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ABSTRACT

In discrete event simulation (DES) of surgical centers, activity durations are inherently stochastic and are
typically modeled with standard probability distributions. In reality, however, actual procedure times may
not conform to standard distributions, depending instead on the individualized characteristics of patients.
Accounting for such covariate effects in DES is challenging, making personalized care process simulation
impractical. This shortcoming can compromise model fidelity and constrain the utility of DES for precise
service management. Machine learning (ML) techniques offer a promising solution by incorporating patient-
specific features into duration estimates. In this study, we introduce an ML-driven simulation framework
that integrates advanced predictive algorithms with a DES model of a surgical center. We benchmark our
approach against conventional DES methodologies that rely solely on predefined probability distributions
to represent time variability. Results show that our approach can significantly reduce the randomness of
service durations and lead to a significant improvement in simulation accuracy.

1 INTRODUCTION

The staffing and utilization of surgical centers incur substantial costs, motivating stakeholders to optimize
the use of critical resources such as operating rooms (ORs), surgeons, and post-anesthesia care unit (PACU)
facilities (Khaniyev et al. 2020) (Van Tunen et al. 2020). A prerequisite for effective resource optimization
is the accurate estimation of resource-occupancy durations; however, this task is complicated by the inherent
uncertainty in case-time durations (Varmazyar et al. 2020) (Pandit 2020). Moreover, operational decision-
making—such as same-day online scheduling—often relies on subjective estimates of activity durations,
which may yield suboptimal outcomes. For example, managers may estimate activity times based on a
limited number of observations when allocating on-call staff (Khaniyev et al. 2020) (Dexter et al. 2004),
scheduling add-on cases (Zhou and Dexter 1998), or determining the need for additional ORs (Dexter
2000). Accurate predictions of case-time durations can enable efficient case scheduling (Varmazyar et al.
2020), optimized resource allocation (Pandit 2020), and improved patient flow (Zheng et al. 2022), whereas
inaccurate estimates may increase surgery costs (Childers and Maggard-Gibbons 2018), prolong working
hours (Strachota et al. 2003), exacerbate staffing fatigue and medical errors (Strachota et al. 2003) (West
et al. 2009), and extend both staff turnover and patient waiting times (Strachota et al. 2003) (Denton
et al. 2007). These challenges underscore the need for advanced predictive methodologies in estimating
case-time durations.

Traditional DES models predominantly employ statistical inference to characterize activity durations,
often overlooking variability introduced by patient-specific factors (Forbus and Berleant 2022). For instance,
Zheng et al. (2022) fitted parametric distributions to all activity durations within their DES framework
and validated goodness-of-fit via the Kolmogorov-Smirnov test. Likewise, Dexter and Ledolter (2005)
developed a Bayesian statistical method that combines surgeons’ subjective estimates with historical data
to forecast OR occupancy duration. Although effective in certain contexts, these conventional approaches
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frequently neglect critical determinants of duration variability. In reality, surgery duration is influenced by
patient attributes such as age, procedure type, severity level, and comorbidities, yet these covariates are
often omitted from standard statistical models, thereby constraining estimation accuracy.

Machine learning offers a promising alternative by integrating patient-specific factors to uncover latent
patterns and enhance prediction precision. Although prior studies have employed ML to forecast OR
length of stay (LOS) for preoperative planning, several limitations remain. First, simulation of surgical
centers requires the appropriate level of granularity and nonstandardized duration estimates, such as OR
occupancy time and post-anesthesia care bed occupancy times, rather than the common practice that estimates
anesthesia and surgery durations separately (Bodenstedt et al. 2019) (Jiao et al. 2022) (Stromblad et al.
2021) (Zhao et al. 2019), thereby reducing the applicability of previous ML models for predictive simulation.
Second, many investigations focus on narrow subsets of cases (e.g., specific medical departments (Devi
et al. 2012) (Fang et al. 2023), reducing generalizability. Third, current ML approaches predominantly
rely on structured inputs (categorical and numerical variables) (Elfanagely et al. 2021), despite the high
heterogeneity of data across institutions and practitioners. For example, some electronic health records
(EHRs) may encode procedure names as single categories, multiple categories, or even free text. Moreover,
the categories themselves may be inconsistent (e.g., “Ligature des arteres” versus “Ligature des arteres
hémorroidaires avec guidage doppler, avec mucopexie, par voie anale” to denote identical procedures). As
such, robust ML approaches that can be generalized must be able to semantically represent a common
version of heterogeneous data structures, including free-text elements.

In response to these challenges, we propose a novel framework for predicting surgical case durations
that leverages both structured variables and unstructured text. We describe the development and evaluation
of ML models trained on heterogeneous data sources, demonstrate their integration into DES for precise
simulation, and illustrate their utility in guiding day-of-surgery operational decisions. Our approach
represents a significant advancement toward ML-driven simulation models for comprehensive surgical
process optimization.

2 SIMULATION MODEL
2.1 Process Description

The surgical procedure consists of three standard phases: pre-operative, intraoperative, and post-operative
phases. From a process improvement standpoint, it comprises a sequence of discrete events. At the Saint-
Etienne Mutualist Clinic, the general surgical workflow entails six key stages (illustrated in Fig. 1, where
labels above each box denote the unit in which each event occurs): (i) registration and check-in: upon arrival
at the Ambulatory Reception Unit (ARU) or Inpatient Reception Unit (IRU), a registration nurse verifies the
patient’s identity, confirms demographic and clinical information, and completes all requisite documentation;
(i1) pre-operative preparation: the patient is escorted to the pre-operative holding unit (PHU), where a nurse
conducts pre-operative preparation, including physical assessment, surgery preparation (i.e., intravenous
drips, blood pressure tests, ECG tests, etc.), and anesthesia preparation (if required), etc.; (iii) anesthesia:
the patient is then transferred to designated downstream units to receive anesthesia induction. Locoregional
anesthesia (LRA) is performed in some dedicated beds located within the PACU, while other types of
anesthesia are carried out in the OR pre-assigned to the patient; (iv) surgery: The patient undergoes the
planned surgical procedure in the OR; (v) post-anesthesia care: depending on patient categories/pathways,
patients may be discharged directly, transferred to the PHU for minimal post-anesthesia care, or sent to
PACU for a standard recovery. Patients recover in the OR if PACU/PHU is not available; (vi) departure:
Patients who require further post-operative monitoring are transferred to outpatient wards, inpatient wards,
or the intensive care unit (ICU) through IRU or ARU based on their clinical needs. Patients not requiring
further monitoring exit the surgical center directly through the ARU or IRU.

Surgical patients can be categorized as either outpatients (same-day admission, surgery, and discharge)
or inpatients (requiring at least one overnight stay). Further classification of patients is based on admis-
sion/discharge date/mode, surgery type, hospitalization duration, and post-anesthesia care needs.
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Figure 1: Workflow of the surgical center.

As illustrated in Table 1, the surgical center involves patients from five distinct clinical pathways.
Specifically, external patients involve outpatients who undergo minor procedures (e.g., endoscopy, biopsy,
colonoscopy, etc.) without pre-operative preparation and post-anesthesia care. Short-stay ambulatory
patients are outpatients who undergo minor procedures requiring minimal post-anesthesia care in the PHU
and leave the surgical center within a few hours. Long-stay ambulatory patients are outpatients who need
extended post-operative monitoring in outpatient wards but are discharged the same day. DO patients are
inpatients who have their admission, surgery, and discharge on the same day. D-n patients are inpatients
who are hospitalized n,n € N* days before the surgery for necessary pre-operative preparations, typically
for complex procedures or fragile patients. In summary, external, short-stay ambulatory, and long-stay
ambulatory patients are classified as outpatients, whereas DO and D-n patients are considered inpatients.

Table 1: Patient flow at the surgical center.

pathway arrival pre-oprative prep. anesthesia surgery post-anesthesia care departure
External ARU - OR/PACU OR - ARU
Short ambulatory ~ARU PHU OR/PACU OR PHU ARU
Long ambulatory ARU PHU OR/PACU OR PACU IRU
DO ARU PHU OR/PACU OR PACU IRU
D-n IRU - OR/PACU OR PACU IRU

2.2 Assumptions

The following assumptions are introduced to define the workflow, patient flow, resources, and management
policies based on the the current setup of the surgical center and analysis of the collected data: (i) A surgical
center in a hospital comprises ORs, PAC beds, and other resources; (ii) Only the processes from patient arrival
at the ARU/IRU to discharge from the surgical center are incorporated into the model; (iii) The simulation
model incorporates only weekday cases, while weekend cases are excluded due to differing operational
configurations (e.g., reduced human resources) and policies (e.g., protocols for managing emergency cases);
(iv) Only elective surgeries are considered, with non-elective cases treated as elective. Each patient has
a scheduled arrival time, a scheduled surgery start time, a designated surgeon, and an allocated OR; (v)
Case rescheduling (“surgery jumps”) and cancellations are not considered; (vi) The patient transition times
between medical units are short and depend on their movement speed; (vii) Once a patient following a long
ambulatory, DO or D-n pathway completes the post-anesthesia care, he/she will be transferred to inpatient
or outpatient wards by a stretcher-bear, which are limited resources; (viii) Each OR accommodates only
one patient at a time, with each patient pre-assigned to a specific OR; (ix) Anesthetists administer LRA in
the PACU and other anesthesia modalities in the OR on a first-call, first-served basis.

Remark 1: Each surgical team typically comprises a surgeon, an anesthetist, an anesthetist nurse, a
circulating nurse, an instrument nurse, and a bandage nurse. Note that the anesthetist oversees multiple
ORs, and the PAC nurse is shared among all ORs.

Remark 2: For analytical convenience, the model is initially developed based on probability distributions.
In Section 3.2, the discussion is extended to include the application of machine learning prediction algorithms.
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2.3 Data and Simulation Model Configuration

A dataset was collected from the surgical center of the Saint-Etienne Mutualist Clinic, part of Group Aesio.
It comprises 1,742 surgical cases across 13 medical specialties (e.g., urology, ophthalmology, orthopedics,
vascular surgery, etc.) recorded between January 2, 2024, and January 31, 2024. A standardized pre-
processing protocol was implemented, involving the following steps: (i) the removal of cases with at least
50% missing values; (ii) correction of incoherent timestamps when sufficient information was available
(refer to Chapter V of the thesis (Rifi 2023)); (iii) exclusion of cases with unresolved inconsistencies; (iv)
missing start or end timestamps for activities were imputed using the average duration of the respective
activity. After these steps, a refined dataset containing 1,664 cases was obtained.

Based on the above assumptions and the dataset formulated, a discrete event simulation model comprising
16 ORs and 24 PAC beds, specifically, 19 beds in the PACU and 5 beds in the PHU, was developed using
AnyLogic. The simulation encompasses 22 weekdays over a one-month period, with daily operations
simulated from 7:30 AM to 8:00 PM. Patient arrivals are generated sequentially according to a predetermined
schedule derived from historical data, thereby naturally incorporating daily variability into each day’s
schedule. A first-come, first-served policy is applied to all shared resources. Notably, patients are permitted
to enter the surgical center before the completion of the preceding surgery. The entry into ORs is contingent
upon the completion of OR cleaning from the prior procedure, which subsequently triggers the entry of
the next patient. Using the Python dist fit library, best-fit statistical distributions are selected to model
case-time durations.

The registration and check-in process is conducted in the ARU for patients following pathways other
than D-n, while D-n patients are processed in the IRU. The IRU comprises a single reception desk staffed
by one nurse responsible for patient reception and departure. Given that D-n patients have completed
their preoperative preparations in their inpatient wards, they experience no queuing or delays in the IRU,
facilitating rapid entry into the surgical center. Conversely, the ARU features two reception windows and is
staffed by four nurses, each assigned to a specific pathway (i.e., external, short-stay ambulatory, long-stay
ambulatory, and D0). The registration and check-in process in the ARU is modeled using a triangular
distribution with a minimum of 3 minutes, a mode of 5 minutes, and a maximum of 8 minutes. Patients
processed through the ARU are required to change into surgical gowns before entering the surgical center,
utilizing one of four available dressing rooms. The dressing process follows an empirical distribution with
a mean duration of 9.615 minutes and a standard deviation (SD) of 4.718 minutes. Subsequently, patients
place their belongings into one of 36 locker compartments, a process modeled by a triangular distribution
with a minimum of 1 minute, a mode of 1.5 minutes, and a maximum of 2 minutes. It is assumed that locker
capacity is sufficient, with scalability as needed, thereby preventing any bottlenecks in luggage placement.

Preoperative preparations, such as intravenous drips and ECG tests, are conducted in the PHU exclusively
for ambulatory and DO patients. The PHU is equipped with 9 rest sofas, 10 beds, and 6 nurses (4 of whom are
shared with the ARU) to facilitate these preparations. The duration of preoperative preparation is modeled
as an empirical distribution with a mean of 31.137 minutes and a SD of 22.829 minutes. Additionally,
the LRA is performed solely in the PACU, which includes 5 dedicated beds for this procedure. The LRA
duration follows an empirical distribution with a mean of 20.976 minutes and a SD of 9.21 minutes.

The OR process encompasses several stages: OR entry, initiation of anesthesia, incision, closure, OR
exit, and OR cleaning. Based on available data, the length of stay in ORs (i.e., OR LOS) is modeled as
an empirical distribution with a mean of 71.645 minutes and a SD of 45.143 minutes. The post-anesthesia
care is provided in either the PACU or PHU, depending on patient pathways (refer to Table 1). The PACU
contains 19 beds dedicated to the PAC, while the PHU has 5 such beds. The duration of PAC in the PACU
is modeled as an empirical distribution with a mean of 100.193 minutes and a SD of 32.785 minutes,
whereas in the PHU, it follows an empirical distribution with a mean of 39.035 minutes and a SD of
12.412 minutes. Following PAC in the PACU, patients are transferred to their respective wards via the
IRU, contingent upon the availability of stretcher bearers. In the current setting, 6 stretcher bearers are
available to meet the demands of PAC nurses. Conversely, after PAC in the PHU, patients retrieve their
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belongings and change clothes, processes modeled by a triangular distribution with a minimum of 1 minute,
a mode of 1.5 minutes, and a maximum of 2 minutes, and an empirical distribution with a mean of 9.615
minutes and a SD of 4.817 minutes, respectively. All estimated distributions have been validated using the
Kolmogorov—Smirnov test to ensure the goodness-of-fit.

2.4 Validation of the Simulation Model

The simulation model has been validated through a comparison with 1,664 data samples in the dataset. Two
primary metrics, including the OR LOS and OR utilization, were evaluated. Ten simulation replications are
conducted, and the average values of metrics are reported. As shown in Table 2, the mean OR LOS produced
by the simulation closely approximates that observed in the collected data, with only minor differences.
Comparisons are conducted for OR utilization for each OR. As illustrated in Figure 2, the utilization rates
obtained from the simulation replications closely align with those derived from the collected data. OR
utilization is calculated as the ratio of the total OR usage time for all surgeries completed before the end of
the day (numerator) to the theoretical total available time (denominator), where the theoretical availability
is 12.5 hours per OR per day. Note that ORs 13, 14, and 15 are dedicated to orthopedics, ophthalmology,
and the digestive system, respectively, with relatively low utilization rates (i.e., below 30%).
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Figure 2: Validation of OR utilization.

The results demonstrate that the simulation model accurately replicates the OR workflow and patient
flow, yielding performance outcomes within an acceptable range. Therefore, the developed simulation
model can be utilized to predict and evaluate various scenarios, as well as to provide recommendations for
operational improvements and decision-making.

3 MACHINE LEARNING-ENHANCED SIMULATION

3.1 Variable Definition and Feature Extraction

To develop ML models for case-time duration prediction, the dataset was chronologically partitioned into
training and test subsets so as to preserve its time-series structure. The training set comprised 1,026 cases
occurring between 2 January and 19 January (the first three weeks), whereas the test set comprised 638
cases from 22 January to 31 January (the final week and additional days).

The prediction process involves two interdependent clinical services essential to surgical center operation:
(i) the intraoperative care in ORs and the post-operative recovery process in ORs, the PACU, or the PHU.
The primary target variables for the ML models are the total OR LOS, defined as the time from patient
entry into the OR to patient OR exit, rather than skin incision to skin closure, and the PAC LOS, defined
as the time difference between the start and end of post-anesthesia care. These durations correspond to the
occupancy of key medical resources, i.e., the ORs and PAC beds. Prior research (Van Eijk et al. 2016) shows
that surgical case duration typically conforms to a log-normal distribution across most procedure types.
Consistent with this, Figure 3(a) illustrates the distribution of surgical case durations within the dataset,
which exhibits significant right skewness. Consequently, the surgical case duration is log-transformed (as
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shown in Figure 3(b)) and normalized to have a mean of 0 and a standard deviation (SD) of 1 for use in
ML regression models. In contrast, the PAC LOS (as shown in Figure 3(c)) is only normalized to have a
mean of 0 and an SD of 1.
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Figure 3: Histogram and density estimates of case time durations (in hours) in the training data: (a) OR
LOS (left); (b) Log-transformed OR LOS (middle); (c) PAC LOS (right).

The dataset includes several categorical variables: OR, surgeon, surgeon specialty, primary procedure
code, first and second sub-procedure codes (when available), OR nurse, instrument nurse, bandage nurse,
anesthesiologist, primary anesthesia type (which comprises six classes, e.g., general anesthesia (GA), local-
regional anesthesia (LRA), pure local anesthesia (LA), sedation, GA & LRA, LA & sedation), anesthesia
nurse, PAC bed, PAC nurse, robot surgery (a binary indicator of whether the surgery was robot-assisted),
clinical pathway (designating five distinct pathways: extern, short ambulatory, long ambulatory, DO, and
D-n), day-of-week of surgery (with seven categories: Monday, Tuesday, ..., Sunday), and arriving late (a
binary indicator of whether a patient arrives late). For de-identification purposes, the names of the medical
staff have been replaced by unique identification codes. Regarding the day of the week, the surgical
center operates on a six-day schedule, with only rare emergency cases accepted on Sundays. In January
2024, 1,643 surgeries (98.73%) were performed on weekdays (i.e., Monday through Friday), whereas
Saturday experiences a considerably lower volume with only 16 cases (0.96%). On Sundays, the center is
exclusively open for unforeseen emergency cases, accounting for merely 5 cases (0.3%). Missing values in
these categorical variables have been imputed with a dedicated category "unavailable". Prior to integration
into machine learning models, these categorical variables were transformed into binary variables using the
one-hot encoding method. Table 3, lists some critical categorical variables included in the dataset and their
summary statistics.

Table 3: Statistics of categorical variables in the dataset (N=1,664).

Variable Unique Most freq. Variable Unique Most freq.

OR 16 OR16 (251) Surgeon 43 ID?77 (112)
Specialty 7 Orthopedic (452) | Procedure 299 HHQEOO05 (152)
OR Nurse 61 ID??? (174) Instrument nurse 50 ID???7 (64)
Bandage Nurse 224 ID??? (152) Anesthesiologist 36 ID??? (115)

Anes. Type 7 GA (866) Comp. anes. type 27 TAP Bloc (87)
Anes. Nurse 33 ID?7? (131) PAC bed 24 BX06 (126)

PAC Nurse 27 ID??7 (162) Pathway 5 Short Ambu. (518)

The "unique" column specifies the number of distinct categories within the variable. The "freq" column
provides the count of the most frequently occurring class.

Regarding numerical variables, the dataset includes age (in years), severity (an ordinal variable with
increasing levels 1, 2, 3, and 4), scheduled OR LOS (i.e., the pre-assigned time blocks in the operating
room schedule based on anticipated duration, which differ from the actual OR LOS), the start time of the
scheduled surgery (in 24-hour format), the end time of the scheduled surgery (in 24-hour format), time of
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arrival at the surgical center (in 24-hour format), time of arrival at the OR, and the start of the PAC (in
24-hour format). At our institution, the scheduled OR LOS is primarily based on the surgeons’ estimates.
It is occasionally adjusted using historical data, although this is not a standardized or consistent process.
In rare cases, the scheduled OR LOS is missing, and a "-1" placeholder is entered for emergency cases.
The scheduled duration was log-transformed as recommended by (Van Eijk et al. 2016). All timestamps
are expressed using the 24-hour convention. Consequently, time variables are converted into numerical
values ranging from 1 to 24. For example, 1.5 and 18.25 represent 1:30 AM and 6:15 PM, respectively.
Missing values in the numerical variables are encoded as "-1", thereby allowing machine learning models to
distinguish between missing data and valid measurements of zero. Prior to incorporation into the predictive
models, the numerical variables were normalized using z-score normalization to achieve a mean of 0 and
a standard deviation of 1.

Table 4: Summary statistics of the numerical variables in the dataset.

Variable Traning (N=1,026) Test (N=638)
mean SD min median max mean SD min median max
Age (years) 62.36 15.63 17.13 63.78 99.03 | 62.34 1499 20.21 63.26 100.21
Scheduled OR LOS (hours) | 1.118 0.726 0.166 1.0 6.75 1.131 0.855 0.333 1.0 6.0

The study also incorporates unstructured data, including the procedure name and the surgeon’s note.
The procedure name is a short, free-text description of the intended surgery or procedure(s) to be performed.
Billing codes (e.g., Homogeneous Groups of Patients (GHM)) were excluded from the analysis, as they
are not available at the time of surgery. The surgeon’s note comprises a brief free-text description of the
operating location and associated precautions. Missing text data was represented with an empty string,
ie.,, "". Common French stop words (e.g., “le”, “de”, “ce”, etc.) and punctuation are removed from
text descriptions. Subsequently, unigrams and bigrams are extracted from these free-text descriptions
and encoded using a TF-IDF (Term Frequency—Inverse Document Frequency) sparse vector representation
(Havrlant and Kreinovich 2017). Trigrams were excluded as their inclusion yielded no obvious performance
improvement.

3.2 Baseline Models and Machine Learning Modeling

We developed two families of predictive models: OR LOS prediction models and PAC LOS prediction
models. Model training was performed using a five-fold cross-validation framework, and the final evaluation
was conducted on a separate test set. Specifically, the training set was employed within the cross-validation
framework to fine-tune model parameters, after which each model was evaluated on the unseen test set.
All results presented in this section pertain exclusively to the performance observed on the test set. For
baseline comparisons, we constructed simple heuristics that replicate how stakeholders estimate OR LOS
and PAC LOS, denoted as €53 and £55%°, respectively. Additionally, we considered a widely used Bayesian
approach for OR LOS prediction (Dexter and Ledolter 2005), referred to as f:g;yes.

These baseline models leverage historical data to compute average case-time durations as the predicted
values, which include (i) statistical estimation method, i.e., sampling from the empirical distributions
estimated for OR LOS (£5£2%) and PAC LOS (£552%) using training data (refer to Section 2.3); (ii) surgeon-
procedure specific OR LOS (£53"™), i.e., the average OR LOS for the last 10 surgical cases (if available)
with the same procedure code by a specific surgeon; (iii) anesthesiologist—-anesthesia specific PAC LOS
(EE92P), i.e., the average PAC LOS for all cases with the same anesthesia type performed by a specific
anesthesiologist; (iv) Bayesian statistical method (Eggyes), i.e., a weighted combination of the surgeon’s
estimate (i.e., scheduled duration) with historical data to forecast OR LOS. Using the estimated values, we
developed baseline models to forecast relevant case-time durations within the test set. The performance of
these baseline models serves as a reference, such that any ML approach must yield superior results to be
considered effective.
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Subsequently, we trained a set of predictive models using a five-fold cross-validation approach. Each
method was implemented with the Python sklearn library, and hyperparameter tuning was conducted
using a random search strategy. The selection of models was guided by a preliminary screening process,
during which we initially evaluated various approaches, including linear regression, LASSO regression,
and k-nearest neighbors (KNN). ML models that demonstrated inferior performance, measured by MAE,
RMSE, R2, and PDw15, compared to at least one of the above-mentioned approaches were excluded.
Following this screening, we identified and selected the most promising ML models for further analysis.

3.3 Experimental Results of Machine Learning Predictions

Table 5 compares the results obtained from ML methods and baseline models used to forecast OR LOS
and PAC LOS. The first column lists the method names, while the second through fourth columns present
the mean absolute error (MAE), root mean squared error (RMSE), and the r? value, respectively. The final
column, PDw15P, indicates the percentage of forecasted cases for which the absolute deviation from the
actual duration is less than 15%. The results demonstrate that all ML methods outperform the baseline
models across all four quality metrics. Furthermore, HGBR and GBR exhibit the best performance, with
HGBR achieving the lowest MAE. Notably, HGBR is capable of forecasting 51% (70%) of the OR LOS
(PAC LOS) with an absolute error not exceeding 15%. According to the literature (Saadouli et al. 2015)
and expert opinion in the hospital, a prediction is considered acceptable when the deviation from the actual
duration is less than 15%. This figure represents an improvement over the baseline model £552% (£5£2%) by
37.940% (52.664%).

Table 5: Testing results for OR LOS (left) and PAC LOS (right) prediction (measured in minutes).

Method MAE RMSE R*? PDwl5P | Method MAE RMSE R?  PDwl5P
gotat 47306 61.031 -0.836 13.157 | 5%t 48.883 62.534 -1.222 18.025
Eomp 21.894 37.683 0.272  26.018 | €S5mP 35.001 50.361 -0.441 25.549
Toa¥e®  19.832 33.747 0.133  32.601 | MLP  21.028 29.613 0.501  44.201

DT 18.528 29.240 0.578  36.520 | DTR 19.296 29.715 0.498  50.783
RF 13919 22832 0.742 44.670 | SVR 17.983 33.384 0.366  49.843
BR 13.138 22.253 0.755  44.827 | RF 15.650 22.156 0.720  53.605
MLP 13.013 21.334 0.775 45.141 | BR 14961 21.503 0.737  55.956

GBR 12311 20364 0.795  45.297 | GBR 10.733  15.686 0.860  68.808
SVR 11.281 17.788 0.843  46.551 | HGBR 10.084 15.427 0.864 70.689
HGBR 10.840 16.517 0.865 51.097
SVR: Support Vector Regression, DT: Decision Tree regression, RF: Random Forest, BR: Bagging Regression

Tree, MLP: Multiple Layer Perceptron, GBR: Gradient Boosting Regression Tree, HGBR: Histogram-based
Gradient Boosting Regression Tree.

We present a detailed statistical analysis to determine whether the tested ML models yield statistically
different results. In line with the recommendations of Demsar (Demsar 2006), we conducted an analysis
aimed at establishing (i) whether the prediction methods produce different forecasts and (ii) whether a
ranking among the different methods can be defined. To achieve this, we performed a two-step statistical
analysis.

We first applied the Kruskal-Wallis test (Liu and Chen 2012) to evaluate whether differences in mean
absolute error (MAE) among the prediction algorithms were statistically significant. This non-parametric
test is typically used when comparing more than two independent groups. The null hypothesis of the
test posits that the prediction results of these ML models are indistinguishable (i.e., similar MAE values
are provided), and thus, any observed ranking arises by chance. Table 6 summarizes the results of the
Kruskal-Wallis tests for both OR LOS and PAC LOS on the MAE of different algorithms. It reports the
number of runs per method (N), degrees of freedom (df), the y? statistic, the significance level, and the
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associated p-value. At a significance level of o = 1 x 1074, the null hypothesis is rejected, indicating that
MAE differs significantly across methods.

Table 6: Results of the Kruskal-Wallis test. Table 7: The setup for Nemenyi tests.
target N df x° o p-value target k N a qa CD
ORLOS 100 9 564.605 1le4 <le-110 ORLOS 9 100 1le4 6.721 00910
PACLOS 100 8 627746 le-4 <le-120 PACLOS 8 100 1le-4 6.660 0.859

Second, given that the null hypothesis of the Kruskal-Wallis test was rejected, a post-hoc analysis
was performed using the Nemenyi test (Liu and Chen 2012) to compare each method with the others,
thereby identifying which methods differ significantly in their rankings. Two methods are considered
significantly different if their average ranks differ by at least the critical difference (CD), computed as
CD = gq+/k(k+1)/6N, where k is the number of configurations used, N the number of runs per algorithm,
and g, the critical value obtained from (DemsSar 2006). Table 7 details the Nemenyi test configuration and
the resulting CD. Methods whose mean-rank differences exceed the CD are deemed to perform significantly
differently.
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Figure 4: Nemenyi post-hoc comparison matrixs.

Figure 4 shows the Nemenyi matrix of significant results for different prediction methods. Cells marked
with * indicate that the difference between the two groups (methods) exceeds the critical value. The number
in cells represents the difference in rank mean between the row group and the column group. The results
show that HGBR and GBR are significantly different from other methods at the « level of 0.01%. These
findings indicate that HGBR and GBR perform significantly better than the other methods based on the
evaluated statistical metrics.

4 BENEFITS OF ML-ENHANCED SIMULATION
4.1 Conventional Simulation vs. ML-enhanced Simulation

Utilizing the case-time duration prediction approach described in the previous section, the management of
the surgical center becomes both personalized and precise. Specifically, for each request for key resources
(i.e., OR and PAC bed) from a patient, the relevant services employ the validated HGBR models to forecast
the duration of resource occupancy. The ML-enhanced DES treats the ML-predicted durations as point
estimates, directly replacing the stochastic sampling from empirical or parametric distributions. That is,
once the characteristics of a patient are known, a single deterministic duration predicted by the ML model
is assigned in the DES model. This substitution eliminates residual randomness for these durations, thereby
enabling more personalized and precise simulation.
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To assess the impact of integrating predictive capabilities of ML algorithms into the simulation model, we
propose two distinct management scenarios: (i) precise surgical service management based on the machine
learning prediction models (i.e., ML-enhanced DES) and (ii) classical surgical service management (i.e.,
conventional DES) that relies solely on probability distributions derived from the entire training dataset (as
described in Section 2.3) and does not consider personal characteristics. The key performance indicators
(KPIs) for evaluation are the patient LOS in key services (e.g., surgeries and post-anesthesia care) and
utilization of key resources (e.g., OR and PAC beds).

4.2 Numerical Results

To validate the ML-enhanced DES model, we conducted ten independent replications of each model, i.e.,
the ML-enhanced DES model versus the conventional DES model. The average values of the four primary
OR management metrics, i.e., OR LOS, OR utilization, PAC LOS, and PAC bed utilization, are calculated
and compared. As shown in Table 8, the ML-enhanced DES model achieved a 6.46% reduction in mean
OR LOS, with a corresponding 5.03% reduction in its standard deviation (SD), relative to the traditional
DES model. OR utilization was compared on an individual-OR basis. Figure 5 (left) demonstrates that
utilization rates produced by the ML-enhanced DES model deviate from the actual data by at most 0.0677
(6.77%), whereas the conventional DES model exhibits a maximum deviation of 0.1155 (11.55%).

Table 8: Comparison of OR LOS measured in Table 9: Comparison of PAC LOS measured in

hours (N=638). hours (N=638).
Actual data DES ML-based DES Actual data DES ML-based DES
Mean 1.198 1.359 1.272 Mean 1.337 1.643 1.551
SD 0.700 0.596 0.563 SD 0.843 0.675 0.763

Table 9 reports a 5.59% decrease in average PAC LOS under the ML-enhanced DES framework. In
Figure 5 (right), the letters A-E denote the 5 PAC beds located in the PHU, and the numbers 1-19 correspond
to the 19 PAC beds located in the PACU. The ML-enhanced DES model’s PAC bed utilization predictions
incur a maximum deviation of 0.0812 (8.12%) from observed data, in contrast to 0.1290 (12.90%) for the
conventional DES model.

0.7
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Figure 5: Comparison of OR utilization (left) and PAC bed utilization (right).

To statistically validate these improvements, paired t-tests (&« = 0.01) were conducted using the results
from 10 simulation replications for both OR LOS and PAC LOS. The observed reductions in mean OR LOS
(0.087 hours) and mean PAC LOS (0.092 hours) were both statistically significant (p < 0.001). Additionally,
paired t-tests (&0 = 0.05) were performed on the utilization rates of each OR and PAC bed, also based on
10 replications. The differences in utilization were statistically significant for all 16 ORs and all 19 PAC
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beds (p < 0.01). Other ancillary metrics were validated against historical data and reviewed with hospital
staff.

S CONCLUSION, DISCUSSION AND FUTURE WORK

This study presents an ML-enhanced simulation approach aimed at optimizing the utilization of critical
resources in surgical centers through the integration of ML techniques. The proposed hybrid simulation
model, which combines ML and DES, facilitates the incorporation of individual patient characteristics and
enables the quantification of service process variability via pre-trained ML models. The results derived
from the ML-enhanced simulation highlight the potential advantages of embedding predictive capabilities
of ML algorithms within simulation frameworks.

While the ML-enhanced DES framework demonstrated significant improvements in simulation accuracy
at the Saint-Etienne Mutualist Clinic, its generalizability to other surgical centers warrants consideration.
The transferability of the HGBR models depends on: (i) data availability (e.g., availability of structured
patient covariates and unstructured clinical notes), (ii) workflow similarity (e.g., patient pathways, resource
configurations), and (iii) operational heterogeneity (e.g., scheduling policies, emergency case protocols).
Institutions with divergent data ecosystems or care processes may require model retraining using local
datasets. Future multisite validation studies are recommended to establish broader applicability.

In resource-limited settings, such integrated approaches can enable precise resource allocation and
reduce workflow disruptions. Future research will pursue two key objectives. First, we aim to develop
methodologies for both offline planning and online scheduling of key surgical resources within the simulation
framework, with the goal of achieving performance improvements beyond those offered by the current
ML-enhanced DES model. Second, for stochastic events such as late arrivals of patients or surgeons and the
occurrence of emergency cases, we intend to construct predictive models and design proactive mitigation
strategies. These efforts are expected to reduce OR overtime and promote a more balanced and efficient
utilization of critical resources.
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