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ABSTRACT

Large Language Models (LLMs) offer transformative potential for Modeling & Simulation (M&S) through
natural language interfaces that simplify workflows. However, over-reliance risks compromising quality due
to ambiguities, logical shortcuts, and hallucinations. This paper advocates integrating LL.Ms as middleware
or translators between specialized tools to mitigate complexity in M&S tasks. Acting as translators, LLMs
can enhance interoperability across multi-formalism, multi-semantics, and multi-paradigm systems. We
address two key challenges: identifying appropriate languages and tools for modeling and simulation tasks,
and developing efficient software architectures that integrate LLMs without performance bottlenecks. To this
end, the paper explores LLM-mediated workflows, emphasizes structured tool integration, and recommends
Low-Rank Adaptation-based architectures for efficient task-specific adaptations. This approach ensures
LLMs complement rather than replace specialized tools, fostering high-quality, reliable M&S processes.

1 INTRODUCTION

Large Language Models (LLMs) offer the temptation of a one-stop-shop by handling seemingly any
Modeling & Simulation (M&S) task, at the easily satisfiable condition of expressing the task through
natural language and/or through images. This vastly simplifies the workflow of modelers, by forging the
illusion that it is no longer necessary to navigate different tools and data representations. As a result,
LLMs often are adopted due to the perceived convenience of bypassing the strenuous steps of de- and
re-composing complex problems for modeling and analysis purposes. Such convenient shortcuts conceal
accidental and essential complexity of the problem at hand and therefore, excessive reliance on LLMs may
have detrimental effects for M&S research.

Research quality is negatively impacted when the LLM output is suboptimal relative to specialized
tools or expertise. Modelers may deem the LLM outputs sufficiently accurate if they are not aware that a
better, specialized solution exists. For example, the LLM may be asked to think about whether changes
in the input of a simulation model would create a desired effect. Directly using a LLM may result in
logical shortcuts or hallucinations. However, LLMs are proficient at translating such queries into symbolic
representations (e.g., first order logic) and they can call a symbolic solver to guarantee logical coherence
during reasoning (Lam et al. 2024).

In this paper, we focus on leveraging the convenience and simplicity of using LLMs without sacrificing
quality or losing the benefits of existing investments in specialized tools. We posit that LLMs should be
used to mitigate accidental complexity, so that the human can focus on the essential complexity of the
problem at hand. Since accidental complexity in M&S research typically stems from multi-formalism,
multi-semantics, multi-paradigm modeling, and the supporting heterogeneous toolchains, we propose that
modelers should leverage LLMs as a “glue” or middleware “translator” between specialized tools and
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expertise. That is, instead of aiming to perform any task solely within a LLM, the emphasis should be on
placing LLMs between modeling and simulation systems to make them more easily interoperable.

The realization that LLMs need to be integrated with specialized tools is gaining traction in M&S
research (Zhang et al. 2024) and echoes a broader interest in positioning LL.Ms as middleware instead of
the sole solution (Lehmann 2024; Calvet et al. 2024). In this paper, our main contribution is to address the
two core questions raised by the opportunities and challenges of integrating LL.Ms with specialized tools
to accomplish modeling and simulation tasks:

Q1  If the LLM is to act as a translator, then which language should it translate into and which ool
should it call depending on the M&S task?

Q2  Which software architecture could efficiently integrate LLM as a middleware to support the inter-
operability of specialized M&S tools without creating performance bottlenecks?

The remainder of this paper is organized as follows. Section 2 succinctly demonstrates across fields
that LLMs have been used for their convenience, occasionally at the expense of quality. This evidence
base, across applications, motivates our paper by showing that the understandable need for convenience
from M&S practitioners should not result in an exclusive reliance on LLMs, but rather by employing
LLMs in well-defined roles such as a middleware between specialized tools. In Section 3, we identify
languages and tools to perform modeling tasks (Q1), ranging from building models (e.g., by merging or
from a corpus) to validating and explaining their structure. Similarly, Section 4 covers the languages and
tools for simulation tasks (Q1). In Section 5, we review the architectures available (Q2) and propose one
solution that has yet to be employed for M&S but has a strong potential for high performances in both
training and execution. Finally, Section 6 examines key issues in using LLMs as middleware, including
trust, the reciprocal benefits between LLMs and specialized tools, and the need for extensive benchmarks.

2 BACKGROUND
2.1 Evidence for the Convenient Use of LLMs at the Detriment of Quality Across Applications

An already infamous Forbes report from 2023 illustrates that LLMs are used as a ‘Swiss-Army Knife’ for
diverse tasks because they are easy to use, despite the existence of tools that might produce higher-quality
outputs. This report describes a lawyer who used ChatGPT to draft and submit a defense brief that
contained fictitious case precedents (Novak 2023). While the efficacy and accuracy of LLMs used in the
legal domain has significantly increased since 2023, the precision demanded in legal discourse within and
across languages raises barriers just as significant (Padiu et al. 2024). As a result, the ease of using LLMs
in such cases is outweighed by the risk of legal missteps that are more likely to be avoided by legal experts.

In the clinical domain, Brown et al. (2024) compared traditional machine learning (ML) methods with
LLMs (GPT-3.5 and GPT-4) for prediction tasks using electronic health records. Their study found that
while LLMs are attractive for their simplicity and ease of deployment, traditional ML approaches—such as
gradient-boosted trees—achieved significantly higher predictive performance and calibration. From another
direction, Van Veen et al. (2024) reported that although LLMs can produce clinical summaries that, in
many cases, are judged comparable to those generated by experts, the models still exhibit safety concerns
such as hallucinatory content, which specialized summarization systems or curation methods employed
by experts are better at avoiding. This is not to say continued research will not ultimately address LLM
limitations in this domain or others. Rather, it is to highlight that despite the impressive applications of
LLMs in this area (Yu et al. 2024; Zheng et al. 2024), general applicability should be viewed with caution.

In the area of code generation, Tang (2024) and Basic and Giaretta (2024) highlight that LLM-
generated code, while easy to obtain, often contains bugs and security vulnerabilities that require manual,
and often time-consuming, efforts to untangle. In a reverse engineering context, Pordanesh and Tan (2024)
demonstrated that GPT-4 can offer broad insights when analyzing decompiled code, but it frequently
struggles with the intricacies of complex code structures—Ileading to superficial analyses compared to
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established reverse engineering tools, such as the disassembler and decompiled Binary Ninja and the
Ghidra suite.

2.2 Can LLMs address the Elusiveness of Simulation Interoperability

Simulation interoperability has been pursued through various research and engineering efforts for over three
decades (Tolk 2024). Many approaches have fallen short because they treated simulation systems as mere
software solutions. In reality, simulations implement models that are developed for specific purposes: to
address particular research questions or support distinct tasks. This means that representations of simulated
entities are rarely identical across different systems — their scope and structure naturally differ. This
underlying model diversity is the fundamental reason why simulation interoperability remains elusive:
technical standards that interconnect simulations cannot resolve conceptual differences between models.

LLMs offer promising potential to address this challenge. They can help bridge both referential
differences (what information a simulation provides) and methodological differences (how this information
is structured). Frydenlund et al. (2024) demonstrated using the same model to create simulations employing
different paradigms, achieving varying levels of success. Jackson and Rolf (2023) utilized LLMs to generate
natural language descriptions from simulation data.

Evidence suggests LLMs have strong translation capabilities. OpenAl’s GPT-4 has demonstrated
ability to translate between numerous languages according to their technical documentation and public
demonstrations, while Google has progressively integrated LLM technology into their translation services,
beginning with Neural Machine Translation systems and evolving to include models like T5 and PaLM.
Although neither company fully discloses their production architecture details, their capabilities suggest
that if LLMs can effectively translate between different linguistic structures and grammars, they should
increasingly contribute to addressing the resolution, paradigm, and scope differences that have historically
challenged simulation interoperability.

A new research domain are execution-aware LLMs (Di Menna et al. 2025). While the current articles
focusing predominantly on source code generation that does not only consider the static source code but
also considers how this source code is executed and what effect such executions have, these ideas clearly
point beyond the usual semantic understanding of an artifact towards a pragmatic understanding of how
this artifact is used. This new domain has the potential to go beyond source code engineering and address
the higher levels of interoperability as requested in (Tolk 2024). However, the research is still in its infancy
and the authors are not aware of any simulation-specific applications thereof.

3 LLMS FOR MODELING

The flexibility of LLMs often comes at the cost of output precision, formal reasoning capabilities, and
domain-specific accuracy. Modeling is a task driven activity to select the scope of the model, as well as the
appropriate abstraction level that results in a specification that can be implemented. As such, it involves
tasks that range from constructing model specifications (e.g., by merging existing models or extracting
models from data) to verifying and explaining model structures. Many such tasks require structured data
representations, formal logic, and domain-aware processing, which specialized tools handle more effectively
than LLMs. Table 1 summarizes key modeling tasks and examples of languages and tools that directly
support each task out-of-the-box, without requiring custom integration code.

Table 2 provides an overview of contemporary tools that directly support major modeling tasks without
requiring custom integration. These tools are designed to reduce manual effort and improve modeling
reliability across M&S domains. For example, OntoAligner and CoMerger support semi-automated merging
of OWL ontologies with built-in alignment and consistency checks, ideal for collaborative modeling or
integrating heterogeneous sources in domains like defense and logistics. Legacy tools like the PROMPT
plugin for Protégé remain useful for smaller or more controlled merge tasks. AutoMap enables rapid model
generation from unstructured text by extracting and visualizing concept networks. This is particularly
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Table 1: Modeling tasks and examples of languages/tools with native out-of-the-box support.

Modeling Task Example Language/Notation Specialized Tool (Direct Support)

Merging Models OWL ontologies OntoAligner, CoMerger, Protégé with
PROMPT plugin (Horridge and Bechhofer
2004)

Building Model from Corpus Network text analysis AutoMap — extracts and visualizes concept
networks from text (Carley 2013)

Validating Model Structure First-order logic (Alloy), OWL, | Alloy Analyzer (Jackson 2006), HermiT

UML reasoner in Protégé (Glimm et al. 2014),

UModel

Explaining/Documenting Models | Structured model descriptions Enterprise Architect from Sparx, Protégé
OWL2NL plugin

Data/Schema Modeling ER diagrams, UML ER/Studio, Erwin Data Modeler (Quest
Software, Inc. 2023)

System Modeling and Simulation | Modelica Wolfram SystemModeler

Note: OWL is the Web Ontology Language, UML is the Unified Modeling Language.

useful in healthcare or intelligence analysis, where narrative data, such as that reflecting patient reports or
incident logs, can be converted directly into influence diagrams or causal maps.

Table 2: LLM-mediated modeling workflows: tools, roles, and integration patterns.

Modeling Subtask Recommended Tool(s) LLM Role Integration Notes
Drafting initial model | GPT-4 + UModel, ER/Studio, | Translates textual input to | Output should target tool-
structure from natural | Protégé structured representation | compatible syntax (e.g., XMI,
language (UML, OWL, ER) RDF/XML); tool validates
structure
Ontology/model  align- | OntoAligner, CoMerger, Pro- | Suggests initial mappings be- | Specialized tool performs align-
ment tégé PROMPT tween terms; explains incon- | ment, consistency check; LLM
sistencies mediates error resolution
Data schema mapping | openrefine.org, Neo4j, spaCy | Translates error logs; pro- | LLM can explain match con-
and reconciliation poses entity matches fidence, suggest reconciliation
rules
Model verification and | Alloy Analyzer  (Jackson | Convertsinformal constraints | LLM provides human-readable
logic enforcement 2006), HermiT Reasoner | to formal rules; explains vi- | feedback on validation results;
(Glimm et al. 2014), SHACL | olations tools execute logic checks
validators
Process modeling and | Wolfram SystemModeler, | Converts scenarios into sys- | LLM prompts must be aligned
simulation specification | MATLAB/Simulink, Cameo tem dynamics / process mod- | with domain-specific syntax;
els tool ensures compile-ready out-
put
Business rule formaliza- | Erwin (Quest Software, Inc. | Converts high-level require- | Tool checks completeness, syn-
tion 2023), Enterprise Architect | ments to constraint logic tax; LLM supports traceability
from Sparx explanation
Documentation and | OWL2NL, GPT-4 + | Verbalizes formal models; | LLM expands sparse documen-
model explanation LangChain (LangChain | generates stakeholder reports | tation; tool outputs serve as
Contributors and Harrison structured input
Chase 2023)
Workflow orchestration | GPT-4 + Toolchain (via | Dispatches subtasks to appro- | Requires modular design; tools
(multi-tool) LangChain and API) priate tools; sequences steps | expose APIs or plugin inter-
faces

Note: RDF is the Resource Description Framework, SHACL is the Shapes Constraint Language for describing RDF graphs.

Model validation is natively supported by tools such as the Alloy Analyzer (Jackson 2006), which
provides bounded model checking for first-order logic specifications, and HermiT (Glimm et al. 2014), a
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) Draft OWL or UML
Natural Language Ontology/Model Protégé
l Verify Alloy Logic or SHACL
" Constraints Alloy Analyzer
LLM Translator J> : Modelica or Simulink
[ | Simulate Wolfram
Processes SystemModeler
|_,| Formalize Constraint Logic
Rules Enterprise Architect

Figure 1: LLMs as Middleware for Modeling Tasks

widely-used reasoner for OWL ontologies. These tools help verify that structural constraints and logical
rules are satisfied, reducing errors prior to simulation or implementation into broader workflows. Tools
such as Sparx’s Enterprise Architect offer automatic report generation from structured models, while
OWL2NL translates ontology axioms into readable natural language. These features support stakeholder
communication, requirements documentation, and training. Additionally, tasks such as data and schema
modeling are directly supported out-of-the-box by tools such as ER/Studio and Erwin Data Modeler (Quest
Software, Inc. 2023), both of which allow analysts to design ER or UML diagrams, enforce schema
constraints, and integrate with enterprise databases. Lastly, system modeling and simulation is supported
natively by Wolfram System Modeler, which uses the Modelica language to represent complex multi-domain
systems and provides built-in simulation capabilities—particularly useful in biomedical, engineering, and
manufacturing applications.

In some cases, general-purpose modeling tools or libraries can accomplish identified modeling for
M&S tasks with user-driven integration. Table 2 enumerates such scenarios. No single tool from the table
can, in isolation, produce a validated, domain-specific model; modelers must orchestrate multiple tools
in sequence to that end. Prior to LLMs, such orchestration was already common: one might apply an
NLP pipeline—e.g., using a library like spaCy—to extract candidate entities or relationships from text,
then employ a schema matching system or data cleaning tool, such as OpenRefine (openrefine.org), to
reconcile terminology, and finally use an ontology editor or modeling environment to formalize the concepts.
LLM-integrated workflows build upon the same division of labor, where an LLM takes on a ‘glue’ role:
mediating between human language and the formalisms required by each specialized tool.

While many core modeling tasks are supported by specialized tools out-of-the-box, numerous other
tasks remain difficult to execute without integrating multiple tools or bridging semantic gaps between
representations. These include cases where natural language must be translated into formal structure, where
informal business rules must be formalized, or where model components from heterogeneous systems must
be aligned. Here, LLMs can serve as a middleware, translating, sequencing, and coordinating modeling
subtasks (Figure 1). Table 2 presents LLM-mediated modeling workflows from initial model drafting to
rule formalization and documentation, highlighting common subtasks, the target representation language(s)
that the LLM must generate (e.g., OWL, UML), the specialized tool(s) capable of ingesting and executing
that representation (e.g., Protégé), and the role of the LLM as a mediator between natural language and
formal artifacts (e.g., translation, summarization).

The LLM serves not as a substitute for the formal tool, but as an intelligent bridge—converting human
intent into machine-verifiable representations (Figure 1). The table operationalizes this division of labor,
offering practical guidance on how to scope LLM-mediated translation workflows depending on the modeling
need. This directly addresses Q1 by establishing clear, task-specific routes from language to tool.

For example, when drafting a model from natural-language requirements, an LLM such as GPT-4 can
be used to generate structured output in OWL, UML, or ER formats, which can then be validated and refined
in tools like Protégé, UModel, or ER/Studio. Here, the LLM is a translator that outputs standards-compliant
syntax — such as RDF/XML - enabling handoff to verification-capable environments. In more complex
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tasks like ontology alignment or schema reconciliation, LLMs may again play a mediating role, revealing
candidate terms for mappings, resolving ambiguity, or interpreting tool-generated error logs. Tools such
as OntoAligner and OpenRefine remain central for alignment and cleanup, but LLM can offer contextual
explanations and generate documentation. Related, when enforcing model constraints or validating logical
coherence, LLMs may assist by transforming high-level rules into formal expressions suitable for execution
in tools like Alloy Analyzer or HermiT. Here again, LLMs also help translate validation failures into
actionable, human-readable documentation that reduces debugging time.

In process modeling and simulation workflows, LLMs may convert textual descriptions into system
dynamics models in Modelica, block diagrams in Simulink, or behavior trees in Cameo. These conversions
require structured prompting and domain-specific syntax, which the modeling tool ultimately compiles and
validates. Overall, LLMs can orchestrate multi-step modeling workflows by dispatching tasks to different
tools, coordinating formats, and sequencing outputs. This pattern is increasingly supported by frameworks
like LangChain and toolchains that expose plugin APIs, allowing for modular LLM-driven pipelines.

The utility of LLMs as middleware is made more apparent when combining tasks. For example, if an
LLM proposes a set of UML class definitions, a UML parser or modeling environment can be invoked to
parse that proposal. If the parser returns errors (say, an undefined class reference or a syntax mistake in the
UML), the error messages can be fed back to the LLM with a prompt to fix the issues. The LLM, now aware
of where it went wrong, can adjust the class definitions accordingly. This iterative loop continues until the
specialized tool confirms that the model is syntactically and structurally sound. Such a strategy leverages
the LLM’s strength in rapidly generating and regenerating content, while the tool’s strictness guarantees
eventual correctness. It is a form of algorithmic scaffolding, where the LLM is never left unguided for too
long — the tool provides guardrails at each step. The distinction between Table 1 and Table 2 underlines a
recommendation: whenever a task can be done with a purpose-built tool, prefer to integrate the LLM with
that tool, rather than relying on the LLM alone or reinventing logic via scripting.

4 LLMS FOR SIMULATION

After we discussed in the last section how LLMs can support the modeling process better, we focus in this
section on the simulation development process.

4.1 Requirements Analysis

In the earliest phase of the M&S lifecycle, artifacts are typically encoded in natural language (e.g.,
requirements and specifications), which opens some opportunities for LLMs. LLMs can be used, e.g., to
analyze project requirements at a high level before commencing more resource-intensive formal specification
and problem decomposition tasks. Such analyses can be used, e.g., to recommend appropriate simulation
paradigms, formalisms, and tools for the project. LLMs can rely on very diverse contextual data to drive
such recommendations, including the comprehensive analysis of a corpus describing a problem, available
data, and the skill set at hand. Such use cases raise the question whether LLMs can be used to bypass
modeling in the traditional requirements — modeling — simulation process. Finally, LLMs can be used for
validating requirements, e.g., by producing pseudocode (Xu et al. 2024).

4.2 Source Code Engineering

The strong link between LLMs and software code is rooted in the well-recognized naturalness hypothesis
of software (Hindle et al. 2016), which states that program code is a form of human communication
bearing similar statistical properties to those of natural languages. Source code generation is among the
key techniques in this lifecycle phase, and is has been a subject to thorough investigation. Gerstmayr et al.
(2024) use LLMs to generate multi-body system dynamics models from natural language specifications.
Miceli-Barone et al. (2023) translate user instructions to code for self-driving car simulations. Liu and
Li (2024) generate executable simulation code from human language descriptions. (Jackson et al. 2024)
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generate executable simulation for a logistic systems for inventory and process control. Wang et al.
(2024) generate code for rich simulation environments and expert demonstrations for robot training. Code
translation and adaptation between tools in simulation tool chains is another important case of source code
engineering by LLMs. This case is gaining attention in research. For example, Shrestha and Csallner (2021)
use a GPT model to generate graphical block-diagram models, such as Simulink models, and pre-process
the generated models for rapid search. However, as shown by Pan et al. (2023) through their experiments
with 1700 code samples in C, C++, Go, Java, and Python, LLMs are not yet reliable enough for code
translation, with the reported proportion of correct translations ranging between 2.1% and 47.3%.

4.3 Testing and V&V

In the testing and V&V lifecycle phase, LLMs are typically used for generating test cases and test artifacts
from simulation models or code, and usage examples. Such avenues have been explored by Schifer et al.
(2024) who generate unit tests with a median statement coverage of above 70% and branch coverage
above 52%. LLMs can also generate various tests artifacts for simulation testing. For example, Duvvuru
et al. (2025) generate environmental configurations, test cases, and test properties (specific metrics, e.g.,
target detection and identification accuracy) for testing uncrewed aerial systems. Another application of
LLMs is verification, when more rigorous evidence, e.g., formal proof is required to guarantee key system
properties. For example, Hassan et al. (2024) use LLMs to generate formal specifications from natural
language specifications, and to generate system invariants for a high-performance theorem prover (Z3) and
summarize them in natural language.

4.4 Documentation

Documentation is a natural use case of LLMs, for the same reason code engineering is: due to the naturalness
hypothesis of software (Hindle et al. 2016). Since source code exhibits the same statistical traits as human
language, it is rather straightforward to employ LLMs for generating human-readable explanations of
source code, simulation models, and simulation results at various levels of technical depth. An example
is given by Jackson and Rolf (2023). Similar avenues have been explored, e.g., by Nam et al. (2024)
to generate comprehensive documentation for complex simulations. A special form of documentation is
summarization of source code and simulation models that aims to produce brief and target human-readable
descriptions for experts. For example, Ahmed and Devanbu (2022) use GPT models with few-shot learning
to summarize source code, and their evidence suggests that LLMs significantly surpass other state-of-the-art
models for code summarization. Similarly, Khan and Uddin (2023) generate documentation using a GPT-3
based model, Codex, pre-trained on both natural and programming languages, and achieve a BiLingual
Evaluation Understudy (BLEU) score over 0.2, a 11% improvement over state-of-the-art techniques.

5 ARCHITECTURES TO EFFICIENTLY INTEGRATE LLMS AS M&S MIDDLEWARE

A simple use of LLMs is to prompt them with a task and directly use their answer (Figure 2-A), possibly
through a follow-up prompt. However, as the use of LLMs within M&S matured, we observe a shift
towards training and refining LLMs for specific tasks and/or integrating LLMs with other tools through a
workflow. As a case in point, researchers first used GPT through prompts to turn a prose-based narrative
into simulation code (Frydenlund et al. 2024), and later Martinez et al. (2024) fine-tuned the system
(few-shot prompting) and connected it to a database (retrieval-augmented generation). Newer architectures
reflect these changes in practices (Figure 2-B), for instance when a modeling tool such as a class diagram
editor internally prompts the LLM to recommend classes or attributes (Chaaben et al. 2024). This section
thus examines approaches that employ LLMs as a middleware, emphasizing support for M&S tasks.
There is also the potential to use LL.Ms as translators between two different representations of knowledge.
While several studies bridged natural language and SQL commands for a database (Zhou et al. 2024; Li
et al. 2024), mediating between different schema has received less attention. Developing these methods

1125



Giabbanelli, Beverley, David, and Tolk

further can lead to the automatic configuration of data mediation services between different structures of
knowledge representation while ensuring their conceptual alignment (Tolk 2024). Calvet et al. (2024)
compared two architectures to use LLMs as data conversion tools, possibly within a single system. They
noted that prior works performed a direct conversion: users provide one data format to the LLM, which
must generate data in the target format. The authors introduced an indirect step by generating Python
code and calling it to execute the conversion (Figure 2-C). The advantage is subtle yet important: a direct
conversion may work once but there is no guarantee that it will work next time, due to stochasticity in the
LLMs. In contrast, if a Python code is correctly generated once, then it can be used to correctly perform
all data conversions. The authors also showed that LLM-based translations can be challenging, as the
relatively simple data schema used in the study could not always be fully converted and some LLMs were
never able to generate Python code to perform the conversion. The takeways are twofold: (i) transforming a
problem instance into a target domain language and executing it can improve system reliability compared to
performing all tasks via the LLLM, but (ii) some transformations can require significant engineering efforts.
Lehmann (2024) proposed an architecture consisting of two LLMs, one for the ‘consumer’ and another
for the ‘provider’ (Figure 2-D). His vision was unique in using natural text as intermediate between LLMs:
the consumer LLM does not directly pass calls onto the target system or the provider LLM; rather, it
translates the call into text, which is translated back into a call by the provider LLM. As a result, this
architecture involves four translations. The author noted the cumulative risks posed by these multiple
translations, “adding multiple components into the communication between consumer and provider also
introduces potential points of failure”, thus we do not retain this architecture for M&S applications.

( A ) User ( B ) User ( C ) Data format 1 System 1 ( D ) System 2
|
| .
ro-l;\is'; Reply Task| | Update LLM calls||translates  replies| | transiates
P P generates translates text to calls
Large-Language Modeling tool scriptto direct calls to text
Model (LLM) transform irectly LLMT————— LLM
Prompt| [Reply Code transforms translates
LLM calls (e.g., Python) totext
—— Data format 2«— Large Language Model
Task A Calls .
System 1 LLMA System 2 SWRSOEN  Weight Task ALORA HEGHII
... Processes matrix of ﬂ )
ystem
Task X LLM X LLM DA
(E) (F) (backbone) IEE Q4T W | Processes

Figure 2: The simplest use of LLMs is to set a task and use the reply either directly (A) or via a software
(B), but a LLM may generate a script instead of directly solving a task itself (C) or a set of LLMs may
support system interoperability (D-E). In contrast with these prior frameworks, we recommend handling
for M&S tasks with one LLM to improve computational efficiency and maintainability (F).

The ‘pretrain-then-finetune’ paradigm results in a multiplicity of specialized LLMs, each with (sometimes
minor) differences in the weights of their neural network. As a result, if a modeler switches from task A to
task B, they need to unload the LLM for task A and load the LLM for task B (Figure 2-E). In application
settings where data is sensitive and computations must be performed locally (e.g., enterprise modeling,
healthcare, defense), repeatedly unloading and loading a locally deployed LLLM becomes a performance
bottleneck as it is taxing on memory and takes time. In contrast, a parameter-efficient fine-tuning method
such as Low-Rank Adaptation (LoRA) introduces small (low-rank) matrices into the weight updates of a
pre-trained model, rather than fine-tuning all parameters (Yang et al. 2024). As a result, the bulky LLM
is loaded only once, and light-weight matrices build on this shared backbone to support specific tasks
(Figure 2-F). This avoids the taxing loading-and-unloading steps for memory management (Chen 2024),
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and it also improves the training process since training a LoRA is significantly faster and more efficient
than fully fine-tuning a large neural network — computations can be further improved through approximated
LoRA (Chen et al. 2025). Several systems can manage LoRA adapters on a shared backbone and route
user requests along different task-specific LoORAs, from the early Punica (Chen et al. 2024) to the recent
dLoRA (Dou et al. 2024).

We note that this research area is still in its infancy, thus there is ongoing work on integrating adapters
for optimal performance. In particular, Tian et al. (2025) proposed creating a ‘middleman adapter’ (or smart
routing system) that identifies a task from the user input and subsequently matches the task with the right
LoRA. It is thus essential for the M&S field to develop high-quality specialized LoRAs and automatically
map them onto tasks. The literature on M&S building blocks suggests that it is preferable to identify
the tasks faced by modelers and then create the corresponding LoRAs (Cheng et al. 2023; Schroeder
et al. 2022), rather than creating specialized systems and then trying to map them to user needs. We thus
recommend a comprehensive analysis of modeling tasks (i.e., user needs gathering), culminating in the
generation of LoRAs covering several orthogonal needs. We posit that such a bottom-up process would
also facilitate the alignment of user prompts and their correct routing through a LoRA.

6 DISCUSSION

Trusting LLMs as translators between systems depends on the definition of ‘trust’ and the specific context
in which they are used. If trust is defined as absolute reliability with zero distortion or hallucination, then
LLMs cannot be fully trusted, as they can introduce subtle errors or fabrications. However, trust can be
framed in a comparative sense by evaluating the distortion caused by LLMs against existing solutions.
For instance, Yoon et al. (2024) converted data back-and-forth between two formats, with an LLM and
with traditional rule-based methods. In their context of health data, the LLM distorted and lost data less
than the rule-based methods currently in use. In addition to measure the amount of errors, it is useful to
understand the nature of these errors. Errors do not all have the same consequences and translators do not
all have the same predictability: if a rule-based system tends to misclassify certain types of entries then
we know the errors, whereas hallucinations from LLMs may not be as predictable. Ultimately, trust should
not be considered as binary but as a balance of accuracy, predictability, and the ability to mitigate errors
through oversight and verification.

This paper is an important step in identifying potential tools and languages for each step encountered
in the M&S process, but these choices have an impact. Lam et al. (2024) reported a near 50% performance
variation when the LLM translated between different representations and employed various tools to determine
whether a conclusion followed from a set of premises. It is thus necessary to extend emerging M&S
benchmarks (Giabbanelli et al. 2025) to account for the choice of tools and representations, such that
modelers identify the best option available in their context. Designing benchmarks is challenging, as even
small elements such as fictional character names may impact the LLM’s performance (Saparov et al. 2023).

In addition, training LLMs to support multiple translations (e.g., via plethora of LoRAs) may become
cumbersome, particularly if we seek to certify these translations or maintain their accuracy in the face of
evolving language specifications. Rather than envisioning that all translations directly produce the language
of interest, it may be more pragmatic to consider indirect or multi-hops translations. That is, the M&S
community may maintain a core set of translations (e.g., if the user’s query calls for first-order logic then use
Prover9 syntax) and leave it to users if they need minor adjustments afterward (e.g., turn Prover 9 into the
related Pyke syntax to use a different solver). As previously noted, supporting interoperability by including
indirect translations may lead to different sequences (e.g., turn task description into Z then C or A, B then C),
which may have different computational costs or accuracies (Schuerkamp et al. 2023). Such problems have
been studied in multi-paradigm modeling (MPM) (Vangheluwe et al. 2002) using formalism-transformation
graphs (FTGs) that represent formalisms as nodes of a graph and transformations as edges (Challenger
et al. 2020). A process model that instantiates formalisms as models, and transformations as activities,
allows for the thorough investigation of complex transformation chains (Lucio et al. 2013).
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An approach worth following is the combination of ontological methods and LLMs, such as exemplified
in (Allemang and Sequeda 2024). The underlying idea is to use ontologies as the formal specification of
the conceptualization of the information to be shared as well as its structure. LLM expression must fall into
this specification to be producible for the specified sending systems and vice versa to be understandable by
the receiving system. Using the ontological specification of sender and receiver avoids the acceptance of
hallucinations outside of the valid range of scope and structure while benefiting from the convenience of
using the LLM. As demonstrated by Jackson and Rolf (2023), LLMs can describe even simulation systems
in natural language, so that the description of interfaces and their constraints should be supported similarly.
However, this approach is still in its early stages.

While our paper focused on the use of LLMs as middleware, it does not mean that LLMs merely act
as messengers that translate requests between users and specialized tools. On the one hand, the tools can
improve the LLM by amplifying its capabilities (e.g., a solver ensures that reasoning is coherent) or giving
it feedback (e.g., errors reported by tools can be integrated in error-solving mechanisms as in Pan et al.
2023). On the other hand, the LLM may help the tools. For instance, the user may have a query in which
some conditions are so obvious that they are not explicitly stated. A symbolic solver by itself may struggle
when it expects a full chain of logic, but the LLM may provide the missing information. The architectures
envisioned here are thus a simplification of the exciting potential mutual benefits that remain to be explored
between LLMs and tools.
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