection and 
metrology. The machine tool is mounted on an optical table to provide a rigid and stable support. 
The dimensions of the table are obtained. The distance between mounting holes on the table allows 
for easy and precise placement and data on the machine location relative to the table and the other 

equipment in the lab. These workspace data are obtained in STEP or .x_b formats. 
• CAD data of the machine tool, cutting tool, and workpiece: The vendor provides CAD models for 

the machine tool, cutting tool data, and fixture in the STEP format. The models are “grouped” into 
the major components, namely, base, carriage, vertical saddle, spindle, A Table, and B Table. The 
part design has pockets, slots, holes, and edge chamfering. 

• CNC program data: This program is obtained from the part design. The CAD/CAM software allows 

you to visualize how the machine produces each geometric feature and validate the machining 
process. The result was a tool path to clear the bulk material and produce the final geometry. The 
program is obtained, loaded as a .ngc file, and copied to the machine’s computer. Other program 
data include cutting parameters such as feed rate, cutting depth, width of cut, and spindle speed. 

• Machine tool dynamic data: These data change with time during machine operation. If the machine 
operates normally, these data are expected to take predictable values. However, deviation from the 

predicted levels may indicate a fault or failure. These data include tool point position, cutting force, 
spindle speed, energy consumption, vibration, and noise levels.   

5.3 Visualization of position data  

The positions commanded by the CNC Machine tool are Absolute X position, Absolute Y position, 
Absolute Z position, Absolute A position, and Absolute B position. Figure 5 is a plot of the X-axis positions 
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and position errors. The plot shows that significant errors coincide with changes in the direction of motion 
or rotation about the axes. 

5.4 Observation  

The data visualized for this case study was only the kinematic motion data for the descriptive digital twin. 
However, additional data can be streamed, analyzed, and the results visualized. These data include torque, 
force, vibration, temperature, tool condition, and environmental conditions. The selection would be 
determined by the purpose of the digital twin. 

 

Figure 4: Main parts of a Pocket NC machine tool (left) and its digital twin (right) (Kibira et al. 2024). 

 

Figure 5: Plot of the Absolute X position and position errors (Kibira et al. 2024). 

6 DISCUSSION AND CONCLUSION 

The challenges for building a digital twin stem from a lack of standards specific to digital twins for CNC 
machine tools, including, among others, the specification of the required data sets. This lack results in an 

inability to specify a consistent approach to data identification, collection, communication, validation, and 
use. Yet specifying, collecting, and analyzing the correct data required is pivotal for realizing a valid digital 
twin. This paper has used a digital twin capability scale (from 1 to 5) to identify data requirements for a 
digital twin for a given purpose, application, or project. We also discussed the different data types, sources, 
and acquisition methods for building digital twins for machine tools. 

The ongoing digital twin research efforts at NIST have been bolstered by installing a manufacturing 

workcell comprising collaborative robots, a machine tool, and a coordinate measuring machine. The 
objective is to develop scenarios representing different digital twin objectives and identify and specify the 
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relevant data sets. Digital twin verification and validation are among the major concerns for further 
development and adoption of digital twin technology. Just as a digital twin can be used to validate a 
program, data from a physical machine tool can validate a digital twin before deployment.  

In furthering this work, efforts will be directed towards data requirements focusing on the cutting tool, 
production process, and the workpiece. Research will also focus on enhancing approaches for integrating 
digital models with real-time streaming data. Many digital twin concepts in literature lack full integration, 
especially the feedback loop. This is partly due to the challenges of data identification, gathering, filtering, 
and processing in real-time. Future work should also focus on data specification, data processing, interfaces, 
digital twin configuration, twin model construction, and integrations. The results of this work will address 

interoperability, adoption barriers, and protocol limitations particularly in heterogeneous CNC 
environments.  

DISCLAIMER 

Certain commercial products and systems are identified in this paper to facilitate understanding. Such 
identification does not imply that these software systems are necessarily the best available for the purpose. 
No approval or endorsement of any commercial product by NIST is intended or implied. 
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