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ABSTRACT  

Flood risk communication influences how the public perceives hazards and motivates preparedness actions, 
like taking preventive measures, purchasing insurance, and making informed property decisions. Prior 
research suggests that both the format and source of information can influence how people interpret risk. 
This study investigates how flood map types and sources influence individuals’ risk perception and 
decision-making. Using a randomized control trail (N = 796), participants were assigned to view one of the 
several flood risk representations sourced from governmental agencies, a nonprofit, and crowdsourced 
images of past floods, or plain geographical maps. Participants then self-reported their risk perceptions and 
behavioral intentions. This study compares visual formats and sources to reveal how communication 
strategies influence public understanding and preparedness, guiding more effective flood risk messaging. 

1 INTRODUCTION 

Effective risk communication plays a critical role in disaster preparedness and response. This 
communication is often shaped by how the risk is assessed and understood. Although risk assessment 
typically emphasizes outcome magnitude and likelihood, individuals often make decisions under time 
constraints and limited information, rendering strict reliance on quantitative data impractical. In such cases, 
decision-making frequently depends on expert judgment and intuition rather than purely logical analysis. 
For example, individuals may decide to buy health insurance based on social norms and trust rather than a 
clear understanding of actual costs and benefits (Zinn 2008). This subjective risk perception can be further 
influenced by emotional responses such as fear and anxiety.  

The psychological mechanisms underlying risk perception, including mental imagery, play a key role 
in shaping how individuals assess and respond to risk, as visualizing potential hazards can shape how severe 
individuals perceive them to be. In this context, the vividness of mental imagery, defined by its dynamism, 
intensity, and realism, may indirectly shape risk perception (Zaleskiewicz et al. 2023). Imagery can engage 
any of our senses, enabling us to mentally recreate past experiences and envision future scenarios (a.k.a., 
mental time travel) (Andrade et al. 2014). This sensory engagement does not merely enhance memory and 
imagination; it can also shape how we interpret and respond to information. Research has also found that 
modality, the sensory channel through which information is conveyed, significantly influences the 
perception of risk and subsequent decision-making behavior (Lin 2023, Geipel et al 2023, Sanni et al. 2024). 
The effect of different modalities (i.e., visual, auditory, olfactory, and tactile) has been extensively 
investigated across various domains. In project risk management, for example, effective visualization of 
information enhances risk perception and improves decision-making behavior; yet, a key challenge lies in 
the visual presentation of risk information, as it significantly affects perception and judgments (Dikmen et 
al. 2024). Research suggests that representing uncertainty through visual cues, e.g., color-coded threat 
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indicators, encourages more cautious decision-making. For instance, in a simulated minefield navigation 
exercise, participants relying on visual representations opted for safer yet more time-consuming routes 
compared to those using auditory or tactile cues (Basapur et al. 2003). In high-stakes domains such as 
finance, military operations, and medicine, the interaction of multiple sensory modalities, particularly 
auditory and visual inputs, can complicate risk perception (Payzan-LeNestour et al. 2021). 

To date, research on the role of modality in flood risk communication remains limited. Understanding 
how information modality influences the formation and calibration of flood risk perception is increasingly 
critical given the rising frequency and severity of flooding globally. In this context, the way flood data is 
presented, whether through maps, photos, or other formats, can significantly shape risk perception. While 
visual representations are commonly used in flood risk communication, their effectiveness varies. For 
instance, Houston et al. (2019) explored the impact of different hazard maps by randomly assigning 
participants to view either a Federal Emergency Management Agency (FEMA) map, which represented 
flooded areas with a single color and less spatial differentiation, or a Flood Resilient Infrastructure and 
Sustainable Environments (FloodRISE) map, which depicted flood depth with a gradation of colors at a 
street scale. Results showed that spatial awareness increased among all participants (regardless of 
sociodemographic status or geographical location) after viewing the maps. However, participants viewing 
FEMA maps had lower spatial awareness than those viewing FloodRISE maps.  

Prior work shows that sociodemographic factors and prior flood experience shape how people perceive 
and respond to flood risk information. One such finding is that women tend to express more concern about 
impacts on home and family, while men focus more on economic risks (Houston et al. 2019; Kellens et al. 
2011; Gustafson 1998). In a study of 17 risk categories, female respondents rated hazard risks (e.g., flood, 
drought, storm) significantly higher than their male counterparts, except for fire events, where men 
perceived a greater impact (Brown et al. 2021). Similarly, prior flood experience appears to heighten 
perceived risk and improve spatial awareness, particularly among younger, lower-income, and short-term 
residents (Houston et al, 2019). In addition, higher income and education levels are found to be associated 
with lower perceived risk (Flynn et al. 1994), whereas older adults tend to report higher perceived risk 
(Sattler et al. 2000; Peacock et al. 2005; Bodas et al. 2022).  
 Considering these prior findings on the influence of source, modality, and demographics on risk 
perception and decision making, the research presented in this paper will address three research questions. 
First, we explore whether perceived flood risk severity remains consistent across different flood risk map 
sources (e.g., FEMA, NOAA, Climate Central) and modalities (e.g., images vs. maps). Next, we assess 
whether gender plays a role in the decision to purchase or rent property when individuals are presented with 
different flood risk visualizations. Finally, we examine whether property purchase and rental decisions, and 
how participants interpret visual flood risk information, vary by education level. Understanding these 
factors can provide insights into how individuals interpret flood risk information and make property-related 
decisions. Identifying patterns in risk perception and decision-making can enhance the effectiveness of 
flood risk communication, ensuring accessibility and relevance for all populations. 

2 METHODOLOGY 

2.1 Research Design  

We employ a quantitative approach, using a randomized controlled trial (RCT) experiment on Qualtrics to 
assess how individuals perceive flood risk based on different flood map sources and modalities. Flood map 
information is grouped into five distinct categories. Four of these categories contain map screenshots from 
established flood mapping sources, namely FEMA, National Oceanic and Atmospheric Administration 
(NOAA), Climate Central, and Google Maps. The fifth category consists of real-world flood images, 
collected in one of our previous studies (Alizadeh Kharazi 2023). Since Google Maps does not present any 
explicit flood risk information, obtained map screenshots from this source serve as a visual baseline or 
control group.  This distinction in source and modality allows us to examine how individuals interpret flood 
risk differently when presented with abstract, map-based representations versus actual photographic 
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evidence. A total of 260 U.S. locations were selected for analysis, and corresponding flood map screenshots 
were extracted from FEMA, NOAA, Climate Central, and Google Maps to ensure consistent geographic 
coverage. Figure 1 presents a sample entry from Wakulla County, Florida. To ensure a broad and diverse 
representation of individuals, participants were recruited via Amazon Mechanical Turk (MTurk), and 
randomly assigned to one of the five visualization groups using Qualtrics’ built-in randomizer. Within each 
group, participants were shown two images selected at random from the pool of 260 U.S. locations using 
Qualtrics’ randomization logic. Following the visual exposure, participants completed a structured survey 
about their sociodemographic status (age, gender, education level, location), flood experience (past flood 
exposure, preparedness actions taken, familiarity with flood maps), and flood risk perception and resulting 
behavioral intentions.  Individual responses are coded using 5-point Likert-scales (ranging from options 
such as ‘very likely’ to ‘very unlikely’), allowing for a standardized measurement of the outcomes. 

 

 
(a) Flood extent map generated 
using Climate Central’s Coastal 
Risk Screening Tool. The flood 
extent corresponds to a 10-meter sea 
level rise scenario. 
 

 
(b) Sea-level rise visualization from 
NOAA’s SLR Viewer. The map 
depicts projected inundation under a 
10-meter sea level rise. 

 
(c) Satellite imagery from Google 
Maps, shown to participants as a 
baseline visual of the area. This view 
includes no explicit flood overlay. 

 
(d) FEMA flood hazard map from 
the NFHL Viewer. The map 
indicates zones of risk under a 10-
meter base flood elevation scenario. 

 
(e) Crowdsourced flood photo from 
NOAA’s BluPix dataset. This 
image illustrates real-world flood 
conditions. 

Figure 1: Flood risk visualizations for a location in Wakulla County, Florida, used across five experimental 
groups. Each panel presents a different source or modality of flood risk information. 

2.2 Participants 

The study is approved by the Institutional Review Board (IRB). We follow all ethical research guidelines 
to ensure that participants are fully informed about the study’s purpose and procedures before participation 
and provide necessary consents. Participation was restricted to individuals aged 18 and older who resided 
in the United States. Participants were recruited via MTurk, and study data were collected using Qualtrics 
over a one-month period between September and October 2024. As listed in Table 1, the final sample 
includes individuals from different age groups, genders, and educational backgrounds. Most participants 
(58%) were between 25 and 35 years old. Gender distribution includes 29.3% female and 70.6% male. 
Educational background varied, with 66.8% of participants holding a bachelor’s degree, followed by 
master’s degree (22.5%). A strong majority (94.6%) of participants had past experience with floods, and 
only 5.4% had no such experience. Table 1 also compares the study sample’s demographic distribution with 
that of the general U.S. population to assess representativeness. While the sample’s racial composition 
aligns with national demographics, it skews toward younger, more male, and more highly educated 
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individuals. This sampling bias represents a limitation of the study, particularly given the central role of 
demographic characteristics in analyzing flood risk perception. As such, findings should be interpreted with 
caution when generalizing to the broader U.S. population. Table 2 shows the distribution of participants 
across visualization category. As previously mentioned, participants viewed two images from different 
locations within their assigned category. For each image, participants answer a set of questions related to 
understanding the perception of risk, such as perceived flood severity, frequency of flooding, confidence in 
information, and ease of interpretation. Additional questions focus on behavioral intentions, such as the 
likelihood of purchasing flood insurance, likelihood of buying or renting property in the area, and likelihood 
of taking preventive actions. 

Table 1: Demographic distribution of the study sample compared to the U.S. population. Percentages for 
the U.S. population are based on adults aged 18 and over. All population data are sourced from the U.S. 
Census Bureau and reflects estimates from 2022 to 2024. 

Variables Sample 
(%) 

Population 
(%) 

Variables Sample 
(%) 

Population 
(%) 

Gender Education 
 Male 70.6 48.8  High school 

graduate or less 
2.5 38.7 

 Female 29.4 51.2 
Race  Some college 3.8 16.5 
 White alone  75.4 75.3  Associate degree 2.4 9.9 
 Black alone 2.8 13.7  Bachelor’s degree 66.8 22.1 
 American Indian 

and Alaska Native 
3.3 1.3  Master’s degree 22.5 9.5 

 Doctoral or other 
professional degree 

2.0 3.3 
 Asian alone 13.4 6.4 
 Native Hawaiian or 

Pacific Islander 
0.3 0.3 Age 

 18 to 24 8.2 16.2 
 Two or more races 4.8 3.1  25 to 34 58.0 16.6 
 Hispanic or Latino 45.7 19.5  35 to 44 20.5 16.0 
 White alone, not 

Hispanic or Latino 
48.3 58.4  45 to 54 9.2 14.7 

 55 to 64 3.1 15.2 
     65 or over 1.0 21.3 

Table 2: Distribution of participants by flood risk visualization conditions.  

Source  Count % of sample 
FEMA 170 21.36 
NOAA 142 17.84 

Climate Central 162 20.35 
Google Maps 156 19.60 
Flood Image 166 20.85 

Total 796 100.00 

2.3 Methods of Analysis 

This study focuses on four key behavioral intention variables: (1) likelihood to buy property, (2) likelihood 
to rent property, (3) likelihood to buy flood insurance, and (4) likelihood to take preventive actions. These 
outcomes capture how different visualizations influence respondents’ decision-making. Each response 
variable is measured on a 5-point Likert-style scale, with numerical values assigned to ordinal categories 
for analysis. For instance, in questions assessing behavioral intent (e.g., likelihood to buy property), 
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responses ranged from 1= ‘very likely’ to 5 = ‘very unlikely’, where lower values indicate a stronger 
likelihood of action. Similarly, for perception-based questions (e.g., flood risk severity), the scale ranged 
from 1 = ‘very high’ to 5 = ‘very low’, where lower values reflect higher perceived risk. For statistical 
testing, assumptions of parametric tests (e.g., ANOVA), such as normality and homogeneity of variances, 
are often violated when applied to ordinal data. Therefore, we employ the Kruskal-Wallis H-test, a non-
parametric alternative to ANOVA that does not assume normal distribution and is better suited for analyzing 
ordinal response variables (Hecke 2010). To evaluate differences in participant responses across different 
groups, we use the Kruskal-Wallis H-test, a non-parametric test appropriate for Likert-scale data. Where 
significant group differences are observed, Dunn’s post-hoc test with Bonferroni correction is applied to 
determine which specific modality or source pairs differ significantly. 

To examine whether gender influences behavioral intentions in response to flood risk visualizations, a 
two-step non-parametric analysis is conducted. First, the Mann-Whitney U-test is used to assess overall 
differences between male and female participants across four key behavioral intention variables. Next, 
Kruskal-Wallis H-tests are conducted separately for male and female participants to explore whether 
gender-based behavioral differences vary by flood map modality and source. For gender groups showing 
significant differences, Dunn’s post-hoc tests with Bonferroni correction were used to identify specific 
visualization pairs that differed. This two-step analysis provided both an overall view of gender differences 
and a detailed understanding of how these differences appeared across flood risk visualizations. 

To examine whether age influences behavioral responses to flood risk visualizations, participants were 
grouped into three age categories of young (18-34 years), middle-aged (35-54 years), and older (55+ years) 
adults, based on the overall sample distribution (see Table 1). Behavioral intent in each age group is 
assessed using responses to the four key variables. Kruskal-Wallis H-test is used to decide whether 
significant differences in responses exist among the age groups. Where significant effects are observed, 
Dunn’s post-hoc tests with Bonferroni correction are applied to identify specific pairs of age groups with 
meaningful differences. To further explore whether the impact of age on behavioral intent varies by 
visualization type, subgroup analyses are conducted within each age category. Kruskal-Wallis tests are run 
separately for each group to compare responses across different flood risk visualization types. Where 
significant modality effects are found, pairwise Dunn’s tests are used to identify specific differences 
between visual formats. This two-tiered approach allows us to isolate both general age effects and age-
specific responses to different visualizations. 

Finally, to assess whether education level influences behavioral responses to flood risk visualizations, 
participants’ reported education levels are consolidated into three categories of ‘Some college or less’ (those 
with a high school diploma or less, some college, or an associate degree), ‘Bachelor’ (those with a 
bachelor’s degree), and ‘Graduate’ (those holding a master’s or doctoral/professional degree). This 
grouping ensures sufficient sample sizes within each category while preserving meaningful distinctions in 
educational attainment. Behavioral intent in each age group is assessed using responses to the same four 
key variables. The Kruskal-Wallis H-test is used to evaluate whether statistically significant differences in 
behavioral intent exist across the three education categories. When group-level differences are significant, 
Dunn’s post-hoc test with Bonferroni correction is conducted to identify which specific education-level 
pairs differ. Additionally, to explore whether individuals within each education group responded differently 
to different flood risk visualization types, Kruskal-Wallis tests are conducted within each group. For 
education categories that show significant modality effects, follow-up Dunn’s tests are performed to 
determine which visualization types contributed to the observed differences. 

3 RESULTS  

3.1 Effect of Modality and Source 

To evaluate the impact of map source and modality on risk perception and behavior, a Kruskal-Wallis H-
test was conducted across five visualization types. As shown in Table 3, significant differences were found 
for perceived flood severity (H(4) = 23.772, p < 0.001) and confidence in interpretation (H(4) = 12.802, p 
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= 0.012). No statistically significant differences were observed for the remaining variables. Post-hoc 
comparisons using Dunn’s test with a Bonferroni correction revealed significant differences in how 
participants perceived flood risk severity and their confidence in interpreting the flood risk visualization. 
For flood risk severity, participants who viewed NOAA, Climate Central, and Google Maps reported 
significantly higher median scores than those who viewed Flood Images (p = 0.004, 0.012, and < 0.001, 
respectively). Since higher median values correspond to lower perceived severity on the Likert scale, these 
results suggest that Crowdsourced Images conveyed a stronger sense of flood risk severity compared to 
traditional map formats. Additionally, for confidence in interpreting the map, participants who viewed 
Google Maps had a significantly higher median score than those who viewed Climate Central maps (p = 
0.009). Since lower Likert values correspond to greater confidence, this indicates that participants felt more 
confident interpreting Climate Central than Google Maps. No other significant differences were found 
among FEMA, NOAA, or Flood Image modalities for confidence scores (Table 4). These findings suggest 
that photographic flood imagery heightened perceptions of severity but did not significantly affect 
participants’ understanding or ease of interpretation. This suggests that while emotional impact varies by 
visual type, comprehension remains consistent across modalities.  

Table 3: Kruskal-Wallis H-test examining differences across flood risk visualizations. 

Variable  H-statistic df p-value (* statistical significance) 
Flood risk severity 23.772 4 < 0.001* 
Flood risk understanding 3.150 4 0.533 
Confidence in interpretation 12.802 4 0.012* 
Ease of interpretation 2.759 4 0.599 
Likely to buy property 6.261 4 0.180 
Likely to rent property 3.807 4 0.433 
Likely to buy insurance 2.652 4 0.618 
Likely to take preventive actions 2.428 4 0.658 

Table 4: Dunn’s post-hoc pairwise comparisons across flood risk visualizations. Adjusted p-values are 
reported using Bonferroni correction. Only significant values are reported. 

Pairwise difference Adjusted p-value (* statistical significance) 
Flood Risk Severity  
 Climate Central – Flood images 0.012* 
 Google maps – Flood images < 0.001* 
 Flood images – NOAA 0.004* 
Confidence in map image  
 Climate Central – Google maps 0.009* 

3.2 Effect of Gender 

To examine whether gender influences behavioral intentions in response to flood risk visualizations, Mann-
Whitney U-tests were conducted across five flood risk visualization types, with results indicating no 
statistically significant differences between male and female participants across any of the risk perception 
and behavioral response variables (Table 5). This finding suggests that gender, in aggregate, did not have 
a significant effect on behavioral intents. To further examine whether the source and modality of flood risk 
visualization interacted with gender to influence these responses, Kruskal-Wallis H-tests were performed 
separately for male and female participants across flood risk visualizations (Table 6). Among male 
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participants, no significant differences were observed across modalities for any behavioral response. 
However, significant differences emerged for female participants in their likelihood to buy property (H(4) 
= 15.642, p = .004) and likelihood to rent property (H(4) = 15.887, p = 0.003), suggesting that they were 
more sensitive to the type of flood risk visualization shown. To identify which specific modality pairs 
contributed to these differences among female participants, Dunn’s post-hoc tests with Bonferroni 
correction were conducted. It was found that female participants who viewed FEMA maps reported 
significantly higher intention to buy property compared to those who viewed Flood Images (p = 0.002). 
Similarly, NOAA maps were associated with higher purchase intent compared to Flood Images (p = 0.047). 
A similar pattern was observed for renting intentions, where FEMA maps led to significantly higher 
likelihood to rent compared to Flood Images (p = 0.003). These findings suggest that female participants 
expressed lower willingness to buy or rent property when exposed to image-based visualizations, which 
may reflect a heightened perception of flood risk. This effect was not seen in male participants, pointing to 
a gender-specific response to visualizations.  

Table 5: Mann-Whitney U-test comparing Likert-scale responses across gender groups. 

Variable  U-statistic z- score p-value (* statistical significance) 
Likely to buy property 256379.5 -0.794 0.408 
Likely to rent property 261257.5 -0.210 0.827 
Likely to buy insurance 264854.0 0.220 0.818 
Likely to take preventive actions 260554.0 -0.295 0.758 

Table 6: Kruskal-Wallis H-test comparing gender differences across flood risk visualizations. 

Variable  H-statistic df p-value (* statistical significance) 
Male 
 Likely to buy property 1.839 4 0.765 
 Likely to rent property 1.179 4 0.881 
 Likely to buy insurance 7.421 4 0.115 
 Likely to take preventive actions 3.038 4 0.552 
Female 
 Likely to buy property 15.642 4 0.004* 
 Likely to rent property 15.887 4 0.003* 
 Likely to buy insurance 4.937 4 0.294 
 Likely to take preventive actions 4.707 4 0.319 

3.3 Effect of Age 

To explore the influence of age on participants’ behavioral responses to flood risk visualizations, Kruskal-
Wallis H-tests were conducted using three age categories of young (18-34 years), middle-aged (35-54 
years), and older (55+ years) adults. As shown in Table 7, statistically significant differences were found 
across age groups for the likelihood to buy property (H(2) = 17.901, p < 0.001) and rent property (H(2) = 
22.710, p < 0.001), while no significant differences were observed for the likelihood to buy flood insurance 
or take preventive actions. Dunn’s post-hoc results in Table 8 reveal that older adults reported significantly 
lower willingness to buy property compared to young adults (p < 0.001) and middle-aged adults (p = 0.020). 
Similarly, older adults were significantly less likely to rent property than both young adults (p < 0.001) and 
middle-aged adults (p = 0.047), with middle-aged adults also differing significantly from young adults (p 
= 0.004). These patterns suggest that older participants were less inclined to engage in property-related 
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decisions in areas perceived as flood-prone, which may indicate greater sensitivity to perceived risk or more 
cautious decision-making. To further explore how these age-related patterns varied across modalities, 
Kruskal-Wallis H-tests were run within each age group. As shown in Table 9, older adults’ behavioral 
responses varied significantly by visualization modality, particularly in their willingness to buy property 
(H(4) = 20.907, p < 0.001) and rent property (H(4) = 15.806, p = 0.003). Post-hoc comparisons using 
Dunn’s test with a Bonferroni correction showed that older adults were significantly less likely to buy or 
rent property after viewing flood images compared to all flood maps, i.e., Climate Central (p < 0.001 for 
buying; p = 0.007 for renting), FEMA (p = 0.014 and 0.011), NOAA (p = 0.034 and 0.085), and Google 
Maps (p = 0.031 for buying). These results highlight that flood images may have a particularly strong effect 
on older adults’ behavioral intentions in high-risk flood zones. 

Table 7: Kruskal-Wallis H-test comparing Likert-scale responses across age groups. 

Variable H-statistic df p-value (* statistical significance) 
Likely to Buy Property 17.901 2 < 0.001* 
Likely to Rent Property 22.710 2 < 0.001* 

Likely to Buy Flood Insurance 1.707 2 0.426 
Likely to Take Preventive Actions 2.410 2 0.300 

Table 8: Dunn’s post-hoc test comparing pairwise differences across age groups. 

Pairwise difference Adjusted p-value (* statistical significance) 
Likely to buy property  
 Young Adults – Middle-Aged Adults 0.061 
 Young Adults – Older Adults < 0.001* 
 Middle-Aged Adults - Older Adults 0.020* 
Likely to rent property 
 Young Adults – Middle-Aged Adults 0.004* 
 Young Adults – Older Adults < 0.001* 
 Middle-Aged Adults – Older Adults  0.047* 

Table 9: Kruskal-Wallis H-test comparing age group differences across flood risk visualizations. 

Variable H-statistic df p-value (* statistical significance) 
Young Adults 
 Likely to Buy Property 4.184 4 0.382 
 Likely to Rent Property 1.262 4 0.868 
 Likely to Buy Flood Insurance 1.861 4 0.761 
 Likely to Take Preventive Actions 3.523 4 0.474 
Middle-Aged Adults 
 Likely to Buy Property 3.419 4 0.490 
 Likely to Rent Property 1.881 4 0.758 
 Likely to Buy Flood Insurance 2.492 4 0.646 
 Likely to Take Preventive Actions 5.400 4 0.249 
Older Adults 
 Likely to Buy Property 20.907 4 0.000* 
 Likely to Rent Property 15.806 4 0.003* 
 Likely to Buy Flood Insurance 8.326 4 0.080 
 Likely to Take Preventive Actions 5.122 4 0.275 
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3.4 Effect of Education Level 

To examine the impact of education on behavioral responses to flood risk visuals, Kruskal-Wallis H-tests 
were conducted across three groups: ‘Some college or less’, ‘Bachelor’, and ‘Graduate’. As shown in Table 
10, statistically significant differences were observed across education levels for all four behavioral intent 
variables, i.e., likelihood to buy property (H(2) = 95.446, p < 0.001), rent property (H(2) = 96.046, p < 
0.001), buy flood insurance (H(2) = 30.685, p < 0.001), and take preventive actions (H(2) = 56.193, p < 
0.001). Dunn’s post-hoc tests (Table 11) confirmed these differences were significant compared to 
participants with Bachelor or Graduate degrees. Participants with ‘Some college or less’ consistently 
reported significantly higher Likert scores (indicating lower willingness) compared to those in ‘Bachelor’ 
or ‘Graduate’ groups across all variables. These patterns suggest that individuals with lower levels of formal 
education expressed lower intent to purchase or rent property, buy insurance, or take preventive action in 
response to flood risk information, which may reflect heightened perceived risk. Kruskal-Wallis H-tests 
were run within each education group to assess whether visualization effects varied by education level. As 
shown in Table 12, significant differences in willingness to buy property were found only among 
participants with ‘Some college or less’ (H(4) = 15.631, p = 0.004). No significant differences were found 
within those in ‘Bachelor’ or ‘Graduate’ groups. Dunn’s post-hoc tests revealed that the ‘Some college or 
less’ group were significantly less likely to buy property when shown Flood Images compared to Climate 
Central (p = 0.037) and NOAA (p = 0.019) maps. This pattern reflects the broader trend that photos prompt 
more cautious responses among those with lower education levels. One possible explanation is that complex 
visualizations may be harder to interpret, leading participants to rely more on vivid, real-world imagery. 
While speculative, this raises important considerations for equity and accessibility in risk communication. 

Table 10: Kruskal-Wallis test comparing Likert-scale responses across different education levels. 

Variable H-statistic df p-value (* statistical significance) 
Likely to Buy Property 95.446 2 <0.001* 
Likely to Rent Property 96.046 2 <0.001* 
Likely to Buy Flood Insurance 30.685 2 <0.001* 
Likely to Take Preventive Actions 56.193 2 <0.001* 

Table 11: Dunn’s post-hoc test comparing pairwise differences in behavioral intent across education levels. 
Adjusted p-values are reported using Bonferroni correction. Only significant values are reported. 

Pairwise difference Adjusted p-value (* statistical significance) 
Likely to buy property 
 Some college or less – Bachelor  < 0.001* 
 Some college or less – Graduate  < 0.001* 
Likely to rent property 
 Some college or less – Bachelor  < 0.001* 
 Some college or less – Graduate  < 0.001* 
Likely to buy flood insurance 
 Some college or less – Bachelor  < 0.001* 
 Some college or less – Graduate  < 0.001* 
Likely to take preventive actions 
 Some college or less – Bachelor  < 0.001* 
 Some college or less – Graduate  < 0.001* 
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Table 12: Kruskal-Wallis H-test comparing education level differences across flood risk visualizations. 

Variable H-statistic df p-value (* statistical significance) 
Some College or Less 
 Likely to Buy Property 15.631 4 0.004* 
 Likely to Rent Property 5.292 4 0.259 
 Likely to Buy Flood Insurance 2.756 4 0.600 
 Likely to Take Preventive Actions 6.029 4 0.197 
Bachelor 
 Likely to Buy Property 2.066 4 0.724 
 Likely to Rent Property 2.147 4 0.709 
 Likely to Buy Flood Insurance 4.453 4 0.348 
 Likely to Take Preventive Actions 7.516 4 0.111 
Graduate 
 Likely to Buy Property 4.491 4 0.344 
 Likely to Rent Property 4.628 4 0.328 
 Likely to Buy Flood Insurance 6.263 4 0.180 
 Likely to Take Preventive Actions 7.650 4 0.105 

4 DISCUSSION 

This study investigated how the source and modality of flood risk visualization influence individuals’ 
perceptions and behavioral intentions. Prior research has shown that risk communication format shapes 
how individuals interpret and respond to hazards. Ricard et al. (2017) found that indexical imagery, such 
as photographs of storm surge elicits stronger risk perceptions and behavioral intentions (e.g., evacuation) 
than abstract, map-based representations or no visuals. Similarly, our results show that participants who 
viewed photographic flood images reported significantly higher perceptions of flood severity and were less 
likely to consider buying or renting property in affected areas. This suggests that concrete visuals may 
activate affective heuristics, where individuals respond emotionally rather than analytically. These effects 
may vary across demographic groups due to differences in cognitive processing, familiarity with visual 
formats, and trust in visual information.  

 Modality effects were most pronounced among specific demographic groups. While overall gender 
differences in behavioral intent were not statistically significant, female participants showed more variation 
across visualization types, reporting lower intent to buy or rent property when shown photographic flood 
imagery. In contrast, male participants responded more consistently across all formats. This aligns with 
prior research indicating that women perceive higher risk and tend to be more risk-averse (Byrnes et al. 
1999; Harris et al. 2006; Sattler et al. 2000), suggesting that visual modality may amplify gender-based 
differences in flood risk perception.  Older adults also reported lower behavioral intent when viewing flood 
imagery, reflecting heightened perceived vulnerability to real-life visuals. This is consistent with prior 
research showing that older populations tend to exhibit greater caution in decision-making related to 
environmental hazards (Bodas et al. 2022; Peacock et al. 2005). Education further moderated responses: 
participants with ‘Some college or less’ consistently reported lower intent across all behavioral variables, 
especially in response to flood imagery. This may be due to lower cognitive load when interpreting technical 
content, greater familiarity with institutional maps, or stronger trust in authoritative sources, which could 
buffer emotional reactivity to flood imagery. Conversely, participants with less education may find abstract 
or technical visuals more cognitively demanding, making vivid imagery a more intuitive and emotionally 
salient cue for perceived risk. 

Although we observed clear differences in perceived severity and behavioral intent, the results showed 
no significant variation in flood risk understanding or ease of interpretation across visual modalities. This 
finding is notable, as it suggests that while emotional salience and behavioral influence may vary by 
presentation style, participants’ ability to interpret and understand the visual content (as measured through 
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self-reported comprehension) remains stable across formats. One possible explanation is that most flood 
map designs included in the study were sufficiently legible and familiar, allowing participants to extract 
basic meaning regardless of stylistic differences. 

While this study offers useful insights into how people interpret flood risk visuals, several limitations 
should be noted. The sample, drawn from Amazon Mechanical Turk is skewed towards younger, more 
male, and more educated than the general U.S. population, which may limit the generalizability of subgroup 
findings. Additionally, since behavioral intent was self-reported, it may not fully reflect real-world actions. 
Overall, the findings emphasize the importance of tailoring risk communication based not only on the type 
of information presented but also on audience characteristics. 

5 CONCLUSION 

This study underscores the importance of designing flood risk communication tools that are both visually 
effective and audience-aware. Participants exposed to photographic flood imagery reported lower 
willingness to engage in property transactions, especially among women, older adults, and individuals with 
lower education levels. These patterns varied by visual modality and highlight the importance of aligning 
risk communication with audience characteristics. Although participants reported similar levels of self-
rated flood understanding and ease of interpretation across formats, their behavioral responses differed 
across visual types. This suggests that emotional and cognitive engagement with visual materials may differ 
by presentation style, even when basic comprehension remains stable. 

These insights have important implications for practice. Public flood dashboards by local municipalities 
or federal agencies could better serve diverse users by combining map-based and photographic visuals.  
Emergency alerts may be more effective when they include localized flood imagery to boost urgency and 
relevance, especially for those less responsive to technical formats. Similarly, insurance outreach efforts 
could also benefit from real-world visuals to enhance engagement.  It is essential that these systems remain 
accessible and adaptive to users with varying risk literacy and trust in authorities. However, while photos 
can increase salience, they may also provoke fear or overwhelm vulnerable groups. Therefore, emotionally 
charged visuals should be used carefully to balance urgency with trust. 
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