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ABSTRACT

Nested simulation is a powerful tool for estimating widely-used risk measures, such as Value-at-Risk (VaR).
While point estimation of VaR has been extensively studied in the literature, the topic of interval estimation
remains comparatively underexplored. In this paper, we present a novel nested simulation procedure for
constructing confidence intervals (Cls) for VaR with statistical guarantees. The proposed procedure begins
by generating a set of outer scenarios, followed by a screening process that retains only a small subset
of scenarios likely to result in significant portfolio losses. For each of these retained scenarios, inner
samples are drawn, and the minimum and maximum means from these scenarios are used to construct
the CI. Theoretical analysis confirms the asymptotic coverage probability of the resulting CI, ensuring its
reliability. Numerical experiments validate the method, demonstrating its high effectiveness in practice.

1 INTRODUCTION

Measurement of portfolio risk is fundamental to risk management for financial institutions. It serves as a
critical component of the current regulatory framework, providing essential information for risk managers
to take timely actions to ensure risks stay within acceptable limits. In practice, however, institutions
often manage large-scale portfolios comprising hundreds of thousands of financial instruments—including
equities, currencies, and derivatives such as futures and options. Accurate valuation of these instruments
often requires intensive simulation, particularly when sophisticated pricing models are employed. This
makes the measurement of portfolio risk computationally challenging, especially for large-scale portfolios.

To measure portfolio risk, various risk measures have been proposed. Among them, one of the most
widely-used risk measures is Value-at-Risk (VaR), which is defined as the quantile of the probability
distribution of the portfolio loss at a given level. The main difficulty in estimating risk measures such as
VaR stems from the fact that the loss function, which is expressed as a conditional expectation, cannot be
evaluated analytically and requires simulation. In this case, estimation of risk measures usually calls for
nested simulation (also referred to as two-level simulation), where risk scenarios are simulated in the outer
level, while inner simulation is employed to estimate portfolio loss given each outer-level scenario.

In the early years, practitioners often perceived the computational burden of nested simulation procedures
to be prohibitive, leading them to adopt highly simplified models to avoid the need for inner simulations.
However, Gordy and Juneja (2010) showed that a relatively small number of inner samples could suffice
to achieve estimates with reasonable accuracy, sparking renewed interest in nested simulation techniques.
To enhance the efficiency of nested simulation, Broadie et al. (2011) proposed a method that sequentially
allocates the computational budget in the inner simulation based on marginal impact of each scenario on
the risk estimator, thereby improving the estimation of large-loss probabilities. Furthermore, in contrast to
earlier work requiring both the inner- and outer-level samples to grow indefinitely, Sun et al. (2011) showed
that a “one-and-a-half-level” simulation approach is sufficient to estimate the variance of a conditional
expectation with arbitrarily high precision with fixed inner-level computational effort. To accelerate the
convergence of nested simulations, Liang et al. (2024) introduced a jackknife-based nested simulation
method. Additionally, Feng and Song (2025) proposed a nested simulation experiment design that fully
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utilizes inner samples by pooling them across outer scenarios and employing the likelihood ratio method
to estimate the conditional mean of other outer scenarios, thereby improving computationally efficiency.

While much of the existing literature focuses on point estimation of risk measures, interval estimation
is equally important for risk management. Confidence interval (CI) provides a range of plausible values for
risk measures, enabling risk managers to better understand the uncertainty associated with their estimates.
For constructing ClIs for conditional Value-at-Risk (CVaR), Lan et al. (2010) proposed a nested simulation
procedure that integrates the theory of empirical likelihood with tools from ranking and selection literature,
significantly improving estimation efficiency. More recently, Zhang et al. (2022) proposed a sample-driven
budget allocation rule by bootstrap sampling, and further established a central limit theorem (CLT) for
point estimators of risk measures, which provides a theoretical foundation for constructing CIs.

In contrast to nested simulation, another stream of literature focuses on leveraging metamodeling
techniques to approximate the unknown functional form of the portfolio loss function. This approach is
motivated by the observation that, in real-world applications, loss functions are usually smooth and contin-
uous, making them well-suited for approximation using metamodels. Common metamodeling techniques
in this area include stochastic kriging (Liu and Staum 2010), least-squares method (Broadie et al. 2015),
kernel smoothing (Hong et al. 2017), and kernel ridge regression (Wang et al. 2024). Beyond point
estimates, Lai et al. (2024) proposed a novel least-squares method to construct CIs for CVaR. Specifically,
their method first develops lower and upper bounds of CVaR, constructs CIs for these bounds, and combines
the lower end of the CI for the lower bound and the upper end of the CI for the upper bound to form
a CI of CVaR with statistical guarantees. For readers interested in a comprehensive overview of nested
simulation problems and methods, Liu and Zhang (2024) provided an in-depth tutorial and review of the
relevant literature.

The construction of Cls for VaR remains relatively underexplored. A notable work in this area is Zhang
et al. (2022), who established a CLT for VaR point estimators and proposed a budget allocation rule for
constructing Cls, by requiring the inner sample size to grow faster than the square root of the outer sample
size to ensure asymptotic validity of the CIs. Recently, Yi and Xie (2017) constructed percentile-based
CIs to quantify the impact of the input uncertainty on the system performance estimates. Specifically,
they developed a CI for the percentile itself, which effectively corresponds to constructing a CI for VaR.
Notably, they highlighted the challenges of constructing metamodels to propagate input uncertainty to the
output could be challenging, which is why direct inner-level simulation is employed in their article. In
addition, Zhu et al. (2020) provided inference for extreme scenarios of mean responses across all possible
input models by establishing asymptotic normality for the proposed nested risk estimators, allowing the
construction of Cls.

Constructing Cls for VaR is particularly challenging due to three reasons. First, VaR focuses on extreme
events, which are inherently rare and thus difficult to capture accurately in simulations. Second, the nested
simulation structure introduces inner-level simulation errors that can significantly reduce the accuracy of
VaR estimates. Third, providing rigorous theoretical guarantees for these Cls, such as ensuring coverage
probabilities, is nontrivial under the nested framework. In this paper, we address these challenges and
propose a procedure for constructing CIs for VaR using nested simulation. The key components of our
procedure include a screening process that retains only a small subset of scenarios likely to result in high
portfolio losses, and estimation procesures of the minimum and maximum portfolio losses within these
selected scenarios.

The remainder of the paper is organized as follows. Section 2 presents the CI construction procedure
for VaR. Section 3 provides theoretical guarantees for the proposed procedure. Section 4 reports numerical
results, and Section 5 concludes the paper.

2 A PROCEDURE FOR VAR CONFIDENCE INTERVALS

Let the risk scenario Z = (Zl,...,Zd)T € RY be generated independently from the distribution of Z.
Further, the portfolio loss X € R is generated independently from conditional distribution of X | Z. Define
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the conditional expectation as
V(zZ)=E[X | Z],

which represents the portfolio loss function given a risk scenario Z with the expectation taken under the
risk-neutral pricing measure.
Our objective is to construct a CI for VaR at 1 — p level of V(Z) with p € (0,1), defined as

VaR,_,(V(Z)) = inf{x € R: P(V(Z) <x) > 1 — p}.

The key idea behind the proposed procedure is to screen out scenarios that are unlikely to result in
portfolio losses close to the true VaR, and then allocate the majority of the simulation budget to these
retained scenarios. Cls are subsequently established by estimating the minimum and maximum losses
within these retained scenarios.

Without loss of generality, assume that the cost of simulating an inner sample is normalized to 1. The
proposed procedure takes as input the total simulation budget I', the VaR confidence level 1 — p, and the
CI significance level 1 — @, where a € (0,1), and returns the confidence interval [ﬁ,U ] The proposed
procedure is outlined as follows.

1. Outer Scenario Generation. Generate n scenarios Z,Z;,...,Z,.

2. First-Stage Inner Sampling. For each scenario Z;, i = 1,---,n, simulate m’ loss samples
Xi1,Xi2,...,Xi using Common Random Number techniques, and calculate the sample mean
J— / . / X 2
Xim = ZT:1Xi,j/ml and the sample variance Sl%m/ = Tzl (X,-L,A —Xl-’,,l/) /(m' —1).

3. Scenario Screening.
(1) For each scenario pair (Z;,Z;), i,j=1,--- ,n, the pair difference is defined as

D;j=V(Z;) - V(Z;).

Samples of the paired differences are computed as D; j; = X;; —X;;, [ =1,--- ,m’. Calculate the

m

sample mean D; ; = Y/ D; j;/m' and the sample variance S, = . (Diji— D, j)2 J(m' —1).

(2) Let kypin and kpax be the minimum and maximum elements of the set

ke (1P (p H>ex L (1)
: 2 n—k = exp 2X(1)71_aout :

For i,j=1,---,n, define the test statistic as 7; j = vVm'D; ;/Sp, ;, and

ij

n n
Bi= Y UT,;>d}jandBi= ) UT;<—d}, )
J=1j#i j=1,j#i

where 1{-} is an indicator function, which equals 1 if the condition is true and 0 otherwise. De-
fine [} = (kmax + 1)(n_kmax - 1)7 b= (kmin - 1)(n_kmin + 1)a Olscreenl = Olscreen ll/(ll +12)> and
Olscreen2 = Olscreen 12/(11 +12)9 then d| = tm/fl,lftxscreen]/ll and d) =1, '—1,1—Olereen2 /12> where tmlflvlfﬁ
is the 1 — B quantile of the ¢-distribution with m’ — 1 degrees of freedom.

B)Fori=1,---,n,if

Bi < knax + 1 and B} < n — kupin + 1,
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then include index i in the set of surviving scenario indices, denoted by Z. Additionally, we denote
¢ = card(Z), where card(-) is the cardinality of a set.

4. Restarting and Second-Stage Inner Sampling. Define m = (m;) " € R¢, i € Z, where m; denotes
the number of second-stage inner samples for scenario i as

7
m; = \‘(F—nm')l’m J .

2
LjezSim

For each surviving scenario Z;, i € Z, simulate m; new loss samples X; 1,...,X; . and calculate

the sample mean X, and the sample variance Sl%ml_ = ZTLI (Xi,;—Xim) /(m;i—1).

5. Constructing VaR Confidence Interval. For convenience, we introduce a permutation 7; map-
ping {1,---,c} to Z, which orders indices according to ascending values of their sample means.
Specifically, the permutation satisfies X 7, ( 1), << X Moreover, for instance, if

>l ha ) = My (e)°
Xem, = minjer {Xi,m,«}, then m; (1) = ¢. Calculate
S (1)m S
P M (1) N 71 (€)M ()
L=Xr(1)mg — 21— ——— and U =Xz, () m, , T2 — ——,
VM (1) M, (c)

where z;_q /2 is the 1 — 0 /2 quantile of the standard normal distribution. Finally, the confidence
interval is [ﬁ, U ] .

To provide intuition, we offer a detailed explanation of the scenario screening step. The goal of this step
is to retain extreme scenarios that are crucial for VaR estimation by focusing on those ranked ascendingly
between kpyin and kyax + 1. The range [kmin,kmax + 1] comes from (1). In the equation, k indicates the
smallest number of scenarios whose cumulative probability reaches 1 — p. A likelihood-ratio test applied to
the empirical data then retains statistically plausible k£ values. To produce the range, we employ the pairwise
comparison tool, a method commonly used in the ranking and selection literature; see Hong et al. (2021)
for a detailed introduction. Specifically, for each pair of scenarios, we compute a statistic 7; ;. If 7; ; > d, it
indicates V; > V; with statistical significance, while T; ; < —d> suggests that V; < V; statistically. Then, we
introduce two counters. The counter B; records the number of scenario i is statistically larger. The criterion
B; < kmax + 1 identifies scenarios that belong to the smallest kmayx + 1 scenarios statistically. Similarly, B;
counts the number of scenarios for which scenario i is statistically smaller. The criterion B} < n— kpyin + 1
ensures that scenario i is among the largest n — kp,in + 1 scenarios statistically. By combining two criteria, the
scenario screening step retains the essential scenarios needed to capture the VaR accurately. Furthermore,
when the number of scenarios is large, we provide enhancement strategies to implement large-scale pairwise
scenario comparisons. The details of these strategies are deferred to Appendix A. It is worth noting that
an important issue requiring dedicated study is the selection of key parameters, such as n and m’, which
we leave as a direction for future research.

3 THEORETICAL GUARANTEES

For notational convenience, we denote V(Z) as V, V(Z;) as V;, VaR;_,(V(Z)) as VaR|_,,. Let Fy be the
distribution of V, and V1, - - - ,V, are independent and identically distributed from Fy,. Let F;, be the empirical
distribution supported on Vj,---,V,. Fy(-) is the cumulative probability function of distribution Fy. To
facilitate analysis for the coverage probability of constructed CI, we make the following assumptions.

Assumption 1 Fy is continuous and strictly increasing at VaR;_,.
Assumption 2 For any scenario Z;,i =1,--- ,n, loss samples X; j, j = 1,---,m’, are normally distributed.

214



Zhu, Liu, and Kuang

Assumption 1 is a standard regularity condition in analyzing the properties of VaR. Assumption 2 is
commonly used in the ranking and selection literature, and has also been used in works such as Lan et al.
(2010) and Yi and Xie (2017). Although payoffs may not be normally distributed in practice, sample
averages of payoffs are approximately normal due to CLT, provided that the sample size m’ is sufficienty
large.

Lemma 1 (M-estimate for VaR, Proposition 5.1 in Baysal and Staum (2008)). Let v : R xR — R be a
measurable function. An M-estimate is a statistical functional defined as a solution q = Ty (Fy) of

[ wv.gar, —o. 3)
Letting

v(V,q)=(1-p)-1{V <gq}, 4)
under Assumption I, TI,,(FV), the solution to (3), is an M-estimate for VaR;_,,.

Proof.  Plugging (4) into (3), we have (1 — p) — Fy(g) = 0, which implies Fy(g) = 1 — p. Assumption 1
indicates that Fy has a unique 1 — p quantile that Fy(VaR,_,) = 1 — p, which implies that a unique solution
of (3) is VaR|_,,. ]

Lemma 1 characterizes VaR as an M-estimate by linking it explicitly to a statistical estimating equation.

Specifically, it identifies VaR as a unique solution that equates the probability to desired risk level, captured
by the chosen function y. This perspective reveals that estimating VaR is basically about finding a
distributional threshold satisfying the balance condition, bridging VaR estimation with general statistical
inference methods.
Lemma 2. Consider the set of discrete distributions absolutely continuous with respect to F,, denoted by
{F : F < F,}. Each distribution F in the set assigns weights wy,...,wy to the points Vy,...,V,, satisfying
wi > 0,Y" ,w; = 1. Denote the empirical likelihood ratio (ELR) of F as R(F) =TI, (nw;). Suppose
Assumption 1 holds. Then, as n — oo, a confidence interval for VaR|_, with 1 — oy asymptotic coverage
probability is given by

1
{T],,(F) :F < F,,R(F) > exp <—2x(21)71_%m> } . (5)

Proof.  Under Assumption 1 and by Lemma 1, Ty, (Fy) exists and is unique. Note that var[y(V,t)] =
Fy(t)(1—Fy(t)) = Fy(VaR;_,)(1 — Fy(VaR|_,)), where var[-] denotes the variance operator. Then, p €
(0, 1) implies that var[y(V, )] # 0, and the rank of var[y/(V, )] is one. Therefore, we apply Theorem 3 in Owen

(1990) to show that if we pick r = exp <_x(21),17a0m/2)’ then P (Ty (Fv) ¢ {Ty(F) : F < F,,R(F) >r}) —
Olout, S 11 — o0, ]

Lemma 2 constructs a confidence interval for VaR based on empirical likelihood. Intuitively, it contains
all VaR estimates from distributions sufficiently close to the empirical data (i.e., with large ELR values).
Based on Lemma 2, we derive an explicit CI expression in the following proposition. For convenience, we
introduce a permutation 7, which maps indices {1,---,n} to a permuted order where scenarios are sorted
by their true means in ascending order, i.e., Vz,(1) < Vg,0) < - < Vi, ()

Proposition 1. Under Assumption 1, given the outer-level error probability Oy € (0,1) for finite outer
scenarios,

P (VaR1717 € [VEZ(kmin)7Vﬂ2(kmax+])}) — 1= Kout, AS 1 —> .
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Proof.

Equation (5) = {q : /W(V, q)dFy =0,F < F,,R(F) > exp

7N

1 2
—2%<1>,1aom> }

n n n 1
= {q DY wil{Ve <q} =1-p,w;i >0,) wi=L1L]](nwi) >exp <—2%<21),1_a0m> }
i i=1 i—1

i=1 i
n—1 n k n n 1
Ul {q : i;wil{Vﬂz(i) < q} =1 —p,Zwi =1—p,w; > O,Z:w,- = I,U(nwi) > exp (—2)((21)71%“[) }

k i=1 i=1 i=1

kmax n k n n 1
= U {q : ;wil{vﬂz(i) < q} =1 —p,;wi =1—pw > O,Zw,- = I,IJ(nwi) > exp (—2)((21)’1%“)

k=kmin i i=1 i=1
kmax

= U Vaw: Vaw) = Ve Vit 1)-
k=kmin

O]

Proposition 1 suggests that, as the number of outer-level scenarios is sufficiently large, the empiri-
cal likelihood method guarantees that true VaR lies within the constructed CI with the desired coverage
probability. Specifically, this result highlights a critical insight that empirical likelihood inherently gen-
erates quantile-based intervals. Consequently, the quantile-based characteristic motivates the subsequent
methodological developments.

Proposition 2. Let ¥ = {m(kmin), " , T (kmax + 1)}. Under Assumption 2, given the screening error
probability Olscreen € (07 1),

P(Yg I) >1-— Oscreen-

Proof. Letyi ={m(1),m(2), -, M (kmax + 1)}, Y2 = {m2(kmin)> T2 (kmin + 1), -+ , T2 (n) }, and thus y =
NNy LetZy ={i: Bi <kmax + 1}, o = {i: B, <n—kmin+ 1}, and thus Z = Z; N Z,. In Lan et al. (2010),
they have proven that, under Assumption 2, P(y; CZ;) > 1 — OQicreeni- Similarly, we have P(y, C7;) >
1 — Otsereenz- Therefore,

P(Yg I) — IP)(7/1 OYZ - Z1 ﬂIz) > ]P)(}/l - Ila Y2 - IZ) > 1— (ascreenl + ascreenZ) =1- Olscreen-
]

Proposition 2 confirms the effectiveness of screening process for retaining crucial scenarios stated in
Proposition 1, and provides the probability guarantee of not missing any elements in Y after screening.

For convenience of presentation, we introduce another permutation 73 mapping {1,---,c} to Z, which
orders indices according to ascending values of their true means, i.e., Vz, (1) < Vg 2) < -+- < Vp (). Typically,
the difference between permutations 7; and 713 is that m; ranks surviving scenarios based on ascending
sample means, whereas 73 ranks scenarios based on ascending true means.
Proposition 3. SupposeV is a continuous random variable, given the estimation error probability ey € (0, 1)
at the second-stage estimation,

P(Vie [L,O] Vi€ I) > 1 — Oy, as m — oo,

where m — oo means that each component of the vector m tends to infinity.
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Proof. Suppose that

lim P (Vy,1) <L) <

m—soo

Then, Vi € Z, we have

lim P(L<V;<U) > lim P(L<Vg ) <Vi<V,

m—soo m—soo m—soo
> lim P (L < V1)) + lim P (Ve <U) — 1
Q, (04
> (1= )+ (1= )~ 1=1-

Therefore, our goal is to construct a lower confidence limit L for Vzy(1) and an upper confidence limit
U for Viy(c)- To achieve this, we analyze the asymptotic distribution

]P’( M (1) (7m<1>,mﬂ1<1> —Vm(l)) >y) SP( M (1) (7n3<1>,mﬂ3<1> —Vm(l)) >y)

_p Myy(1) <Yn3(1),mn3<1)_vﬂs(l)> - Nyzy1) y Sl Ny zy1)y y A4S M — oo
Ory(1) Mz (1) Om(1) M) Om(1) ) ’

where Oy, (1) is the unknown standard deviation of scenario 73(1), and ®(-) is the cumulative distribution
function of the standard normal distribution. The convergence in the last step follows from CLT,

iz (1) (7@(1),%(1) - Vm(l))

Oms (1)

i>N(O,1), as m — oo,

Let y = Zl*(xes‘/Z\/mﬂl(l)671'3(1)/\/’/”’753(1)? then 1 — ¢(Y\/N2,n3(1)/ <\/m7r1(1)6n3(1))) = Okst/2.  Denote
S,r_g(l)’mn2 0 as the sample standard deviation of scenario 73(1), and Sas(1) — Opy(1) @ m — oo, Therefore,
by Slutsky’s theorem,

7m7r3(1)

. = M (1) Olest
lim P( mm(l) (X”1(1)7m7r1(1) _VTL’3(1)> >Zl—% 1 S7T3(1)7mn:3(1)> S ;S .

m—o0 }'nﬂ‘.3 ( 1)

Rearranging the terms inside the probability, it becomes

m—oo

Sﬂ%(l):mn}(n ) Olest

lim PP (Vﬂa(l) < Xﬂl(l)m;@(l) TG Menl) 5

Noting that X;,,, — V; for Vi € Z as m — o, it is easy to show that 7 (1) — 73(1). Thus, by Slutsky’s
theorem, we show that the lower confidence limit for Vz, (1) can be constructed as L. Similarly, we construct

an upper confidence limit for Vg, . as U. O

Proposition 3 ensures that, given sufficient samples at the second-stage estimation, the constructed CI
simultaneously covers true means of surviving scenarios with statistical guarantees.

Theorem 1 Under Assumptions 1 and 2, suppose V is continuous, given a total error probability «,

P(VaR|_, € [ﬁ,U]) >1—a, as n— oo, m — o,
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Proof. The overall error probability can be decomposed as & = (out + Oscreen + Clest-

A

P(VaRi_p € [£,0]) > P (VaR1 - € Vi) Vmsftme] N YET 0 Vi€ [LO)VI€T)
> P (VaRi_p € [Va, (i) > Vs 1)) F (Y € T) +]P>( €L UVieT)-
Z (1 - aout) + (1 - ascreen) + (1 - aest) —2=1-

Theorem 1 shows that the proposed CI procedure achieves the asymptotic confidence level.

4 NUMERICAL EXPERIMENTS

Consider a portfolio risk measurement example to study the performance of the proposed procedure for
constructing CI for VaR, using a portfolio comprised of multiple options written on a single underlying
asset. The underlying asset price dynamics, denoted by S(¢) € R, is modeled as a geometric Brownian
motion with drift 4’ and volatility o, given by

st _
0 u'dr+odB(t),

where B(t) is a standard Brownian motion.
In this model, the asset price at time ¢ is explicitly given by

S(1) = S(0) exp{ <u’ - ;&) ‘4 oB(z)} .

Note that y’ is chosen to be the real-world return g under the real-world probability measure during the
risk horizon [0, 7], and the risk-free rate r under the risk-neutral measure for the interval (7, 7], with T and
T denoting the risk horizon and the maturity of the options, respectively. We set S(0) = 100, u = 0.08,
r=0.05, and 6 = 30%.

The portfolio comprises five European call options, all maturing at a common time 7', with distinct
strike prices K1 = 80, K» =90, K3 = 100, K4 = 110, and K5 = 120. We denote the current time by 0 and
are interested in measuring the portfolio risk at a given risk horizon 7 < 7. We set T = 1/12 year, that is,
1 month, and 7 = 1/52 year, that is, 1 week. The current portfolio value, denoted by C(0), is explicitly
computed using the Black-Scholes formula. At time 7, the portfolio value C(7) is defined as

S(r)] .
5

V(S(r)) =E [C(O) =Y e I(s(r) ~Ki)*

=1

=E [i e T=O (S(T)—K)) "
=1

Accordingly, the portfolio loss at the risk horizon 7 is given by

S(t)

In our numerical example, we set p = 1% and a = 10%. To evaluate the performance of the procedure,
we need an accurate benchmark value for VaR;_,. To achieve this, we generate a large number (10%)
of simulated values for S(7), compute the corresponding portfolio losses using the explicit Black-Scholes
formula, and accurately estimate VaR;_, as 20.615.

When implementing the procedure, we heuristically set n = 1.50%/3, initialize m’ at 10, and increment it
by 5 until either c — ¢’ < 0.1% ¢’ or (I'—m'n) /¢ < 30, where ¢ = card(y). The rationale behind this allocation
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is twofold. First, our goal is to generate a sufficient number of outer scenarios to satisfy the coverage
probability requirement established in Proposition 1. Second, we aim to screen out as many unpromising
scenarios as possible to reduce the computational burden during the second-stage estimation. Specifically,
the first stopping criterion ensures that the difference between ¢ and ¢’ does not exceed 0.1% ¢/, thereby
limiting the number of scenarios entering the second-stage estimation. The second criterion guarantees
an adequate sample size for the second-stage estimation, with a threshold of 30 samples aligns well
with a commonly accepted minimum sample size justified by CLT, and is consistent with Proposition 3.
Additionally, the initial value for m’ (set at 10) and the incremental step size (chosen as 5) are selected
arbitrarily. These parameters primarily influence the number of iterations required but have negligible
impact on the final results, which are primarily governed by the stopping criteria. Furthermore, following
the guidance of Lan et al. (2010) and Yi and Xie (2017), which indicate that the performance of the
procedure is relatively insensitive to the choice of Oy, Qiscreen, and Qeg;, We set these parameters as 6%,
1%, and 3%, respectively.

To examine the coverage probability of the constructed CI and verify consistency with the theoretical
result provided in Theorem 1, we estimate the coverage probabilities (CPs), as the ratio of the number of
times that the true value is covered by the CI relative to the number of macro replications. The experiments
are conducted through 500 independent macro replications. To comprehensively evaluate the performance
of the CIs, we assess metrics beyond the coverage probabilities, including the average width ratio and
its standard deviation (AWR and SD in shorthand notation), the average lower endpoint and its standard
deviation (AL and SD), and the average upper endpoint and its standard deviation (AU and SD). The width
ratio is calculated as the ratio of the CI width to the true value, providing a relative measure of interval
length.

To further investigate the effectiveness of our proposed CI, we compare its performance metrics to those
obtained from the bootstrap method introduced by Zhang et al. (2022). In their method, a user-specified
parameter € € (0,2/3) is required. Typically, bootstrap methods with larger € allocate more budget to
inner simulations, while smaller € allocates more to outer simulations. To evaluate the performance of the
bootstrap-based Cls under different budget allocations, we set € = 1/24,1/12, and 1/6 in our experiments.
Morerover, to assess the computational efficiency of different methods, we record the average computation
time per macro replication in minutes. All computer programs are coded in Python, and all experiments are
run on a Linux server of Ubuntu 18.04 with two Intel Xeon E5-2650v4 processors (each with 12 physical
cores, 24 logical threads, 2.20 GHz) and 128 GB RAM. In the implementation, we parallelize the screening
step in our proposed method using the strategy described in Appendix A.

Since the theoretical result describes the asymptotic coverage probability of Cls, it is essential to evaluate
their performance under different budget sizes to examine their validity. To this end, we conduct experiments
using budgets I' =5 x 10° and 5 x 10%, and report the results in Table 1. In the table, metric values obtained
from our procedure are highlighted in bold, as are bootstrap results with coverage probabilities closest to
the nominal 90% level.

Table 1: Performance comparison of our method and bootstrap method.

Budget Method Cp AWR (SD) AL (SD) AU (SD) Time
Ours 1.000 0.093 (0.010) 19.668 (0.258) 21.594 (0.256) 0.133
5% 105 Bootstrap (¢ =1/24) 0.872 0.089 (0.032) 19.726 (0.873) 21.561 (0.696) 0.249
Bootstrap (¢ =1/12) 0.894 0.123 (0.046) 19.425 (0.911) 21.951 (1.026) 0.229
Bootstrap (¢ =1/6)  0.853 0.197 (0.085) 18.622 (1.348) 22.680 (1.784) 0.223
Ours 1.000 0.040 (0.003) 20.209 (0.114) 21.032 (0.122) 1.751
5 5 106 Bootstrap (¢ =1/24) 0.856 0.045 (0.013) 20.225 (0.309) 21.156 (0.365) 0.708
Bootstrap (¢ =1/12) 0.884 0.063 (0.019) 20.012 (0.439) 21.303 (0.461) 0.673
Bootstrap (¢ =1/6)  0.862 0.117 (0.037) 19.515 (0.818) 21.920 (0.817) 0.634
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Figure 1: Constructed CIs using our method and bootstrap (¢ = 1/12) with varying budgets.

From Table 1, it can be observed that our procedure achieves 100% coverage probability. This clearly
aligns with the theoretical guarantee (> 90%), but significantly exceeds the nominal level. Such a high
coverage suggests the CI constructed is conservative. The conservativeness primarily arises from the use
of Bonferroni inequality in our analysis. Surprisingly, despite the higher coverage, our procedure produces
narrower and more stable CIs compared to the bootstrap method. The stability of CI width results from large
values of my, (1) and my, ), because a sufficient computational budget remains available for the inner-level
estimation after screening. Moreover, it can be seen that our method is faster than bootstrap methods
at ' =5 x 10° but slower at ' =5 x 10°. To better understand the empirical results of computational
efficiency, we analyze the algorithmic time complexity. The total computation time for each method consists
of two components. Specifically, the first is the sampling time, and the second is the time to calculate
the auxiliary quantities according to the specific method design. Since the sampling time equals the time
for one simulation multiplied by the budget size and thus is same for all methods, we analyze the second
component of each method. In bootstrap methods, the leading term is Inlog(n), where I is the number of
bootstrap replications and nlog(n) comes from the standard time complexity of finding a quantile. In our
procedure, the leading term is n’m’/P, where P is the number of cores used in parallel screening. With
sufficient cores, the wall-clock time reduces to N2m’, where N is a given block size parameter. To sum
up briefly, we characterize the total computation time using @(-); see Cormen et al. (2022) for a formal
definition. Suppose the sampling time is Cp times the duration of a machine instruction, where Cy tends to
be a large constant. The bootstrap methods run in CoI"+ Inlog(n) = ®(I'+nlog(n)). Our method’s runtime
is CoI' +n’m' /P = ©(T +n?) with P parallel cores. Furthermore, under full parallelization it becomes
Col' +N?m’ = @(T). In this example, Cy is small, so the auxiliary time cost is considerable. When T is
small, n is small, whereas I = 500 remains considerable, making the bootstrap methods slower. By contrast,
for large I, n?m’ /P soon exceeds Inlog(n), so our method becomes slower.

Additionally, we observe several trends in bootstrap methods with varying values of €. First, regarding
interval width, we find that under a fixed computational budget, increasing € results in wider width. This
occurs because a larger € reduces n, which increases the variance and consequently enlarges the CI. As
the budget increases, the interval widths decrease significantly. Second, we find two distinct patterns in
the coverage probabilities, depending on the size of €. For smaller values of € = 1/24,1/12, increasing €
increases the inner-level sample size and decreases the outer-level sample size. According to Theorem 1
in Zhang et al. (2022), this reduces bias and increases variance, thereby increasing coverage probability.
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However, for larger values of € = 1/6, the coverage probability decreases despite the wider interval. This
anomaly arises because, for large €, the outer- and inner-level sample sizes become comparable in order.
In this case, Proposition 2 in Gordy and Juneja (2010) implies that the bias does not vanish due to the
non-negligible term O (1/n). This residual bias reduces coverage probability. Third, we find that for
large €, the computation time declines slightly. This is because increasing € decreases n and thus the term
Inlog(n). Overall, the effectiveness of the bootstrap method depends on an appropriate choice of €. An
improper choice may significantly degrade the accuracy and reliability of the Cls.

We vary the budget sample size to examine how the quality of CIs improves as the budget increases.
Following Lan et al. (2010), we consider CIs with width ratios smaller than 10% to be meaningful.
Accordingly, we select budget sizes ranging from 5 x 10° to 107 to ensure that the Cls presented in the
figure are meaningful. Moreover, it is observed from Table 1 that the bootstrap method with € = 1/12 often
achieves coverage probabilities closest to the nominal level. For better readability, Figure 1 plots the Cls
constructed from our procedure and the bootstrap method with € = 1/12. In this figure, the blue numbers
above the lines represent the coverage probabilities of the bootstrap method under the corresponding budgets.
Our procedure is not annotated, as it always achieves 100% coverage probabilities. To show the uncertainty
of each interval endpoint, the shaded bands indicate + empirical standard deviation around that endpoint.
Similarly to the findings from Table 1, our procedure produces Cls characterized by overcoverage, narrower
interval widths, and reduced variability compared to the bootstrap method.

5 CONCLUSIONS

In this paper, we have developed a procedure for constructing Cls for VaR using nested simulation. We
conduct a theoretical analysis to confirm the asymptotic validity of the constructed Cls, ensuring that
they achieve the desired coverage probabilities as the simulation budget increases. Numerical experiments
demonstrate that our proposed procedure achieves robust coverage probabilities, often exceeding nominal
levels, while producing narrower and less noisy Cls compared to the existing bootstrap-based method.
These results highlight the reliability and computational efficiency of the proposed procedure in practice.
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A PROCEDURE IMPLEMENTATION DETAILS

First, the term n" in (1) grows so rapidly that it easily overflows double precision (64-bit) floating-point
numbers (hereafter ‘double precision’) as soon as n > 200. Yet many practical applications require n to be
tens of thousands to achieve desired estimation precision. Therefore, we take natural logarithms on both
sides of (1). After transformation, the term becomes nlog(n), avoiding numerical overflow.

Second, when dealing with paired scenario comparisions, a naive implementation would explicitly
form a three-dimensional array D; j;, i,j=1,---,n, [ =1,--- ,m’, then build two n x n arrays of means
and variances, and finally compute B; and B;. However, these arrays require far more memory than the
16-32 GB typically available on a standard workstation. To illustrate, when n = 30,000 and m’ = 30, D; ;,
in double precision already consumes roughly 200 GB memory. This memory explosion problem raises
the need of enhancements for large-scale problems. Therefore, we design a block-decomposition strategy
compatible with parallel processing paradigms. Specifically, we decompose the n x n x m’ full array into
blocks of size N x N x m’, where N is called block size parameter. For instance, with n = 30,000 and
N = 1,000, we get 900 blocks. Each block holds 1,000 x 1,000 x 30 doubles, about 0.224 GB, instead of
the 200 GB needed for the full huge array. Furthermore, by leveraging the antisymmetry of the pairwise
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differences D;;; = —D; j;, we only process the upper-triangle blocks, reducing the total number from 900
to 465. Most importantly, because each block can be computed independently, this scheme parallelizes
naturally. Moreover, the fourth step is easy to be parallelized by allocating independent scenarios to CPU
cores or cluster nodes, running each inner sampling task in parallel, and merging the individual outputs to
obtain the final estimates.
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