Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

OPERATIONAL SIMULATION OF MULTI-FUNCTIONAL CHARGING STATION FOR
SUSTAINABLE TRANSPORTATION

Jeremiah Gbadegoye!, Yang Chen?, Olufemi A. Omitaomu?, and Xueping Li'

! Dept. of Industrial and Systems Eng., The University of Tennessee, Knoxville, TN, USA
2 Computational Sciences and Eng. Division, Oak Ridge National Lab., Oak Ridge, TN, USA

ABSTRACT

As transportation systems move toward electrification and decarbonization, multifunctional charging stations
(MFCS) are emerging as key infrastructure for electric vehicles (EVs) and hydrogen fuel cell vehicles
(HFCVs). This paper presents a simulation model of an MFCS that integrates solar photovoltaic (PV),
wind power, battery storage, hydrogen (H;) production, dual-pressure H; storage, fuel cells, and dynamic
grid interactions. The model simulates daily operations using 5-minute resolution data to capture real-
time variability in renewable energy (RE), demand, and electricity prices. A flexible dispatch algorithm
dynamically allocates energy for EV charging, H, production, storage, and grid transactions while respecting
system constraints. Results show that the MFCS effectively prioritizes RE usage, minimizes waste, meets
diverse energy demands, and achieves net operational profit. The model serves as a valuable decision-support
tool for designing and optimizing integrated clean energy hubs for zero-emission transportation.

1 INTRODUCTION

The global transition toward zero-emission transportation like EVs and HFCVs is driving the development
of next-generation charging and refueling infrastructure. Multifunctional Charging Stations (MFCSs) have
emerged as a promising solution by integrating EV charging, hydrogen (H;) refueling, and potentially
battery-swapping operations within a single facility (Zhang et al. 2025). These stations typically combine
various energy systems (Xiao et al. 2025), this could include components such as PV, wind energy,
battery energy storage systems, H, production by electrolysis of water, and interaction of the electricity
grid to optimize energy utilization and operational cost. However, managing the dynamic interactions
between these heterogeneous energy carriers and infrastructure components remains a significant technical
challenge. A central complexity in MFCS operation arises from the variability of RE sources and the
need for real-time balancing of generation and demand. Unlike conventional grid-tied stations, MFCSs
operate in a more dynamic and constrained environment, where generation profiles are uncertain and H,
production, compression, and storage must be actively coordinated to meet both immediate and future
demand (Ramkumar et al. 2025). This complexity is amplified in intermodal logistics necessitating
infrastructure to support medium and heavy-duty transport (Bogdanov et al. 2024). Effective MFCS design
therefore requires a systems-level approach that captures the interplay between physical processes, energy
conversion and storage technologies, market dynamics, and control strategies (Shi et al. 2024).
Substantial prior research has explored individual components of MFCS, including EV charging
infrastructure planning, battery energy storage system (BESS), and H; refueling logistics. For instance,
Sing et al. (2022) developed a hybrid simulation framework combining system dynamics and discrete-event
modeling to evaluate workplace EV charging integrated with solar PV and batteries, demonstrating high
levels of energy self-sufficiency. Complementing this, Benz and Pruckner (2023) applied optimization-
based load shifting and showed that coordinated smart charging strategies can outperform or augment BESS
investments when aligned with solar availability. Building on these efforts, recent studies have introduced
data-driven control strategies for managing multi-energy systems; for example, Shi et al. (2024) proposed a
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framework combining long short-term memory networks for forecasting with deep reinforcement learning for
real-time decision-making in PV-battery-EV charging hubs. Efforts to simulate H,-integrated infrastructure
are also growing. Lee et al. (2024) conducted a techno-economic assessment of hybrid PV-wind-based
MEFCSs with Hj production, while Wang et al. (2024) proposed a multi-stage co-optimization framework
for electricity-H,-transportation networks under decarbonization constraints. Discrete-event simulation
approaches have also been applied as shown by Ait Alla et al. (2024) that increasing H, refueling speeds
has a more pronounced impact on system throughput than increasing the number of stations, highlighting
the value of detailed simulation in infrastructure design. Electricity market participation adds another layer
of complexity to MFCS operations. Zheng et al. (2025) reviewed tariff- and aggregator-based models for
grid interaction, emphasizing the potential of vehicle-to-grid integration to support demand-side flexibility.
In another study, Zheng and Wei (2025) developed a real-time, prediction-free framework for peer-to-
peer (P2P) energy trading using Lyapunov optimization, achieving near-optimal energy and cost balance
without reliance on forecasts. Advanced dispatch algorithms are also being applied to optimize energy
flows in distributed systems. Koenemann et al. (2024) trained artificial neural networks via reinforcement
learning to outperform model predictive control under uncertainty. For risk-aware scheduling, Valipour
et al. (2024) employed Entropic Value-at-Risk (a coherent risk measure that uses exponential utility to
emphasize sensitivity to extreme losses) to manage uncertainty in prices and RE availability, improving
system resilience. Simulation frameworks have also been applied in rural and off-grid settings: Ghirardi
et al. (2024) used Transient System Simulation (TRNSYS) to explore the role of Hy and EV flexibility in
decentralized energy systems, achieving low levelized costs and high operational independence.

Despite these advances, few existing models fully integrate PV, wind, battery storage, electrolyzers,
compressors, dual-pressure H, storage, fuel cells, and dynamic grid-market interactions into a unified
simulation framework. Most approaches either simplify component behavior or omit key interactions
such as H, compression or battery dispatch for H, production. To address this gap, this paper presents
a modular, simulation framework for evaluating the operation of multifunctional charging stations under
realistic temporal and economic conditions. We simulate a fixed operational period, incorporating RE
variability, component-level constraints, EV and HFCV demand, and electricity price dynamics. Dispatch
strategies are used to prioritize RE use, satisfy charging and refueling demands, and participate in grid
markets. Energy flows, storage levels, and economic outcomes are tracked at high resolution, providing a
detailed basis for evaluating system performance and infrastructure trade-offs. While prior work addresses
individual elements of MFCS, none combine dual-pressure H, storage, electrolyzer dispatch, battery-grid-
market interactions, and component-level constraints into a unified simulation. Our approach advances the
literature by integrating these dimensions into a cohesive, high-resolution simulation model.

This work makes two key contributions: (1) a detailed simulation model capturing the physical and
operational dynamics of an MFCS, and (2) a case study demonstrating its use in guiding the design, sizing,
and economic dispatch of future clean energy hubs for zero-emission transport. The remainder of the paper
is as follows: Section 2 describes the system and simulation framework; Section 3 outlines the case study
and experiments; Section 4 presents results and insights; and Section 5 concludes the paper.

2 SYSTEM SCHEME AND DISPATCH STRATEGY

This section presents the architecture and energy dispatch logic of the MFCS designed to support both EVs
and HFCVs, while dynamically participating in electricity market. Figure 1 provides a schematic overview
of the station’s architecture and the integrated energy pathways in the simulation. The MFCS is primarily
powered by hybrid RE sources: solar PV and wind turbine whose variable output serves as the main energy
supply for downstream operations. To manage this variability, the system incorporates a flexible BESS and
hydrogen infrastructure, enabling both temporal energy shifting and cross-vector conversion.

The MFCS dispatch algorithm balances RE generation, energy demand, and market conditions at each
time step (see Algorithm 1). Dispatch actions follow a prioritized sequence: serve HFCV demand from
high and low pressure H; storage, charge EVs using RE, then battery discharge, and grid electricity if the

2309



Gbadegoye, Chen, Omitaomu, and Li

Energy & Ancillary Market

'y ETE

2 vin

! 2 1

Electricity  Veemememeepete o
ectricity I Hydrogen
J Compressor
S - : = T @GP Ten
i | | N-IA ‘%
i | el @~
i : Battery Electrolyzer Hydrogen Storage
1 ; (Low Pressure) Hydrogen Storage
E i 1 (High Pressure)
. 1 XL - - d
! i e (£ =)
; ! : 1
i Dﬂé : : > ” 1 E“ ’ : % rl H 2 I
i . : R 5 ] —
;o i g 6‘, 7 : Hydrogen Fuel Cell
i ; ; T en” Y i veros 1
ormmimmn S ffl_ P 2
RE Sources EV Fleet 1
Vo
i
EV CHARGING and HFCV REFUELLING STATION LA
HFCV Fleet

Figure 1: Schematic overview of the multifunctional charging station (MFCS) and grid interaction.

price P, is acceptable. Fuel cell output is used as a last resort. Surplus RE supports battery charging or
hydrogen production. Grid or battery power may supplement H, production, subject to system constraints.
Parameters include: Pyiq denotes the EV charging power from grid; Peparge indicates the battery charging
power; Prelcent is fuel cell power output; Pgria is the power used by the electrolyzer for Hp production
from grid; and Py refers to the power exported to the grid. The control parameters include 6y, which
sets the dispatch threshold for high-pressure H, storage, and Ocompress, regulates when Hy is compressed
from low- to high-pressure tanks. Dispatch decisions are logged continuously for system evaluation.
Solar output is determined using Equation (1), where PV power Ppy depends on panel efficiency npy,
area A, and solar irradiance G; (Huang et al. 2013). Wind power is computed by Equation (2), which
incorporates air density p, rotor swept area A,, power coefficient C,, and wind speed v as derived in
(Choukulkar et al. 2016). These generation outputs are dynamically allocated to subsystems based on
operational state and market conditions, ensuring efficient and adaptive dispatch throughout the simulation.

Poy =npv-A-G; (D
1
Puina = 5P Ar-Cp-v’. 2)

The BESS enables temporal energy shifting and serves as a strategic buffer within the MFCS. It charges
from RE sources or the grid when electricity prices are low, and discharges to support EV charging, H,
production, or sell to the grid when prices are favorable. The model accounts for charging and discharging
efficiencies, power rate limits, and a state-of-charge (SOC) reserve to protect long-term battery health.
Charging and discharging decisions are driven by real-time conditions such as generation surplus, market
price, e.t.c, allowing the BESS to dynamically balance short-term fluctuations and improve efficiency.

Hydrogen is produced via electrolysis using electricity sourced from RE, the battery, or the grid. The
H; mass produced, mpy,, is given in Equation (3), which relates input power P,, electrolyzer efficiency 7,
and the lower heating value (LHV) of H, (Meier 2014):

Ne - P. - At
myg, = ———.
" TLHV,

Produced Hj is first stored in a low-pressure buffer tank, then compressed and transferred to a high-
pressure vessel for HFCV refueling. Additionally, H, may be converted back to electricity using a proton

3)
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Algorithm 1 Operational Dispatch Algorithm for Multifunctional Charging Station (MFCS).

1: for each time step ¢ do
2 Input: Renewable generation (G;), EV demand (D,E V), HFCV demand (Df’ 2), electricity price (F;)
3 Step 1: Serve HFCV demand using H, from high-pressure storage
4 Step 2: Serve EV demand in the following order:
5: (1) Use available renewable power (G;)
6 (2) Discharge battery
7 (3) Purchase from grid if P, < Pyig
8 (4) Use fuel cell to convert Hj to electricity if P > Prelcell
9: Step 3: Charge battery with excess renewable power
10: if battery has space and F; < Fepage then

11: Charge battery from grid (limit to avoid overcharging)

12: end if

13: Step 4: Produce H, with surplus energy via electrolyzer

14: (1) Use renewable power first (up to electrolyzer capacity)
15: (2) Discharge battery only if high-pressure H; storage < O
16: (3) Use grid power if B, < Pyogrig and capacity allows

17: Step 5: Store produced H, in low-pressure tank

18: if low-pressure tank level > Ocompress then

19: Compress and store in high-pressure tank

20: end if

21: if battery SOC > reserve and P, > Py then

22: Sell battery power to grid

23: end if

24: if surplus renewable remains and all internal needs are satisfied then
25: Export RE to grid (up to limit)

26: end if

27: Step 6: Log all flows: EV/HFCV service, SOC, H; levels, grid activity, revenues, and costs
28: end for

exchange membrane (PEM) fuel cell. This conversion is described in Equation (4), where Epc represents
the energy output as a function of H, mass and fuel cell efficiency 1. This reversible pathway extends
the flexibility of the MFCS by allowing stored H; to serve electricity demand under specific conditions.

Erc = N -mpy, - LHVy,. 4)

The MFCS interacts with the grid based on dynamic price signals. Grid imports are allowed only
when internal generation is insufficient and prices fall below a threshold B,,y. Conversely, exports occur
when RE is surplus, battery SOC exceeds reserve, and prices exceed Piq. This economic layer ensures
that every dispatch action is cost-effective and environmentally favorable. Grid electricity is also used for
production when prices permit and storage needs persist. Any residual renewable surplus is exported to
minimize curtailment and maximize environmental performance.

3 EXPERIMENTAL SETUP

To demonstrate the real-world applicability of the proposed simulation framework, we conducted a 7-day
case study based on realistic operating conditions in the state of California. The aim is to evaluate the
MEFCS performance in optimizing RE utilization, reducing operational costs, and maintaining resilience
under variable energy and demand conditions. The case study simulates integrated energy flows involving
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EV charging, refueling, and grid participation, under fluctuating weather and market scenarios. This setup
mirrors practical challenges faced by energy hubs co-located at intermodal or logistics hubs in urban regions.

3.1 Data Sources and Preprocessing

Environmental and market data were collected from publicly available sources and processed to align with
the simulation timeline. Real solar irradiance and wind speed data were obtained from Weather Underground
(Weather Underground 2025), capturing 5-minute interval observations over a full operational week. These
measurements form the dynamic inputs for the PV and wind turbine generation subsystems. Electricity
prices were sourced from CAISO’s SP-15 (Energy) node (U.S. Energy Information Administration 2025),
also provided at a 5-minute resolution in Pacific Time. This high temporal granularity ensures realistic
modeling of time-sensitive electricity transactions, such as grid charging, selling, and hydrogen production.
To maintain interpretability of the visualization, price spikes exceeding $200/MWh were removed from
the plotted data. Figure 2(a) illustrates the pronounced diurnal and intra-day volatility of the electricity
market over the simulation period.
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(a) Electricity price over the simulation week. (b) Baseline hydrogen demand profile.

Figure 2: Time-series inputs used for simulation, based on real price and demand data.

Energy demands were synthesized from a combination of real and modeled data. EV arrivals are modeled
as a stochastic Poisson process with a base rate of 3 vehicles per hour, modulated by a time-of-day profile
to reflect realistic commuter patterns. Peak arrivals occur between (7:00-10:00 AM) and late afternoon
(4:00-7:00 PM). At each timestep, the number of arriving EVs is sampled based on the current scaled rate.
Each arrival is assigned a battery capacity (uniformly sampled from 60, 80, or 120 kWh), an initial SOC
sampled from 10% to 90%, and a target SOC sampled between 90% and 100%. The charging demand is
computed as the energy required to reach the target SOC from the initial SOC, accounting for individual
variations. In contrast, HFCV demand was derived directly from a dataset (see Figure 2(b)) that included
both arrival times and refueling quantities, eliminating the need for synthetic modeling of station-level
behavior. All datasets were preprocessed to ensure temporal alignment throughout the simulation horizon.

3.2 Simulation Configuration

It is assumed that the modeled MFCS integrates 2500 m? of photovoltaic panels with 20% efficiency, 10
wind turbines each rated at 250 kW, and a battery system with 5000 kWh of capacity, 90% round-trip
efficiency, and a 20% SOC reserve. H» is produced via a 5000 kW electrolyzer (0.7 kg/kWh efficiency),
compressed using 1.0 kWh/kg and stored in two 100 kg tanks (low and high pressure). The fuel cell
provides up to 100 kW at 50% efficiency, and the station interfaces with the grid under 20 MW purchase
and 200 kW sell constraints, with buy/sell price thresholds of 50/70 $/MWh. Ten EV chargers are available
and used across most sensitivity scenarios. These settings reflect a medium-scale MFCS capable of both
grid-interactive operation and standalone service continuity under moderate to high demand.
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To evaluate the robustness and adaptability of the MFCS under variable conditions, a series of sensitivity
experiments were conducted. These experiments were designed to isolate key parameters of the system and
external drivers, such as volatility of electricity prices, fluctuations in EV traffic, and H, demand growth,
and to assess their influence on system behavior, operational constraints and economic performance. The
simulation framework was developed in Python as a discrete-time model with 5-minute resolution, enabling
high-fidelity tracking of system dynamics and resource flows.

Table 1: Summary of experimental design and objectives.

Experiment Set | System Variable Objective and Insight

Electricity Price | Electricity price varied from | Examine impact of market fluctuations on grid trans-
Variation —20% to +20% actions, hydrogen production, and profitability.

EV arrival rates adjusted (in- | Analyze system congestion and service quality under
creased/decreased) with charg- | fluctuating demand, using metrics like EV wait time
ers fixed at 10 and abandonment.

EV Arrival Rate
Sensitivity

Identify saturation effects and evaluate when addi-
tional chargers no longer significantly improve reli-
ability. Supports infrastructure sizing.

Charger Capacity | Number of chargers varied (ar-
Analysis rival profile fixed)

Test production and storage capacity limits under
growing demand. Quantify unmet demand and rev-
enue loss to inform planning.

Hydrogen  De- | Hydrogen demand scaled up by
mand Stress Test | 5% to 20%

Each experiment modifies one variable at a time while keeping other conditions fixed, ensuring
comparability across scenarios. In the simulation, EVs are considered abandoned if they wait more than
30 minutes for an available charger, capturing user tolerance thresholds and their effect on service quality.
The baseline configuration was held constant across all runs, including a 7-day period of weather and
electricity price data, enabling consistent evaluation of outcomes. Table 1 summarizes the four experiment
sets, what was varied in each, and the corresponding insights these tests were designed to generate.

4 RESULTS AND DISCUSSION
4.1 Baseline Results

The RE generation profile is presented in Figure 3. Solar production exhibits a clear diurnal pattern,
peaking around midday and dropping to zero overnight. In contrast, wind generation displays more
stochastic behavior and often complements PV output, especially during early mornings and late evenings.
The plot highlights how wind and solar contribute variably to the station’s energy supply throughout the
week. On some days, wind peaks significantly, surpassing 1 MW in short bursts, while solar provides a
more stable and predictable contribution during daylight hours. This complementarity enhances the overall
availability of RE but also necessitates advanced energy dispatch strategies. For instance, surplus solar
during midday hours enables battery charging and production, while overnight wind generation helps reduce
dependence on grid energy. These patterns emphasize the importance of hybrid RE integration and the
real-time energy prioritization logic embedded within the MFCS.

In addition to electricity dispatch, the MFCS converts surplus energy into green H, through electrolysis.
Figure 4a illustrates the daily production by source: renewables, battery discharges, and the grid. While
renewables and batteries contribute meaningfully, grid electricity consistently supports over 100 kg/day
of H; production, not as a fallback but as a strategic complement. This reflects the system’s dynamic
prioritization: RE is first allocated to EV charging, and H; production draws on remaining capacity or, when
needed, on the grid, especially during periods of low electricity prices. Battery power further supplement
H, production when marginal RE remains but is insufficient to fully power the electrolyzer.
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Figure 3: Solar and wind power over the 7-day simulation period for the studied location in California.

Figure 4b offers a grouped bar chart contrasting H, production by source with end-use destinations.
Of the total H, produced, the grid supplies the largest portion (over 1000 kg), followed by renewables
(over 600 kg), while battery support remains modest. Utilization is dominated by HFCV refueling, with
only a minimal fraction directed to the fuel cell for electricity generation. Notably, the alignment between
total H, produced and used Hj; indicates effective management of H, production-storage-refueling cycles.

To synthesize system-wide operational performance and economic outcomes, Table 2 presents a daily
breakdown of key metrics. This includes RE generation totals, H, production disaggregated by source, battery
charge/discharge energy, grid interactions, and financial indicators. A consistent trend is evident across the
week: while total RE generation remains substantial (averaging over 5600 kWh/day), H, production from
the grid persistently exceeds other sources, accounting for more than 50% of total production on most days.
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Figure 4: Overview of production sources and end-use distribution in the MFCS.

This outcome is directly tied to the system’s dynamic grid participation logic and real-time pricing
signals. Notably, despite the system’s RE-first prioritization, the MFCS often purchases large amounts of
electricity from the grid, with daily imports consistently over 1100 kWh and peaking above 1400 kWh. This
behavior may seem counterintuitive for a RE-oriented system, but it reflects the strategic exploitation of
negative electricity prices that occasionally arise in wholesale energy markets, especially in CAISO market
with redundant solar power. During such periods, grid electricity is not only inexpensive but effectively
subsidized, creating strong economic incentive to charge the battery and run the electrolyzer.

The data confirms this: on days when grid production is high (e.g., April 1 and April 7), grid purchases
also spike, and yet the net economic outcome remains positive. For instance, on April 1, despite 1247.92 kWh
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Table 2: Summary of daily MFCS operational and economic metrics.

Date H, Produced (kg) from power source Grid Interaction (kWh) RE Generation (kWh)

RE Battery Grid Total Buy Sell PV Wind Total
1-Apr | 115.52 13.01 146.14 274.67 1247.92 41.67 3309.30 3588.61  6897.91
2-Apr 95.26 11.03 123.39 229.68 1448.17 45.79 2948.03 2843.66  5791.69
3-Apr 75.72 22.03 142.64 240.39 1254.00 41.67 3667.33 1558.50  5225.83
4-Apr 76.11 15.98 153.14 245.23 1216.00 0.00 3501.91 1440.27  4942.18
5-Apr 98.22 14.19 141.76 254.17 1225.50 41.67 3093.26 2523.85 5617.11
6-Apr 95.94 18.46 156.64 271.04 1301.50 0.00 3135.94 3026.73  6162.67
7-Apr 54.50 10.04 165.39 229.93 1131.87 125.00 2961.99 1147.86  4109.85
Date | Power Usage (kWh) | Battery Flow (kWh) Revenue and Cost Breakdown ($)

EV H; Charge  Discharge | EV Rev H; Rev Grid Sell  Grid Buy Net
1-Apr | 1619.82  13078.30 | 1235.00 870.54 372.56 3395.09 3.16 -12.09 3758.72
2-Apr | 1669.66  10935.86 | 1444.00 980.34 384.02 3804.08 4.19 -8.06 4184.23
3-Apr | 2066.67 11445.60 | 1254.00 1536.44 475.33 4049.00 2.94 -1.79 4525.48
4-Apr | 1693.33 1167622 | 1216.00 1135.70 389.47 4051.55 0.00 -4.95 4436.07
5-Apr | 1350.00 12102.31 1225.50 1126.86 310.50 4135.55 3.31 -1.01 4450.38
6-Apr | 2013.33  12905.54 | 1301.50 1297.88 463.07 4465.32 0.00 -4.67 4923.72
7-Apr | 2173.33  10948.08 | 1130.50 1260.19 499.87 3844.73 9.18 -9.47 4344 .31

of grid imports and only 41.67 kWh of grid export, the MFCS still achieves a net profit of $3758.72.
This demonstrates the station’s ability to monetize low-cost grid electricity through sales and EV charging
revenue. The observed profitability is further bolstered by the system’s ability to avoid grid purchases
during peak price periods and by its responsive scheduling of compression and battery charging operations.
Additionally, the battery exhibits consistent daily activity, with charge and discharge energy averaging
around 1200 kWh per day. The bar chart in Figure 5(a) complements Table 2 showing temporal variability
and charge—discharge balance, highlighting patterns less evident in the table. For example, April 3 records
relatively high discharge compared to charging, coinciding with moderate hydrogen production and electricity
export—indicating a shift toward supporting downstream loads rather than storage. Conversely, net charging
days align with surplus RE availability. The SOC trend in Figure 5(b) oscillates between 20% and 35%,
underscoring the battery’s role as a flexible energy buffer. Together, these plots illustrate the MFCS’s
capacity to shift energy temporally, reduce grid dependence, and adapt to supply—demand fluctuations.
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Figure 5: Battery energy flow and SOC dynamics over the simulation period.

4.2 Sensitivity Analysis

To assess the robustness and flexibility of the MFCS design under changing operational conditions, we perform
a series of sensitivity experiments. These experiments vary key parameters, including electricity price, EV
demand intensity, hydrogen demand, and component sizing to evaluate their impact on system-level energy
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flows and financial performance. While the simulation captures stochastic dynamics, numerical results
presented in this subsection are averaged over 50 runs to ensure that each scenario reflects representative
system behavior and enables consistent comparison across experimental conditions.

4.2.1 Impact of Electricity Price Fluctuations on System Profitability

Here, we examine how changes in electricity prices affect grid interactions, H, production, and the station’s
overall performance. Table 3 summarizes the absolute values across a price change range of —20% to
+20% relative to the base case. Percentage-based comparisons below are derived from these values to
provide a clearer interpretation of system sensitivity.

Table 3: Sensitivity analysis of electricity price on MFCS operation.

(%) Power (kWh) Purchased for Grid Interaction H, (kg) Revenue and Cost Breakdown ($)

Change EVs H, Battery Buy Sale Production | EV Rev H; Rev Grid Sale  Grid Buy Net
-20% 11.98  47092.50 12236 59340.48  445.38 989.04 2785.88  28063.91 261.58 -127.62 30983.75
-15% 17.97  48073.33 10469 58560.30  330.18 1009.64 2771.97  27955.67 199.12 -81.09 30845.67
-10% 23.43  48382.50 9576 57981.93  276.77 1016.13 2757.56  27873.32 144.17 -58.43 30716.62
-5% 27.14  48475.00 9063 57565.14  311.57 1018.08 2748.26  27764.48 119.13 -45.87 30586.00

0% 28.66  48650.83 8806.5 57486.00 401.19 1021.77 2741.75  27744.00 113.75 -40.40 30559.10
5% 32.94  48220.00 8540.5 56793.44  522.78 1012.72 2727.55  27516.41 75.06 -34.37 30284.66
10% 5191 47180.00 8303 5553491  595.80 990.88 2679.49  27175.41 83.33 -29.54 29908.70
15% 53.47  45409.17 8236.5 53699.13  716.26 953.69 2641.82  26565.33 91.05 -28.84 29269.36
20% 49.08  40544.17 8160.5 48753.75  775.52 851.51 2581.03  25082.44 63.94 -27.48 27699.94

A key observation is the nonlinear relationship between electricity price and grid purchases. As prices
increases, purchases fall from 59.3 MWh (11.98 + 47,092 + 12,236 kWh) at —20% to 48.8 MWh at +20%.
This drop is mainly driven by a 13.9% reduction in power for H, production (47,092 — 40,544 kWh),
confirming it as the most price-sensitive activity. In contrast, grid electricity for EVs increases from
11.98 kWh to 49.08 kWh, a 309% rise, reflecting reliance on grid power to meet EV demand as RE is
shifted toward H,. On the revenue side, both H, and EV services show similar declines of about 10.8% and
11%. The fall in H, revenue stems from reduced grid-powered production, which increases dependence on
RE and limits surplus available for export. Consequently, grid sale revenue drops from $261.58 to $63.94.

The net result is a notable profit compression: from a peak of $30,984 at —20% price to $27,700
at +20%, an ~ 11% decline. This occurs despite stable or reduced energy use, highlighting the strong
influence of electricity pricing on MFCS economics.

While the MFCS remains operationally robust across varying prices, profitability is highly sensitive to
increases. Strategies such as dynamic scheduling or real-time price-based dispatch could mitigate losses,
while long-term investments in RE capacity and storage would provide greater insulation from grid volatility
and enhance economic resilience.

4.2.2 System Sensitivity to Arrival Patterns and Charging Capacity

This section investigates how fluctuations in EV arrival rates and charger availability influence the MFCS
operation. Figure 6 presents the system’s response to changing arrival rates assuming a fixed 10-charger
setup, while Table 4 shows performance metrics across varying charger counts.

Figure 6 shows that as EV arrivals increase from —20% to +20%, the number of EVs served rises from
279 to 388, and EV charging revenue climbs from $2376 to $3134 (Figure 6a). However, this improvement
in throughput leads to performance degradation. The percentage of demand met falls from 96.7% to 89.5%,
while average wait time increases from 4.47 to 7.30 minutes. Abandoned EVs also spike from O to 21 as
arrival rates climb (Figure 6b). These results highlight the infrastructure’s diminishing ability to maintain
service quality under growing load, emphasizing the trade-off between utilization and customer satisfaction.
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Figure 6: Sensitivity of MFCS performance to arrival rate changes (10 chargers).

Table 4 reveals a saturation point in service gains as charger capacity increases. While moving from
2 to 7 chargers greatly improves demand coverage (from 39.75% to 90.8%) and significantly reduces wait
time and abandonment, additional chargers beyond 9 offer diminishing returns. This performance plateau
supports the use of 10 chargers as a practical baseline configuration, balancing cost and user satisfaction.

Table 4: Sensitivity of charger count on EV performance.

No. of EV Power Supply (kWh) from Total % Demand Avg Wait Aban.
Chargers RE Battery Grid  Fuel Cell | Supplied Met Time (min) EVs
2 428578  900.80  22.05 1.59 5210.22 39.75 13.27 219.86

5 8076.94 2141.88 24.72 1.88 10245.41 78.10 9.54 77.98

7 9268.73  2623.12  28.66 1.92 11922.43 90.80 7.49 30.38

9 975571 284548  35.83 1.92 12638.94 96.21 6.05 9.46

11 9904.56  2911.22  39.68 1.93 12857.38 97.84 5.37 222

13 9933.71  2926.42  40.60 1.93 12902.66 98.17 5.09 0.46

4.2.3 Evaluating Capacity Constraints for H, Demand Growth

To test the MFCS’s ability to accommodate rising H, demand, the baseline H, requirement was incrementally
increased by up to 20%. At baseline, unmet demand was minimal (1.6%, or 27.8 kg), but as demand scaled,
system limitations became evident. At 10% and 20% increases, unserved demand rose to 5.2% (98.5 kg)
and 9.2% (187.7 kg), respectively, as shown in Figure 7. This non-linear growth signals bottlenecks tied
to electrolyzer throughput, storage capacity, and the prioritization of EV charging over H; production.

Unse
Unse Unse Unse
4 kg 5 kg 4 kg 1kg

(a) 0% Increase (b) 10% Increase (c) 15% Increase (d) 20% Increase

Figure 7: H, demand fulfillment under different demand increase scenarios.
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Despite this, the MFCS still increased its total H, output from 1680.4 kg at baseline to 1862.1 kg
under 20% higher demand, highlighting the system’s elasticity. However, the rising shortfall translates to
lost revenue, which grows from about $458 to about $3100, underscoring the economic cost of capacity
constraints. These findings reveal the boundaries of current system settings. The MFCS performs robustly
under baseline and moderate increases, yet significant future growth in HFCV usage may necessitate capacity
expansion or more adaptive dispatch strategies to maintain service quality and economic efficiency.

5 CONCLUSION

This paper presents a simulation-based operational analysis of MFCS integrating RE generation, battery
storage, Hy production, and grid-market participation. Using 5-minute resolution over a 7-day horizon,
the model provides insights into interactions between energy vectors and transportation services. Baseline
results demonstrate the MFCS’s ability to achieve high RE utilization and sustained service for both EVs and
HFCVs, while maintaining economic viability through intelligent grid interaction. Experiments highlight
trade-offs and performance thresholds: electricity price volatility affects profitability; rising EV arrivals
strain infrastructure and reduce service quality; and adding chargers beyond nine yields diminishing returns.
Moderate HFCV demand growth remains manageable, but further scaling requires upgrades in electrolyzer
capacity, storage, or dispatch strategies. Future work may include incorporating stochastic demand models,
such as time-varying Poisson arrivals, to capture uncertainty; integrating reinforcement learning for adaptive
dispatch under uncertainty; extending the model to multi-node MFCS networks for inter-hub coordination;
and embedding long-term dynamics, such as endogenous demand growth or dynamic pricing, to support
infrastructure planning under evolving regulatory and market conditions.
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