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ABSTRACT

This tutorial addresses the use of stochastic gradients in simulation optimization, including methodology and
algorithms, theoretical convergence analysis, and applications. Specific topics include stochastic gradient
estimation techniques – both direct unbiased and indirect finite-difference-based; stochastic approximation
algorithms and their convergence rates; stochastic gradient descent (SGD) algorithms with momentum and
reusing past samples via importance sampling; and a real-world application in geographical partitioning.

1 INTRODUCTION

The general problem considered in this tutorial is the optimization of an output performance function h(θ)
– also referred to sometimes as the objective function or the loss function, depending on the context,
where θ ∈ Θ ⊂ ℜd is the d-dimensional vector of decision variables (or input parameters). The setting is
continuous stochastic optimization where h(θ) is estimated via stochastic simulation and gradient search
is employed to find the optimum, which may only be locally optimal. The focus is gradient-based search
methods for stochastic optimization problems arising in both traditional operations research/management
science (OR/MS) settings and in more recent artificial intelligence/machine learning (AI/ML) contexts.
The former refers to such algorithms as stochastic approximation (SA), dating back to its statistical roots
and original root-finding origins, whereas the latter has adopted stochastic gradient descent (SGD) as its
preferred terminology, due to its origination in minimizing loss functions.

We begin with two toy examples to illustrate the general problem setting and motivate the SA/SGD
solution approach.

A Stochastic Modeling Perspective

Consider perhaps the simplest queueing system, a single-server queue, where we assume given fixed
customer arrivals and varying service requirements. If a stochastic simulation model is used to estimate the
expected time in queue and a cost is associated with the server speed 1/θ , the following objective (loss)
function gives rise to an optimization problem of finding the optimal speed that minimizes this function:

h(θ) = Q̄n + c/θ , Q̄n =
1
n

n

∑
i=1

Qi,

where Qi is the queueing time for the ith customer, n is the number of customers, and c is the server
cost coefficient. One way to attempt to solve this optimization problem is to use gradient-based search,
assuming the server speed is a continuous variable. Since the underlying model is stochastic, the gradient
estimators will also be stochastic.
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An Optimization or AI/ML Perspective

Consider perhaps the simplest regression model, a single-input single-output linear model. Given N data
points {(xi,yi), i = 1, . . . ,N}, the best fit is obtained by finding the optimal slope θ (assume for simplicity the
line passes through the origin) according to some objective, e.g., minimizing a least-squares loss function:

h(θ) =
1
N

N

∑
i=1

[ŷ(xi)− yi]
2 =

1
N

N

∑
i=1

(θxi − yi)
2 .

This simple case can be solved analytically by setting h′(θ) = 0 as a trivial deterministic optimization
problem solved in high school calculus. If N is large as in big data settings and h′(θ) = 0 could not be
solved analytically (e.g., in a deep neural network), then one approach is to use a sample of size n ≪ N
to do gradient-based search, where

h(θ) =
1
n

n

∑
ĩ=1

[ŷ(xĩ)− yĩ]
2 =

1
n

n

∑
ĩ=1

(θxĩ − yĩ)
2 , where ĩ denotes the ith element in the sample.

The main intended takeaways from these two toy examples: (i) In one setting, the stochasticity is an
intrinsic part of the underlying model, whereas in the other case it is externally imposed for computational
reasons, but in both cases, one is sampling from a distribution. In the first case, it is often a theoretical
distribution fitted to some data set, whereas in the second case, it is the empirical distribution sampled
from a complete (and assumed very large) data set. (ii) Both settings involve gradient-based search using
stochastic gradients but arising from different perspectives or directions.

This tutorial can be viewed as an update to the WSC tutorial (Chau et al. 2014), with two other related
complementary WSC tutorials given in Newton et al. (2018), Ford et al. (2022). A WSC panel of historical
interest discussing the early interplay between simulation and optimization can be found in Fu et al. (2000).
A highly recommended (at least by the first two co-authors) very recent complementary “thought” piece
on stochastic gradients with minimal technical details can be found in Fu, Hu, and Scheinberg (2025), and
the two motivating examples are adapted from there.

The rest of this tutorial is organized as follows. Section 2 provides a brief overview of stochastic gradient
estimation techniques, illustrated using the single-server queue example. Section 3 covers the basics of
SA, the basis for gradient-based optimization in the stochastic setting. Section 4 discusses some recent
SGD methodological/algorithmic and theoretical advances. Section 5 presents a stochastic gradient-based
SA application in geographical partitioning.

2 STOCHASTIC GRADIENT ESTIMATION

We will briefly overview what we call the direct and indirect stochastic gradient (SG) estimators. Indirect
SG estimators will refer to those estimators that are based on some form of finite differences (FD) of
output performance estimates – thus requiring two or more sample paths or simulation replications – and
are generally biased, where the estimator bias and variance is a function of the difference used; these
estimators will be discussed in more detail in the next section. On the other hand, direct SG estimators
are often unbiased and require just a single sample path or simulation replication (referred to as single-run
estimators). Infinitesimal perturbation analysis (IPA) and the likelihood ratio method (LRM) (also known
as the score function method) cleanly fit into this definition, because they provide both unbiased and single-
run estimators. On the other hand, two of the most generally applicable methods, smoothed perturbation
analysis (SPA) and measure-valued differentiation (also known as the method of weak derivatives), are
direct in terms of providing unbiased estimators, but the estimators are not necessarily single run (in the
latter case, most commonly not). We will use the single-server queue example to illustrate the direct IPA
and LRM estimators. The reader is referred to Fu (2015) for more in-depth coverage and technical details.
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Let Ai and Xi denote the interarrival times and service times of the ith customer. For a single-server
first-come first-served (FCFS) queue, queueing time follows the well-known Lindley equation:

Qi = (Qi−1 +Xi−1 −Ai)
+ , (1)

which is differentiable almost everywhere (a.e.), the exception being at the “kink” point Qi−1 +Xi−1 = Ai.
Simple differentiation gives the (unbiased and single-run) IPA estimator for dE[Qi]/dθ :

dQi

dθ
=

(
dQi−1

dθ
+

dXi−1

dθ

)
1{Qi−1 +Xi−1 −Ai > 0} almost everywhere (a.e.),

dQ0

dθ
≡ 0. (2)

If the interarrival times {Ai} are deterministic constants and the service times {Xi} are deterministic
functions of θ , then the gradient (derivative) estimator given by (2) is well defined, assuming that dXi

dθ
is

well defined. The simplest example of this is all service times being equal to θ , in which case dXi
dθ

= 1
and dQi

dθ
can be computed by applying the recursion (2) above. However, if either the interarrival times

{Ai} or service times {Xi} are random variables, then (2) gives rise to a stochastic gradient. In the (more
challenging) case where {Xi} are random, the natural question arises as to the meaning of the derivative of a
service time Xi w.r.t. θ . Parameters of distributions fall into one of three categories: location, (generalized)
scale, or shape (all the rest). For the three cases of a location parameter, a scale parameter, or any parameter
of a general continuous r.v. X , the stochastic derivative is given as follows:

dX
dθ

= 1 for θ a location parameter of the distribution of X , (3)

dX
dθ

=
X
θ

for θ a scale parameter of the distribution of X , (4)

dX
dθ

=
dF(X ;θ)/dθ

dF(X ;θ)/dX
for X a continuous r.v. with c.d.f. F parameterized by θ , (5)

where for the righthand side of (5), dF(·;θ)/dx is simply the probability density function (p.d.f.). A
table for many commonly used distributions, including discrete distributions that are not covered by (5),
is provided in Fu (2015).

For higher-order derivatives, one might “automatically” differentiate (2) a second time to obtain

d2Qi

dθ 2 =

(
d2Qi−1

dθ 2 +
d2Xi−1

dθ 2

)
1{Qi−1 +Xi−1 −Ai > 0}, (6)

which turns out to be a biased estimator. SPA can be used to derive an unbiased (and single-run) estimator,
which results in an augmentation of the recursion (6) with a conditional term involving the square of the
first-derivative estimator given by (2), thus remaining straightforward to implement and computationally
efficient.

LRM is generally as easy to implement as IPA. For the queueing example, assuming i.i.d. service
times with common p.d.f. f (·;θ) parameterized by θ , the following LRM estimator for dE[Q̄n]/dθ can
be derived by differentiating the density f rather than the sample performance Q̄n:

Q̄n ·

(
n

∑
i=1

d ln f (Xi;θ)

dθ

)
,

where the service time parameter θ is expressed in the service time distribution rather than in the service
time random variable as in IPA, so no notion of a derivative of an r.v. is required! An advantage of LRM
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over IPA is that it is just as easy to implement for all higher-order derivatives. As mentioned previously,
the other main advantage of LRM is that because it differentiates the distribution and not the sample
performance (loss function), it works for discontinuous sample performances.

For the IPA and SPA estimators, the FCFS is critical; if the queue discipline changes, IPA and SPA
estimators change form, whereas the form of the LR estimator is unchanged.

3 STOCHASTIC APPROXIMATION

Stochastic approximation (SA) was introduced by Robbins and Monro (1951) for solving the root-finding
equation

g(θ) = 0, (7)

where g is a real-valued continuous function that is not known exactly and θ is as before the d-dimensional
vector of decision variables (or input parameters). The setting assumes an estimate ĝ is available, taking the
general form ĝ(θ) = g(θ)+ξ , where ξ can be viewed as a (d-dimensional) “noisy” error term representing
the combined effect of measurement bias and noise, which may depend on the underlying θ being evaluated,
but we suppress the explicit dependency of ξ on θ for expositional simplicity.

In settings where g(θ) can be evaluated exactly (i.e., ξ = 0), a solution to (7) can be found numerically
through the deterministic recursive procedure θk+1 = θk −αkg(θk), where θk is an estimate of the solution
at step k and αk > 0 is the step-size (multiplier). The Robbins-Monro (RM) SA algorithm is simply the
stochastic analog for solving (7) given by

θk+1 = θk −αkĝ(θk). (8)

The intuition underlying the RMSA algorithm is that the noise terms at different evaluation values of θk
are implicitly averaged out across successive iterations, so that the RMSA iteration (8) retains the same
asymptotic behavior as its deterministic counterpart.

For the stochastic optimization setting, g represents the gradient of the function to be optimized,
where we assume the objective takes the form of an expectation h(θ) = E[ĥ(θ ,ω)], with θ ∈ Θ ⊆ ℜd

being the vector of decision variables, ω representing a sample path, and h(θ) is estimated by the sample
performance ĥ(θ ,ω). When h is differentiable, solving the optimization problem (at least locally under
certain conditions) is equivalent to finding the solution to the root-finding problem g(θ) := ∇h(θ) = 0.
Thus, the RMSA iteration (8) solves a minimization problem, whereas changing the sign (from “−" to “+")
would solve a maximization problem, with ĝ(θ) now denoting an estimate of the objective function gradient
at θ , and ξ representing the gradient estimator error. In practical applications, a projection operation is
often required to constrain the sequence {θk} within a user-defined feasible domain Θ, but for simplicity,
we have not included such a projection operator, because it technically has the same effect of adding an
extra correction term to the right-hand side of equation (8).

The effectiveness of the SA algorithm (8) relies on a statistically reliable gradient estimator ĝ. In the
previous section, we summarized several direct stochastic gradient estimation techniques, which generally
provide unbiased gradient estimators leading to more efficient algorithm performance (e.g., a faster conver-
gence rate) when implemented in (8) as compared to biased estimators. In settings where a direct gradient
is either unavailable or difficult to obtain, an indirect gradient technique based on finite differences (FD)
requiring only output performance samples can be readily applied. In particular, a symmetric difference
(SD) estimator for the ith component of the gradient is given by

ĝ j(θ ,c) =
ĥ(θ + ce j,ω

+
j )− ĥ(θ − ce j,ω

+
j )

2c
, j = 1, . . . ,d, (9)

where c > 0 is the perturbation size, e j is the unit vector in the jth direction, and ω
±
j represent two different

sample paths. Using common random numbers (CRN) in simulation would imply that the same sample
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path (random numbers) is used for both output function estimates, i.e., ω
+
j = ω

−
j . The SA algorithm (8)

using a FD-based gradient estimate is called the Kiefer-Wolfowitz (KW) algorithm (Kiefer and Wolfowitz
1952), which we write as follows:

θk+1 = θk −αkĝ(θk,ck), (10)

i.e., (8) using a FD-based ĝ and thus also depending on the FD perturbation sequence {ck}, in addition to
the SA iteration itself depending on the step-size (multiplier) sequence {αk}.

The SD-based KW algorithm requires 2d function measurements at each step, meaning that the algorithm
could be computationally demanding for high-dimensional problems. One way to work around this issue
is to adopt a random direction (RD) approach that replaces the unit vectors e j’s by a single random vector
∆. The idea is to simultaneously vary all components of the parameter vector θk in random directions, so
that the similar effect of the SD scheme (9) can be achieved with fewer function evaluations. For example,
the SD version of the approach can generally be written as

ĝ(θ ,c) =
ĥ(θ + c∆,ω+)− ĥ(θ − c∆,ω−)

2c
∆, (11)

which provides an estimator of the entire gradient at the expense of only two total output function
measurements – only two sample paths ω+ and ω− at the randomly perturbed parameter vectors θ ± c∆,
versus 2d sample paths for the SD gradient estimator given by (9). The simplest and most commonly
adopted choices of ∆ are the standard normal random vector and the symmetric Bernoulli random direction
with independent components. Under the latter choice, each component of ∆ takes values from {−1,1}
with equal probability (commonly referred to as Rademacher distribution in the AI/ML community), so the
multiplier ∆ in (11) can equivalently be placed under the denominator (assuming elementwise division),
in which case (11) used in (8) becomes the well-known simultaneous perturbation SA (SPSA) algorithm
introduced by Spall (1992).

Regardless of which perturbation scheme is used (elementwise or simultaneous), the step-size sequence
{αk} and the perturbation size sequence {ck} must be carefully chosen in practice to find the right balance
between estimation bias and variance. Unlike direct gradients, bias is an inherent part of these estimators
that cannot be easily eliminated (as opposed to noise) over the iterations. Thus, convergence to the
optimal solution relies on the use of a diminishing perturbation size ck → 0 to eliminate the bias effect. This
requirement, however, implies that estimation variance would grow without bound as k → ∞. Consequently,
in both KWSA and RDSA methods, the step-size αk is required to decrease to zero sufficiently faster
than ck, e.g., satisfying the typical condition ∑k(αk/ck)

2 < ∞, to counteract the large gradient estimation
variance in the long run.

3.1 Asynchronous SA

The basic root-finding SA method can be extended to estimate an unknown function Q : S → ℜ based on
its noisy input-output measurements. The extension is essentially a pointwise application of (8) to solving
functional equations, where θk becomes a function serving as an estimate for Q. In its general form, the
method can be written as

θk+1(s) = θk(s)−αk(s)
(
θk(s)−Xk(s)

)
, s ∈ S , (12)

where Xk(s) represents a noisy evaluation of Q(s) at iteration k. In practice, it is often difficult to carry out
the recursion simultaneously for all s even for a finite S . For example, consider the (online) scenario where
the argument s itself evolves over time according to a set of rules, and in each instance the measurement
of Q can only be taken at the current s value. In such cases, the components of θk must be updated
asynchronously at different times and frequencies. Additionally, the step-size αk(s) in general becomes a
random variable that may depend on how frequently each s value is visited.

32



Fu, Hu, Ryzhov, and Zhou

The well-known Q-learning algorithm (Watkins 1989) can be viewed as an asynchronous SA method for
solving Bellman’s equation (Tsitsiklis 1994), a functional equation whose solution is called the Q-function,
which measures the expected reward of an action taken by the decision-maker at a given state (Bertsekas
1995). In Q-learning, θk in (12) corresponds to an estimate of the Q-function at step k, with s being the
state-action pair visited at the current step, whereas Xk represents the sum of the immediately observed
reward and the estimated future reward. The algorithm allows function estimates to be constructed based on
a single state-action trajectory and requires all state-action pairs to be visited infinitely often for convergence.
Some variants of vanilla Q-learning include SARSA (Singh et al. 2000), which update function estimates
based on the experience gained from executing a specified policy; and approximate stochastic annealing (Hu
and Chang 2012), which combines Q-learning with a random search procedure to optimize the underlying
learning policy. Asynchronous SA has also been integrated with function approximation techniques to
develop generalizations of Q-learning for solving continuous-state reinforcement learning (RL) problems;
see, e.g., Szepesvári and Smart (2004), Shah and Xie (2018), Hu et al. (2024), Yang et al. (2024).

3.2 Multi-Timescale Algorithms

In the basic root-finding SA (8), all components of θk are updated using a single step-size αk. It is possible
to consider using distinct step-sizes, allowing different components of the iteration to be carried out along
different speeds. Borkar (1997) formalized this idea and introduced a two-timescale SA method:

θ
(1)
k+1 = θ

(1)
k −αk

[
g(1)(θ (1)

k ,θ
(2)
k )+ξ

(1)] (13)

θ
(2)
k+1 = θ

(2)
k −βk

[
g(2)(θ (1)

k ,θ
(2)
k )+ξ

(2)], (14)

where αk and βk are two step-sizes satisfying αk/βk → 0 (or vice versa), and ξ (1) and ξ (2) are the
measurement errors of g(1) and g(2). From a root-finding perspective, the method can be simply viewed
as a variant of (8) for solving the augmented problem g := (g(1),g(2)) = 0. However, the use of distinct
step-sizes αk ≪ βk implies that the increments in θ

(1)
k will become negligible compared to that of θ

(2)
k ,

meaning that one can roughly treat θ
(1)
k as constant when executing the (faster) recursion (14). Conversely,

when viewed from the (slower) recursion (13), the sequence {θ
(2)
k } generated from (14) would appear to

have converged. This observation suggests that the method could be well suited for optimizing complex
systems (e.g., hidden Markov models; see Bhatnagar and Borkar 1997; Bhatnagar et al. 2001), where our
decision at each step relies on some unknown system dynamics or parameters that need to be simultaneously
estimated for each decision.

Two-timescale SA has been extensively used to develop RL methods. A large class of such methods
rely on gradient-based SA to find improved policies, where the gradient estimate is obtained at each step
using an approximate value function of the current policy computed through a coupled SA recursion. These
are called actor-critic methods (Barto et al. 1983; Konda and Tsitsiklis 2003; Bhatnagar and Kumar 2004;
Borkar 2005; Bhatnagar et al. 2009; Bhatnagar and Lakshmanan 2015), where the actor corresponds to
the approximate policy, which is often updated on a slower timescale than the critic (value function).

Another application of two-timescale SA is the gradient descent ascent method for solving minimax
optimization problems of the form minθ maxψ H(θ ,ψ) (Heusel et al. 2017; Lin et al. 2020). The method
consists of two nested SA recursions, where the faster recursion approximately solves the inner maximization
problem maxψ H(θ ,ψ) by holding θ constant, whereas the slower recursion searches for the next θ value
by performing a gradient decent on the function maxψ H(·,ψ).

Recently, Hu et al. (2022) introduced a three-timescale SA method incorporating direct gradients for
optimizing the quantile function of an unknown distribution. Two alternative algorithms based on indirect
gradient techniques were subsequently proposed in Hu et al. (2024) for addressing differentiable quantile
optimization problems under a general black-box setting. The basic idea underlying these approaches is
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to transform the quantile and its gradient estimations jointly into a stochastic root-finding problem, then
approximate its solution by constructing separate but coupled SA iterations running at different timescales.

3.3 Convergence and Convergence Rates

Over the years, the convergence of SA has been well studied in the literature, with results obtained under
varied conditions. Following the discussion in Spall (2003), we classify these analysis techniques/conditions
into two broad types: “statistical” and “engineering”. Statistical methods often require some knowledge
about the (unique) limit θ ∗ to the sequence {θk} and focus on specifying conditions on g and the error
term ξ that ensure the convergence (to zero) of the process {θk −θ ∗}. The smoothness of the function g
is typically not assumed, and in some studies (Evans and Weber 1986), there is no explicit condition on
the step-size. This type of analysis is often useful in applications where one has a good sense of what an
algorithm converges to (Spall and Cristion 1998; Hu and Hu 2011) and wishes to establish the “global”
convergence of the algorithm.

The “engineering” approach, often referred to as the ordinary differential equation (ODE) method
(Ljung 1977; Kushner and Clark 1978; Kushner and Yin 1997), provides more insight into the asymptotic
behavior of SA. The method may be understood as the “reversed” process of numerically solving the ODE

dθ(t)
dt

=−g(θ(t)), (15)

where the idea is to construct a continuous-time representation of (8) by “stretching” the iterates {θk}
continuously in time and then capture its long-run behavior using (15). Unlike the “statistical” conditions
mentioned before, the validity of this approach relies on the continuity of g, a condition also needed to
guarantee the existence of a solution to the ODE.

The ODE method allows the convergence of an SA algorithm to be studied by examining the limiting
solution to an underlying ODE. This connection can be established under “minimal” conditions without
imposing any assumptions on the ODE dynamics (Benaim 1996; Kushner and Yin 1997). Thus, compared
to “statistical” approaches, the method offers more flexibility and can be adopted in a broader range of
applications, including the analysis of multi-timescale SA algorithms (Borkar 1997; Bhatnagar et al. 2001;
Borkar 2009; Bhatnagar and Lakshmanan 2015; Hu et al. 2022). However, in the absence of regularity
assumptions on the function g, the limiting solutions to (15) are generally described using the notion of
invariant sets (Benaim 1996), which may not correspond to the solution of the original root finding problem
(7) (Absil and Kurdyka 2006). Consequently, the conclusions that can be drawn from such analysis could
sometimes be vague or limited.

Suppose that {θk} converges to a limit point θ ∗, the convergence rate analysis of SA is concerned with
the error behavior of {θk} around θ ∗. Early studies e.g., Sacks (1958), Fabian (1968), Kushner and Yin
(1997), Spall (1992), focused on investigating the statistical properties of the (random) difference θk −θ ∗,
indicating that for large values of k, a properly scaled version of the difference can be closely approximated
by a normal random vector. This type of result can generally be stated as follows:

kγ(θk −θ
∗)

d−−→ N (0,Σ), (16)

where γ > 0 is a constant, d−−→ denotes convergence in distribution, and N (0,Σ) stands for a normal
random vector with mean vector 0 and covariance matrix Σ. In a stochastic sense, (16) implies that when k
is large, the iterate θk must approach θ ∗ at a speed that is proportional to k−γ in order to keep the product
kγ(θk −θ ∗) constant in the limit. Under the standard step-size choice αk = a/kα for constants a > 0 and
α ∈ (0,1], it has been shown that the optimal convergence rate of RM algorithms (assuming no estimation
bias) is of order O(k−1/2) (Sacks 1958), whereas for KW algorithms, this rate reduces to O(k−1/3) (Spall
1992) due to the bias in finite difference estimators. In both cases, the best rate is achieved when αk = a/k,
i.e., with α = 1.
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Asymptotic results in this form are mainly of technical interest because they do not offer much insight
into an algorithm’s behavior when k is small. However, in modern SA applications, such as the training
of complex ML/RL models, the primary concern is with the practical performance of an algorithm within
a finite computational time/budget. This has led to recent work investigating the finite-time complexity of
SA under the SGD context (Nemirovski et al. 2009; Ghadimi and Lan 2012; Duchi et al. 2015; Bottou
et al. 2018; Karimi et al. 2019; Driggs et al. 2022; Demidovich et al. 2023), where results are often given
in the form of bounds on, e.g., E[h(θk)−h(θ ∗)], E[∥θk −θ ∗∥2], or E[∥∇h(θk)∥2]. The former two error
measures are typically used in convex optimization, whereas a (vanishing) bound on the expected gradient
E[∥∇h(θk)∥2] can be used to address the algorithm’s convergence rate to a stationary point in the stochastic
non-convex setting. Demidovich et al. (2023) provide a comprehensive review of different assumptions
adopted in SGD literature. In particular, many existing studies have been motivated by ML applications,
where constant step-sizes are frequently used to train complex models such as neural networks. Therefore,
these results are established based on assuming a constant step-size and that the gradient estimation error
either vanishes or remains uniformly bounded at the optimum.

A complementary result that examines the diminishing step-size case is given in Hu and Fu (2025) for
convex functions. They show that, through a fixed point argument introduced in Hu et al. (2024),

E[∥θk −θ
∗∥] = C e−ρ ∑

k−1
i=1 αi +O

(√
E[∥bk∥2]

)
+O

(
α

1
2

k

√
E[∥εk∥2]), (17)

where C > 0 is a constant that depends on the initial solution θ0, ρ is the smallest eigenvalue of the Hessian
matrix of the objective function, and bk and εk denote the respective bias and noise of the gradient estimator.
As contrasted with previous studies, the result is based on an explicit bias-variance decomposition, where the
variance of the gradient estimator is allowed to increase with the number of algorithm iterations, provided
that its effect will eventually be damped out by the step-size in the sense that αkE[∥εk∥2]→ 0. Note that
with a step-size of the form αk = a/k, (17) suggests that the influence of the initial condition will vanish
only polynomially in k. Therefore, care must be taken in choosing the constant a, because a too-small
value of a can cause the term e−ρ ∑

k−1
i=1 αi to decay at a rate that is actually slower than those of the bias and

variance terms. This explains why SA algorithms with αk = a/k may perform poorly in practice, even if
such a step-size achieves the best possible asymptotic convergence rate.

Unlike single-timescale SA, research on analyzing the convergence rates for multi-timescale algorithms
is sparse. Most of the results are in the linear setting, i.e., when g(1) and g(2) in (13) and (14) are both linear
functions of their arguments. Notable examples include Konda and Tsitsiklis (2004), which establishes a
central limit theorem-type result for two-timescale SA; Dalal et al. (2018), which provides a finite-time
probability bound for linear two-timescale SA; and the work of Kaledin et al. (2020), where finite-time
expected error bounds are developed under both martingale and Markovian noises.

An extension of the result of Konda and Tsitsiklis (2004) to the nonlinear case is obtained in Mokkadem
and Pelletier (2006). Their analysis is based on a local linearization of a nonlinear system around the
optimal solution, yielding an asymptotic normality result similar to that of Konda and Tsitsiklis (2004).
In another contribution, Doan (2023) derived a finite-time mean squared error (MSE) bound for nonlinear
two-timescale SA under the i.i.d. noise setting. He concluded an O(k−2/3) convergence rate of the algorithm
with appropriately chosen step sizes, assuming no estimation bias and constant covariance matrices for the
estimation noise. More recently, Hu et al. (2024) introduced a fixed-point method for studying the finite-
time convergence rate of a three-timescale SA algorithm. This method involves bounding an algorithm’s
estimation errors through the composition of a series of suitably constructed contraction mappings, so that
the convergence rates of its iterates can be characterized in detail by inspecting the solutions to a set of
fixed point equations. The approach does not require the estimator to be unbiased or to have bounded
variance, and can be applied to study general multi-timescale SA algorithms.
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4 STOCHASTIC GRADIENT DESCENT: RECENT ADVANCES

4.1 Momentum Stochastic Gradient Descent

Momentum Stochastic Gradient Descent (MSGD, Polyak (1964)), a widely used variant of SGD, takes the
following form:

θk+1 = θk −η ĝ(θk)+µ(θk −θk−1), (18)

where αk ≡ η > 0 is the constant step size, and µ(θk −θk−1) is the momentum parameterized by µ ∈ [0,1),
with µ = 0 corresponding to a constant step-size SA/SGD.

The ODE approach for showing convergence of ODE described in Section 3.3 cannot be directly applied
to analyze MSGD due to the additional momentum term, so a different approach was provided in Liu
et al. (2021), which involves first rigorously proving the weak convergence of the trajectory sequence, and
then using martingale theory to find the ODE. More specifically, define the continuous-time interpolation
θ η(·) of the solution trajectory of the algorithm as follows: for t ≥ 0, set θ η(t) = θ

η

k on the time interval
[kη ,kη +η). Under certain regularity conditions, for each subsequence of {θ η(·)}η>0, there exists a further
subsequence and a process θ(·) such that θ η(·)⇒ θ(·) in the weak sense as η → 0 through the convergent
subsequence in the space Dd [0,∞) (the space of Rd-valued operators which are right continuous and have
left-hand limits for each dimension), where θ(·) satisfies the following ODE:

θ̇ =− 1
1−µ

g(θ), θ(0) = θ0. (19)

Note that for any solution θ(t) to the ODE θ̇ =−g(θ), θ( t
1−µ

) is a solution to ODE (19), implying
that asymptotically, MSGD is 1

1−µ
faster than SGD in converging to the neighborhood of a stationary

point, given the same initialization. Intuitively, with the help of the momentum, the algorithm makes more
progress along the descent direction, and therefore momentum can accelerate the algorithm asymptotically.

However, since the noise of the stochastic gradient diminishes as η → 0, such a deterministic ODE-based
approach is insufficient to analyze the local behavior of MSGD around stationary points where the noise
plays a dominant role over the vanishing gradient. Thus, a stochastic differential equation (SDE)-based
approach is required for a more precise characterization. To characterize the local algorithmic behavior,
define normalized error θk−θ ∗

√
η

, where θ ∗ ∈ S is a stationary point of the ODE (19), and consider the
algorithmic behavior of MSGD when it is around a local optimum θ ∗. Define the normalized process
uη

k = (θ η

k −θ ∗)/
√

η , where λmin(∇g(θ ∗))> 0. Consequently, Uη(t) = (θ η(t)−θ ∗)/
√

η . Then, as η → 0,
the limiting process {Uη(·)} converges weakly to the unique stationary solution of

dU =− 1
1−µ

∇g(θ ∗)Udt +
1

1−µ
dWt , (20)

where {Wt} is a Wiener process with covariance matrix Σ = E[ĝ(x∗)ĝ(x∗)⊤]. The SDE (20) implies that
the momentum essentially increases the variance of the normalized error by a factor of 1

1−µ
around the

local optimum compared with the usual SGD (i.e., µ = 0), making it more difficult for MSGD to converge.
Analogous results obtained for saddle points implies that compared with the usual SGD, momentum
accelerates escaping from saddle points by a factor of 1−µ. However, momentum can also hurt the final
convergence due to the increased variance. To counter this, one suggestion is to decrease the step size by
a factor 1−µ in the later stage. The same approach has also been used to analyze asynchronous MSGD,
focusing on the trade-off between momentum and asynchrony (Liu et al. 2018).

4.2 Stochastic Gradient Descent Reusing Past Samples via Importance Sampling

When the stochastic gradient estimator suffers from high variance, multiple replications – referred to
as mini-batches in the AI/ML community – can be used to reduce variance. Another (complementary)
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alternative is to use the technique of importance sampling to reuse replications based on previous SA/SGD
iterations to estimate the gradient at the current value of θ (Liu and Zhou 2020), i.e.,

ĝ(θn) =
1

KB

n

∑
m=n−K+1

B

∑
i=1

l(ω i
m,θn|θm)ĥ(θn), (21)

where B is the mini-batch size, and K-1 is the number of past iterations of data used, {ω i
m, i = 1, . . . ,B} i.i.d∼

f (·;θm) for m = n−K +1, ...,n, and the likelihood ratio l(ω i
m,θn|θm) = f (ω i

m;θn)/ f (ω i
m;θm). Then SGD

with reusing past replications (RSGD) is given by (8) using this stochastic gradient estimator.
Earlier work (Eckman and Henderson 2018; Eckman and Feng 2018) noticed that the dependence

between iterations introduces bias into the stochastic gradient estimator (21), making theoretical analysis of
RSGD difficult; however, empirical evidence indicates RSGD leads to improved performance over SGD.
RSGD and SGD share the same limiting ODE for their solution trajectories, and the bias introduced by
the dependence between iterations becomes asymptotically negligible (Liu and Zhou 2020); thus, RSGD
has the same asymptotic convergence as SGD. Specifically, the continuous-time interpolations of both
noise and bias can be shown to reach stationarity by establishing appropriate hidden Markov properties
and applying the fixed-state chain method (Theorem 6.6.1 in Kushner and Yin (2003)); see Liu and Zhou
(2020) for technical details.

4.3 Reusing Past Samples in Policy Gradient Algorithms

The general approach of RSGD can be used to accelerate policy optimization in reinforcement learning.
Here, we describe one variant of the policy gradient method (Lin, Wang, and Zhou 2025). In the policy
gradient algorithm, the policy parameter is updated according to the usual (projected version of) SA/SGD
iteration:

θn+1 = ProjΘ (θn +αn∇η (θn)) ,

where ProjΘ(θ) is a projection operator that projects the iterate of θ to the feasible parameter space Θ,
and ∇η (θn) is the policy gradient (Sutton et al. 1999) given by

∇η(θ) =
1

1− γ
E(s,a)∼dπθ (s,a)[A

πθ (s,a)∇ logπθ (a|s)],

where dπθ (s) is the discounted occupancy measure induced by policy πθ and Aπθ is the advantage function.
The natural policy gradient (NPG) algorithm (Kakade 2001) is the following variant of the policy

gradient algorithm:

θn+1 = ProjΘ
(
θn +αnF−1(θn)∇η (θn)

)
,

where F(θ) = E(s,a)∼dπθ (s,a)[∇ logπθ (a|s)(∇ logπθ (a|s))T ] is the Fisher information matrix (FIM) induced

by πθ . The gradient estimator ∇̃η (θn) and FIM estimator F̃ (θn) are given by

∇̃η (θn) =
1
B

B

∑
i=1

G(ω i
n,θn), F̃ (θn) =

1
B

B

∑
i=1

S(ω i
n,θn),

where S(ω,θ) = ∇ logπθ (a|s)(∇ logπθ (a|s))T and G(ω,θ) = 1
1−γ

Aπθ (s,a)∇ logπθ (a|s), and ω i
n = (si

n,a
i
n)

the i-th state-action pair sampled from the discounted occupancy measure dπθn (s,a) at iteration n. When
reusing past trajectories, the gradient and FIM estimators are as follows:

∇̂η(θn) =
1

K1B

n

∑
m=n−K1+1

B

∑
i=1

l(ω i
m,θn|θm)G(ω i

m,θn), F̂ (θn) =
1

K2B

n

∑
m=n−K2+1

B

∑
i=1

l(ω i
m,θn|θm)S(ω i

m,θn),
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where previous K1 − 1 iterations’ trajectories are used for estimating the gradient and K2 − 1 iterations’
trajectories for estimating FIM, with l(ω i

m,θn|θm) = dπθn (ω i
m)/dπθm (ω i

m). The update of the natural policy
gradient with reusing historical trajectories (RNPG) is then as follows:

θn+1 = ProjΘ
(

θn +αnF̂−1(θn)∇̂η (θn)
)
.

As in RSGD, RNPG introduces bias into the FIM and gradient estimators when reusing historical trajectories.
By establishing hidden Markov properties similarly as for RSGD, the ODE and SDE methods can be used
to prove RNPG converges w.p.1 to a local optimum θ ∗, and characterize the error and improvement in
convergence rate; see Lin, Wang, and Zhou (2025) for technical details.

5 STOCHASTIC GRADIENT DESCENT: APPLICATION TO GEOGRAPHICAL PARTITIONING

An exciting recent application of stochastic gradient descent has emerged in the domain of optimal transport
(Peyré and Cuturi 2019; Ryzhov et al. 2024). This literature focuses on what is essentially a generalization
of the well-known “transportation problem” in linear programming (Ford and Fulkerson 1956), which
matches two groups of entities (e.g., factories and distribution centers) in a way that minimizes cost. In
its most general form, optimal transport aims to design a joint distribution for two random variables X
and Y with prespecified marginals to optimize an expected cost function that depends on both X and
Y simultaneously. Of particular interest is the semidiscrete setting (Hartmann and Schuhmacher 2020),
where Y is a discrete random variable with finite support {1, ...,K} (as in the classical linear programming
application), but X is a continuous random variable supported on some compact set X ⊆ Rd . Formally,
we write

inf
π

K

∑
k=1

∫
X

c(x,k)π (x,k)dx (22)

subject to
∫

X
π (x,k)dx = pk, k = 1, ...,K, (23)

∑
k

π (x,k) = f (x) , x ∈ X , (24)

π (x,k) ≥ 0, x ∈ X , k = 1, ...,K. (25)

This is a functional optimization problem with an infinite-dimensional decision variable π representing the
mixed joint likelihood P(X ∈ dx,Y = k) = π (x,k)dx. The vector p and the function f are known problem
inputs representing the marginal pmf of Y and the marginal density of X , respectively. The objective (22)
minimizes Eπ (c(X ,Y )), while (23)-(24) ensure that the marginal distributions are preserved.

At first glance, there is nothing connecting this problem to stochastic gradient descent. However,
(22)-(25) is an infinite-dimensional linear program, and thus has a Kantorovich dual given by

sup
φ ,ψ

∫
X

φ (x) f (x)dx+∑
k

pkψk (26)

subject to
φ (x)+ψk ≤ c(x,k) , x ∈ X , k = 1, ...,K. (27)

This problem has an infinite-dimensional decision variable φ and a finite-dimensional decision variable ψ .
However, since the dual objective (26) is separable in φ and ψ , we can eliminate (27) entirely by taking

φ (x) = min
k

c(x,k)−ψk, x ∈ X . (28)

Substituting (28) into (27) yields the unconstrained and finite-dimensional optimization problem

max
ψ

E
(

min
k

c(X ,k)−ψk

)
+∑

k
pkψk. (29)
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It is straightforward (Carlsson, Carlsson, and Devulapalli 2016) to show that the optimal solution ψ∗ of
(29) induces an optimal solution to (22)-(25). One simply takes

Y ∗ (X) = argmin
k

c(X ,k)−ψ
∗
k , (30)

with ties broken arbitrarily. The joint distribution of (X ,Y ∗ (X)) can be shown to optimally solve the
original (primal) problem. This form of the solution has applications in geographical partitioning problems
motivated by facility logistics. One may define Ak = {x : Y ∗ (x) = k} and observe that the sets A1, ...,AK
form a partition of X . In a typical applied context, X is a planar region, and each k value is associated
with a facility located at some xk ∈X . The cost function c(x,k) represents the cost incurred by a customer
residing at location x when traveling to facility k, with the Euclidean distance c(x,k) = ∥x− xk∥2 being
a typical (but not the only possible) choice. Equation (30) assigns customers to facilities based on their
locations; the values ψ∗

k can be viewed as bonuses and penalties that modify the travel costs in order
to ensure that the kth facility receives exactly a proportion pk of customers. In fact, by applying direct
gradients, one can see that the optimality conditions of (29) are exactly

P
(

k = argmin
j

c(X , j)−ψ j

)
= pk, k = 1, ...,K.

It remains only to solve (29). The quantity inside the expected value is a finite minimum of linear
functions of ψ , and therefore concave. Expectations preserve concavity, so (29) is a concave maximization
problem. If we have the ability to simulate i.i.d. samples {Xn}∞

n=1 from the density f , the problem turns
into an almost trivial application of stochastic gradient descent (Genevay et al. 2016). We simply apply
the update

ψ
n+1
k = ψ

n
k +αn

(
−1{k=argmin j c(Xn+1, j)−ψn

j}+ pk

)
.

In this way, a problem that originally started out as infinite-dimensional can be solved efficiently, and the
optimal solution is completely characterized by a finite-dimensional vector ψ∗. With (30) used to make
assignments, the optimal partition becomes easy to store in memory and visualize. Partitions based on (30)
have been studied for many years under the name “additively weighted Voronoi diagrams” (Aurenhammer
1991), but traditional numerical methods focused on the geometry of (30) in X and were computationally
quite cumbersome. By viewing (29) as a finite-dimensional simulation optimization problem, we are able to
solve it using essentially a single line of code. In fact, although the optimal transport literature universally
assumes that the marginal density f of X is known, strictly speaking we do not need to know it in order
to solve (30). We only require the ability to observe samples from it.
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