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ABSTRACT

The performance of a CPU-only implementation of the restarted GMRES algorithm with direct randomized-
SVD -based preconditioning has been analyzed. The method has been tested on a set of sparse and dense
matrices exhibiting varying spectral properties and compared to the ILU(0) -based preconditioning. This
comparison aims to assess the advantages and drawbacks of both approaches. The trade-off between
iteration-to-solution and time-to-solution metrics is discussed, demonstrating that the proposed method
achieves an improved convergence rate in terms of iterations. Additionally, the method’s competitiveness
with respect to both metrics is discussed within the context of several relevant scenarios, particularly those
where GMRES-based simulation techniques are applicable.

1 INTRODUCTION

The need to improve both direct and iterative solvers has become increasingly crucial at the dawn of the
exascale HPC era, as extremely large systems of linear equations require accurate solutions (Agullo et al.
2021). This challenge can be viewed both in isolation and as an integral component of more complex
solvers. In either case, it necessitates addressing multiple algorithmic fronts simultaneously. Among these,
the present study focuses on accelerating convergence by enhancing the preconditioning step (Benzi 2002),
thereby enabling iterative solvers to reach solutions within a reasonable time frame. Specifically, Krylov
subspace-based solvers, when paired with appropriate preconditioners, are generally considered an optimal
choice for achieving both robustness and efficiency (Moriiiigo et al. 2022; Eldén and Simoncini 2012;
van der Vorst 2003; Vuik 2018). The Generalized Minimum RESidual (GMRES) method and its variants
(Saad and van der Vorst 2000; Saad 2020; Saad 1993; Saad and Schultz 1986; Li and Saad 2013; Vuik
1995) serve as the foundation for this study.

This work evaluates the performance of a novel preconditioner integrated into the standard restarted
GMRES algorithm, which is highly used in many science-based simulations. A CPU-only serial implemen-
tation has been developed, and its results are analyzed. The primary contribution of this study is to provide
a clearer understanding of the advantages and limitations associated with this class of preconditioners. For
this purpose, the C programming language has been employed. The analysis is conducted using a set of
sparse and dense matrices of varying size and condition number.

This article is organized as follows. The next section provides a brief overview of the randomization
approach combined with the SVD formulation, which leads to the randomized SVD (rSVD) algorithm
based on performing an economical truncated-SVD. This rSVD corresponds to the so-called ’direct rSVD’
(Higham and Mary 2019; Martinsson 2019). Section 3 presents the implementation of this preconditioner in
arestarted GMRES solver, utilizing an error matrix as the basis for the proposed improvement. Subsequently,
the numerical experiments conducted with a range of sparse and dense matrices are summarized. Section 5
presents the results obtained from the implementation, evaluating its performance in terms of iteration-to-
solution and time-to-solution metrics. Section 6 contextualizes this work within the framework of related
research. Finally, conclusions are drawn.
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2 RANDOMIZED SVD

The computational cost of the SVD in large scale problems suggests the benefits of exploiting randomization
techniques (Halko et al. 2009; Martinsson 2019) to mitigate it. The key point is to efficiently find a low-
rank approximation of the involved large, dense matrices, thereby accelerating the algorithm. In general,
applying the standard deterministic SVD algorithm to a large matrix incurs high CPU and memory costs.
Consequently, strategies for reducing these costs are of particular importance. The randomized SVD (rSVD)
approach exemplifies such a strategy, wherein a small random subspace is constructed, and the original
large matrix is projected onto this subspace. This projection effectively compresses the primary information
of the large matrix into it, yielding a low-rank approximation of the original matrix and so reducing the
computational cost of the SVD. These seminal ideas were first introduced by Halko et al. (2009) over a
decade ago.

The rSVD algorithm incorporated into the GMRES method is described in what follows. Specifically,
rSVD operates on the n X n error matrix £ (see next section), such that a k x k matrix Ej is built as a
truncated SVD of E. The steps are shown in Figure 1 (graphically and with pseudocode, left and right
sides respectively). Basically, instead of applying a deterministic SVD to the target matrix E, its columns
are sampled using a random Gaussian matrix Q to build the projected matrix Y. This process ensures
that the columns of Y span a lower-rank subspace that, with high probability, captures the k& dominant
singular triplets (singular values and vectors) of the target matrix E. The projection space defined by
matrix Q spans k dimensions, which are augmented by a small oversampling parameter p to ensure that
the columns remain linearly independent with high probability. Thus, Q € R*”**+7) being p < 10 in
practice, with k+ p < n in a strict sense (see Halko et al. (2009)). Typically, Y and Q are tall-skinny
matrices whose number of columns fulfills k+ p < n in most cases of interest. The orthonormal basis Q cap-
tures the range of E, enabling the computation of a k-rank version of Q7 E via a deterministic truncated SVD.

Figure 1: Randomized SVD algorithm: QR-orthogonalization, deterministic SVD on a smaller matrix,
and further truncation to the leading singular triplets are indicated in the sketch (left side). Pseudocode
is provided on the right side. Notice that the tall-skinny matrix € is instrumental in reducing the entire
computing cost.

As previously highlighted, computing the full spectrum of singular values and vectors can significantly
increase the overall computational cost. Therefore, the method described here exploits the truncation of the
spectrum to the k top singular triplets using the randomized SVD approach. In the present study, the largest
portion of the spectrum considered spans up to 30%. This limit is set to control the high computational
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cost of the SVD on large matrices, which would otherwise lead to overhead in constructing the GMRES
preconditioner. In addition to k, the oversampling parameter p also drives the cost of constructing the
low-rank approximation of E. From a computational efficiency perspective, the ideal scenario is to select
k+p < n, then Q,Y and Q are tall-skinny matrices. It should be noticed that the overall performance of
the rSVD algorithm is driven by the efficiency of matrix-matrix multiplications, QR factorization and the
deterministic SVD performed in a much smaller matrix to drop the computing cost. The impact of the
parameters k, p on the GMRES performance will be analyzed in the results section.

3 ALGORITHM IMPLEMENTATION

In many large-scale problems, especially those arising from discretized partial differential equations, the
matrix condition number is often large, which leads to slow convergence. Preconditioning aims to transform
the system into one with a more favorable condition number, thereby reducing the iterations required to
converge, particularly for Krylov subspace methods like the Conjugate Gradient or Generalized Minimal
RESidual (GMREYS). Furthermore, effective preconditioning can help mitigate the effects of round-off errors
and improve the robustness of the solver. It is noticed that preconditioning not only improves performance
but also contributes to the overall reliability of numerical simulations and equation systems solving.

3.1 Preconditioner Building

A widely used iterative method for solving the linear system Ax = b, where the matrix A € R"*" is
non-singular, non-symmetric, and typically sparse, is the restarted GMRES method (Saad and Schultz
1986; Saad 1993; Saad 2020; Saad and van der Vorst 2000; Vuik 1995). This method often incorporates
a preconditioner to accelerate convergence to the solution. Typically, the preconditioner exploits an
approximate LU -factorization of A, aiming to reduce the fill-in of the factors. This approach has been
considered a reasonable trade-off, though it remains suboptimal, as convergence may still be slow.

Among the various approximate LU-factorizations, the zero-order approximation ILU(0) has been
extensively implemented in many solvers. Applied to a sparse matrix A, it produces the approximate
factors L,U, which preserve the sparsity pattern of A, making it competitive in terms of computational
cost. In general, an approximate factorization of matrix A can be expressed as A = LU + AA, leading to
the introduction of the error matrix £ = M~'AA, where the preconditioner M = LU is derived from the
ILU(O) factorization. It is important to note that this error matrix is linked to the deviation between the
exact and approximate factorizations of A.

A key property linking matrix A and error matrix £ holds: if A is ill-conditioned (i.e., K(A) =
|A|l]]JA="|| > 1), then matrix E retains a low-rank structure numerically, meaning it has only a few
large singular values (Higham and Mary 2019). This structure can be exploited to modify the LU-based
preconditioning, improving the low convergence rate that ILU(0) alone often yields in many cases. Notably,
high k(A) is not a strict requirement for this approach, suggesting that the formulation has a wide scope.
This reformulation of the LU-based preconditioning uses a sketch of the error matrix £ = U~ 'L™'A —1,
denoted as Ej. The matrix Ej is obtained by applying the randomized SVD algorithm, as outlined in the
previous subsection (see pseudocode in Figure 1).

In summary, the proposed approach substitutes the ILU(0) preconditioner M~' = U~'L~" with the novel
formulation M~! = (I+ E;)~'U~'L™", where E represents the k-rank approximation to the error matrix
E. The degree of fidelity to the original error matrix is controlled by parameter k. The correction factor
(I4 E;)~", which premultiplies the standard preconditioner U ~'L.~!, leads to accelerated convergence. In
the ideal case, when E; = E, the preconditioner becomes M ~1 = A-! TItis intuitive to see that if k is of order
n, the preconditioner will be more robust but will not be cost-competitive compared to ILU(0). Furthermore,
when k < n, the expression I+ Ej; can be computed efficiently using the Sherman-Morrison-Woodbury
formula (Henderson and Searle 1981). Since E is often low-rank numerically, a small & is likely to provide
a good approximation to E, making the preconditioner close to the ideal case. These ideas are tested in
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Algorithm 1 Restarted GMRES(m) with Preconditioning

Input: A,M € R™ b € R", initial guess xo € R";m,k,p e Nwithk+p <n

Set preconditioner: M := LU(I + Ey), being L,U the ILU(0) triangular factors of A, and E; ~E is a
truncated-SVD approximation with k < n

Output: Solution x € R” for the system Ax =b

1. Repeat: restart-loop (xp)
2. Arnoldi process
ro .= b—Axo,ﬁ = ||ro||2,v1 = r()/ﬁ
for j=1,2,...m do
Zj :M_IVJ'
w :AZ]‘
fori=1,2,...j do
h,’J =WV
wi= W—hi_’jV,'
end for
hj1,j = [l
vigr = w/hji
Zn = (21,22, .. -Zm]
Hy :=h;j,being 1 <i<j+1;1<j<m
end for
3. Form the approximate solution
Ym := argminy||H,y — Bei||,, with e; =[1,0,...0]
Xm = X0 +ZmYm
4. Restart: If converged return x,,, else set xo := x,,, and go to step 1

the current study with a preconditioned restarted GMRES method outlined in Algorithm 1, implemented
for CPU-only computing.

3.2 Parameters Setting

In the GMRES setting, vector b in the system Ax = b is initialized by setting the solution vector x to
all ones, except for its last element, which is set to n. The system is then solved by computing b = Ax,
ensuring a valid solution. The inner-loop constructs a Krylov subspace with m = 20 direction vectors, and
the outer-loop is restarted twenty times, allowing a maximum of 400 iterations. Once this value is reached,
a non-convergence flag is raised by the solver, and the iteration stops. GMRES convergence is evaluated
using the equations’ residual as the iteration progresses. A stopping criterion based on both absolute and
relative residual Euclidean norms is checked after each inner-loop iteration, and the process halts when
these residuals drop below the prescribed tolerance, set to 1078, It is noted that this tolerance is applied
uniformly across all matrices analyzed, regardless of their condition number. No attempt has been made
in the present study to adjust the tolerance based on the matrix conditioning, which is a subject for future
investigation.

4 NUMERICAL EXPERIMENTS

A set of 36 square matrices, both sparse and dense, with a broad range of condition numbers has been
selected for the numerical experiments.
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4.1 Sparse PDE-derived Matrices

Eighteen sparse, non-symmetric, square matrices (see Table 1 for the full list) have been selected from
the widely used SuiteSparse Matrix Collection (Davis and Hu 2011), many of which are derived from
real-world applications. These matrices have been previously analyzed in the context of fault-tolerant
solvers (Moriiligo et al. 2022). The matrices represent problems mainly from fluid dynamics and a few
from electromagnetism. They are classified into three groups based on their condition number k(A): 6
matrices with low k(A) ~ O(1) — O(10%); 6 matrices with high k(A) ~ 0(10%) — 0(10%); and 6 matrices
with very high x(A4) ~ O(10%) — O(10'?). It is emphasized that the selected matrices avoid symmetry, as
the Conjugate Gradient (CG) method is generally more efficient than GMRES for symmetric problems.
Therefore, the matrices correspond to strictly non-symmetric problems. The SuiteSparse matrices are read
in compressed format, storing only non-zero entries. A matrix reader, implemented in C, handles the data
input for the GMRES implementation.

4.2 Dense Synthetic Matrices

Eighteen dense, non-symmetric, square matrices have been synthetically generated using the SVD factor-
ization A = UZVT € R™", where U,V € R™" are random orthogonal matrices, and the diagonal matrix
L =[o;j] € R™", with 0;; =0 for i # j, has a prescribed singular value distribution based on a given
k(A). Three condition numbers, k(A) = 10?,10°, and 108, are investigated. The dense matrices are built to
exhibit either exponentially or uniformly decaying singular value spectra, with the decay profiles tailored to
ensure that the resulting matrices attain the prescribed condition numbers. The matrix sizes considered are
n =250, 1000,4000. The combination of k(A), singular value distribution, and matrix size results in the 18
dense matrices used in this study. The matrix nomenclature is as follows: n$SIZE_$LAW_$COND, where
SIZE € {250,1000,4000}, LAW € {uni,exp}, and COND € {condle2,condle5,condle8}. For example,
the matrix n1000_exp_condle5 corresponds to a 1000 x 1000 dense matrix with exponentially decaying
singular values and k(A) = 10°.

4.3 Executions and HPC Facility

The execution of the randomized-SVD-based GMRES algorithm was performed on the Turgalium cluster at
CETA-CIEMAT. Computations were carried out using a CPU partition comprising 20 nodes, each equipped
with two Intel Gold 6254 CPUs (18 cores/CPU) running at 3.1 GHz, alongside 192 GB of DDR4 memory
per node. The GMRES binary was compiled using the C compiler of the NVIDIA HPC SDK v21.9 suite.
The execution setup, submission to the cluster’s batch system, and subsequent post-processing of metrics
were fully automated via Python scripts. For each matrix A, fifty repetitions of the GMRES execution
have been carried out for every combination of oversampling p and rank parameters. The substantial
number of runs of the serial code required to elaborate the performance maps justifies the use of HPC
resources. Performance maps have been plotted as functions of the parameters [p — rank/n], within the
ranges p € [1,10] and rank/n € [0,0.3], where rank is better expressed as a fraction of the matrix size n.
The maps include the mean and standard deviation of both time-to-solution and iteration-to-solution count,
which are the performance metrics considered. Due to space constraints, only the most relevant maps are
presented in the results section.

5 RESULTS

5.1 Minimum Iterations to Solution

An important question concerns the number of iterations required for convergence when using an rSVD-
based preconditioner. Tables 2 and 3 present the iteration-to-solution metric for sparse and dense matrix
sets, respectively. Truncated SVDs retaining 2% and 30% of the singular triplets, along with ILU(0)-based
preconditioning, are compared to evaluate the convergence. As expected, retaining more singular triplets
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Table 1: Square, non-symmetrical matrices from the SuiteSparse Matrix Collection, grouped by k(A).

Matrix Size K(A) Application
Low condition number: k(A) ~ O(10) — O(10%)
dw256B 512 x 512 3.7 Electromagnetism
pde225 225 x 225 39 Model partial differential equation
cdde4 961 x 961 68 Convection—diffusion model
poisson2D 367 x 367 133 Poisson PDE in two-dimension
ex37 3,565 x 3,565 180 Computational fluid dynamics
bfwa62 62 x 62 553 Electromagnetism
High condition number: k(A) ~ 0(10%) —0(10%)
bwm?200 200 x 200 2.4-10° Chemical processes
exl 216 x 216 3.3-10% Computational fluid dynamics
ex22 839 x 839 3.3-104 Computational fluid dynamics
orsirr_2 886 x 886 6.3-10* Computational fluid dynamics
tub100 100 x 100 1.3-10* Tubular reactor model
olm100 100 x 100 1.5-10% Computational fluid dynamics
Very high condition number: kx(A) ~ O(10%) —0(10'?)
pores_1 30 x 30 1.8-10° Computational fluid dynamics
steam1 240 x 240 2.8-107 Oil-Steam modelling
DKO1R 903 x 903 5.9-107 Turbulent flow
saylrl 238 x 238 7.9-108 Computational fluid dynamics
steam3 80 x 80 5.0-10'0 Oil-Steam modelling
lungl 1,650 x 1,650 4.9-10'> Bio-fluid mechanics - multiphysics

(higher rank /n in the truncation stage) reduces iteration count, though at the cost of increased computational
time due to SVD building. Thus, a low rank/n is desirable for cost-effective preconditioning. The data
show that even minimal spectral content leads to improved convergence over ILU(0). It is worth noting that
certain considerations out of scope of the present work but related to attain improved scalability of rSVD
for very large matrices (Ferrero-Roza et al. 2024; de Castro-Sanchez et al. 2025), motivate the focus on
randomized rather than deterministic SVDs. Performance comparison between rSVD and ILU(0) is shown
in Fig. 2 for sparse matrices across rank/n € [0.02,0.3]. Most sparse matrices benefit from rSVD-based
preconditioning. Comparable benefits are observed within the dense matrix subset reported in Table 3,
which includes only those cases with the highest iteration counts to convergence (dense matrices requiring
fewer than four iterations with ILU(0)-based preconditioning are excluded). In very small matrices such
as bfwa62 or pores_l, setting rank/n = 0.02 often results in rank = 1, i.e., only the leading singular
value is used. Likewise, 0o/m100 and tub100 (n = 100) use only their first two singular values. Despite the
minimal information retained, iteration counts improve. However, matrices that already converge rapidly
with ILU(0) (e.g., steam3 converging in 3 iterations) distort the rfSVD comparison, as each extra iteration
has a large relative impact. This also occurs with some dense matrices, which should be interpreted with
care due to the magnified effects at very low iteration counts.

5.2 Time to Solution

This subsection evaluates execution time, addressing whether rSVD-based preconditioning is worthwhile.
Two aspects are key: (i) the cost of the preconditioner relative to total runtime (noting the high cost of
SVD), and (ii) scenarios where GMRES with rSVD-based preconditioning outperforms alternatives like
ILU(0). For the first point, Figure 3 shows the ratio of preconditioner build time to total GMRES runtime
for different rank/n values (sparse and dense cases). The total runtime comprises the SVD cost (fsyp) and
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Figure 2: Iteration-to-solution of the GMRES preconditioned with rSVD, applied to the sparse matrix set:
a) low x(A); b) high k(A), and c) very high k(A). Mean value and range of variation are plotted.

the Krylov iterations (fxyiov), With gy p forming the dominant share of the preconditioner build time (zpc).
The red curve for rank/n € (0,0.05) is of particular interest, reflecting low-cost preconditioners based on
limited spectral data (which is a desirable setup for practical problems). Interestingly, the sparse matrices
with the highest Krylov iteration counts, such as ex22 (131), orsirr_2 (52), poisson2D (38), and ex1 (36),
show the lowest relative preconditioning cost. For dense matrices, the lowest relative preconditioning cost
is observed for those with k(A) = 108, particularly when the singular values decay exponentially. These
findings suggest that rSVD-based preconditioning is most effective in scenarios characterized by slow
convergence or very high condition numbers.

Table 4 presents the Krylov iteration time ratio (rSVD vs ILU(0)) at rank /n = 0.3 and 0.05, highlighting
performance bounds. As anticipated, more spectral information speeds convergence due to reduced Krylov
iterations, though it increases preconditioner build time. This trade-off is worthwhile under three conditions:
when the rSVD assembly satisfies rank/n < 1, making SVD construction relatively cheap; when solving
hard-to-converge problems; and in multi-right-hand-side cases (AX = B where X and B are matrices with
m columns). In the latter, the preconditioner is built once and used to solve the m systems, improving
competitiveness. Figure 4 presents the computed metrics along with their corresponding standard deviations
(std) for four representative sparse matrices. The std values exhibit only minor variations across the respective
maps, indicating that fifty repetitions are sufficient to accurately characterize both the sparse and dense
scenarios. The overall performance of the sparse and dense matrices shows only a weak dependence on the
oversampling parameter p, suggesting that p primarily contributes to the robustness of the method rather
than directly influencing the accuracy of the computed results. Nevertheless, some sensitivity to p can be
observed in specific cases —for instance, in the matrix steam3 at low values of rank/n. In such scenarios,
where p is on the order of the target rank, the truncated SVD appears more susceptible to oversampling
effects, which can noticeably impact the resulting metrics. However, it is important to emphasize that
the general insensitivity to p implies that the performance curves shown in Figure 2 for small values of
p remain valid and informative for characterizing matrix behavior. The observed increase in execution
time with growing rank/n (see bottom row of Figures 4 and 5) is attributed to the rising computational
cost associated with the truncated SVD. In the maps corresponding to dense matrices (Figure 5), the
iteration-to-solution metric exhibits a trend toward uniformity across the full rank/n range. Given that
all four dense matrices have exponentially decaying singular values —and are among those requiring the
highest number of iterations to reach convergence— this relative uniformity suggests that employing a
very low rank/n in constructing the GMRES preconditioner may be rather advantageous. The performance
maps indicate that only minimal spectral information is required to achieve excellent convergence.

6 RELATED WORK

Several authors have analyzed the performance of the GMRES and randomized-SVD algorithms indepen-
dently. Research on GMRES is extensive, while publications on rSVD are more limited and recent. In
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Table 2: Iteration-to-solution performance for sparse matrices. Deterministic SVD and rSVD formulations
are compared for rank/n =0.02 and 0.3 (2% and 30% of the leading singular triplets, respectively. The
SVD-based ILU(0) preconditioning is also provided (rightmost column).

SVD Preconditioning ILU(0)
rank/n = 2% rank/n = 30%
Matrix SVD rSVD SVD rSVD

dw256B 4 4 3 3 4
pde225 18 21 11 12 19
cdde4 16 19 8 9 18
poisson2D 23 38 9 10 41
ex37 5 6 3 3 7
bfwa62 22 25 9 10 30
bwm?200 20 31 5 6 38
ex1 35 36 12 13 32
ex22 80 131 13 14 196
orsirr_2 26 52 5 6 56
tub100 10 11 4 5 12
olm100 40 51 14 16 59
pores_1 10 10 4 4 10
steam1 5 4 2 2 5
DKO1R 14 15 6 7 17
saylrl 15 19 5 6 19
steam3 5 5 1 1 6
lungl 24 24 23 23 23

Table 3: Iteration-to-solution performance for a subset of the dense matrix population. Deterministic SVD
and rSVD formulations are compared for rank/n = 0.02 and 0.3 (2% and 30% of the leading singular
triplets, respectively. The ILU(0)-based preconditioning is shown (rightmost column).

SVD Preconditioning ILU(0)
rank/n = 2% rank/n = 30%

Matrix SVD SVD SVD rSVD
n250_exp_condle8 18 14 6 13 22
n1000_exp_condle8 22 14 22 15 22
n4000_exp_condle5 5 4 5 4 21
n4000_exp_condle8 23 21 23 21 23

the context of preconditioned restarted GMRES implementations, relevant studies have emerged focusing
on GPU executions to accelerate the time-to-solution (Li and Saad 2013; Aliaga et al. 2018; Aliaga et al.
2017) with speedups up to ~6x. In DeVries et al. (2013), a hybrid GPU-CPU version of Flexible-GMRES
is implemented and its performance evaluated. It outperforms its serial CPU-only counterpart by a ~22x
speedup with the largest matrices tested.

Minimizing GMRES time-to-solution has been a focus for over two decades. Interestingly, some authors
have explored the usage of a truncated-SVD to build a preconditioner for ill-posed problems (Eldén and
Simoncini 2012) to improve the GMRES convergence. However, it is clear that for such an approach to
be effective, an efficient implementation of the SVD algorithm is crucial, as it would otherwise become a
time-consuming bottleneck. Thus, a randomized version of the SVD algorithm is a more economical choice
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Figure 3: Ratio of the preconditioner (PC) building time and total execution time of the rSVD-based
preconditioned GMRES, applied to the sparse (left column) and dense (right column) matrix sets. Mean
value and range of variation are plotted. Matrices are sorted by increasing size.

Figure 4: Performance maps of 4 sparse matrices: ex22, ex37, lungl, steam3 set by columns. Rows
correspond to the metrics: iteration-to-solution (iterations - mean value), its standard deviation (iterations
- std), time-to-solution (z_total - mean value), and its standard deviation (¢_total - std).

and is therefore closely linked to achieving good performance with a GMRES solver. An implementation
for GPU is given in (Struski et al. 2024) and tested with synthetic dense matrices of prescribed spectra.
Their GPU-based randomized SVD is now part of an official CUDA release. A promising approach in-
volves the GPU-CPU hybridization of the rSVD code, as demonstrated in (Ji and Li 2014), where a hybrid
GPU-CPU accelerated randomized-SVD is described. Specifically, the paper analyzes the contribution of
each algorithmic block to the total computational cost and evaluates different implementation strategies
using established linear algebra GPU libraries. It reports a speedup of ~6x to ~7x when applied to large
random and image matrices.

The present investigation revisits the idea of a novel GMRES preconditioner described in (Higham and
Mary 2019), which exploits a truncated rSVD performed on an error matrix derived from a low-accuracy LU
factorization of matrix A, which is typically ill-conditioned. The randomized SVD captures the dominant

2364



Moriiiigo, Bustos, and Mayo-Garcia

Figure 5: Performance maps of 4 dense matrices: n250_exp_Ile8, nl000_exp_le8, n4000_exp_le5,
n4000_exp_1le8 set by columns. Rows correspond to the metrics: iteration-to-solution (iterations - mean
value), its standard deviation (iterations - std), time-to-solution (z_total - mean value), and its standard
deviation (z_total - std).

Table 4: Time-to-solution ratio #,syp/ f1u (o) of preconditioned GMRES using rSVD and ILU(0). Only the
subset of dense matrices with the largest iteration count is included.

trsvp/tiLu (o) trsvp/tiLu (o)

Matrix min  max Matrix min  max
dw256B 0.83 1.07 olm100 0.28 0.89
pde225 0.63 1.11 pores_1 044 1.02
cdde4 051 1.13 steam1 042 0.86
poisson2d 0.24 0.92 DKO1R 044 094
ex37 042 0.86 saylrl 033 1.03
bfwa62 0.33 0.85 steam3 036 1.72
bwm200 0.18 0.90 lungl 1.01 1.09
ex1 043 1.21 n250_k2_exp 0.66 0.67
ex22 0.08 0.71 n1000_k8_exp 0.67 0.72

orsirr_2 0.11 0.94 n4000_kS5_exp 0.20 0.26
tub100 043 092 n4000_k8_exp 093 0.94

spectral content of matrix A, and the resulting low-rank approximation effectively accelerates GMRES. The
authors prototype this randomized-SVD-based GMRES version in Matlab and compare the performance
of both direct rSVD and via-ID rSVD approaches, conducting tests with a set of small matrices from
the Suite Sparse Matrix Collection (Davis and Hu 2011). Additionally, the rSVD-based preconditioner is
analyzed in (Moriiiigo et al. 2022) from a resilience standview. The authors show that it improves the
fault-tolerance behaviour compared to its ILU(0)-preconditioned counterpart. Moreover, it exhibits better
resilience than FGMRES in scenarios where fault tolerance is critical, which is essential for large-scale

2365



Moriiiigo, Bustos, and Mayo-Garcia
parallel computing.

To the authors’ knowledge, none of the previous research explores the performance of the rSVD-based
GMRES within the context of a non-interpreted programming language. In this study, the algorithm is
implemented in C language to investigate its performance in greater detail using a collection of 36 matrices.

7 CONCLUSIONS

The restarted GMRES algorithm with rSVD-based preconditioning has been implemented in C and tested
on a set of 18 sparse and 18 dense matrices with a wide range of spectral properties. The results demonstrate
that convergence can be achieved in many cases with fewer iterations than with ILU(O) by retaining only
a small portion of the spectral content of the error matrix proposed as part of the present methodology. A
crucial aspect is that a truncated SVD underlies in the rSVD algorithm, hence the cost of constructing the
preconditioner becomes more computationally expensive as the chosen rank increases. Hence, for practical
implementations it is necessary the condition rank < n to be satisfied.

Furthermore, the computational overhead associated with the construction of the preconditioner in this
serial implementation is significant compared to the overall execution time of the solver. This underscores
the importance of developing a more efficient rSVD formulation which exploits the decomposition factors
of the truncated error matrix derived from dense operations.

Lastly, it is stressed that this study focuses on serial implementations of rSVD into the preconditioned
GMRES and does not address specific issues of parallel implementations, where inter-process communication
can significantly affect performance. In large-scale parallel environments, where communication costs are
non-negligible, the development of an efficient, scalable rSVD, particularly with communication-avoiding
properties, is essential. Future research will analyze a parallel version of it applied to larger matrices in
scenarios requiring a high number of iterations when using ILU(0), to better understand the behavior of
this novel approach at scale.
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