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ABSTRACT

Although Large Language Models get a lot of attention, Generative Artificial Intelligence encompasses a
variety of methods such as Generative Adversarial Networks, Variational Autoencoders or Diffusion
Models, that all work very differently but are all capable of generating synthetic data. These methods have
considerable potential to make simulation studies more efficient, especially through the creation of artificial
data sets, automatic model parameterization and assisted result analysis. The aim of this study is to
systematically classify generative methods and their applicability in the context of simulation studies. Based
on a comprehensive literature review, applications, trends and challenges of generative methods that are
used in combination with simulation are analyzed and structured. This is then summarized in a conceptual
workflow that shows how and in which phase generative methods can be used advantageously in simulation
studies.

1 INTRODUCTION

Generative Artificial Intelligence has gained enormous attention in recent years due to its rapid advances
(Biever 2023). Contrary to the public perception that Generative Al revolves mostly around Large
Language Models (LLMs), generative models and methods rather encompass a wide range of methods such
as Generative Adversarial Networks (GANs) (Goodfellow et al. 2014), Variational Autoencoders (VAEs)
(Kingma and Welling 2014), Diffusion Models (Song et al. 2021) and other modern and highly effective
approaches, each suited for different tasks and applications. These methods have in common that they can
generate new data that resemble existing patterns, which makes them attractive for many areas, including
simulation studies. Simulation and modeling is a well-established method for planning, control, analysis,
and optimization of systems of various types (Law 2015). Hybrid Systems Modelling describes an approach
where methods and tools from other disciplines are used in one or more phases of a simulation study in a
supportive function (Mustafee and Powell 2018). In this manner, generative methods could provide support
in a number of ways, from generating input data up to assistance in the analysis and interpretation of results
(Giabbanelli et al. 2024).

The aim of this paper is to provide a well-founded classification and evaluation of usage of existing
generative methods in the context of simulation studies. A comprehensive literature review is conducted to
explore the current state of research and to analyze work in which generative models have been used within
simulation studies. Based on this evaluation, the potential and possible applications will be systematically
structured in order to determine when and how generative methods can be used most effectively in the
individual phases of a simulation study. The remainder of this paper is therefore as follows: Section 2
outlines the basics of generative models and gives an overview of simulation studies and hybrid systems
modelling. Section 3 provides an extensive literature review as well as a conceptualization of the findings.
This is followed by some concluding remarks and outlook in section 4.
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2 RELATED WORK

2.1 Generative Models

Generative models are machine learning algorithms that extract key features from existing data and can
generate new data on this basis. In contrast to discriminative models, which directly learn a decision
boundary between input data X and target variable Y, generative models determine the probability
distribution of the underlying data X and target variable Y (Ng and Jordan 2001). From this distribution,
target values Y can then be inferred. Therefore, generative models can extract key features from data and
even generate new data from the learned distribution function (Ng and Jordan 2001). They comprise many
different approaches whose application context and relevance vary considerably. Generative models and
algorithms have recently become increasingly important, especially in the field of Generative Al (Jovanovic
and Campbell 2022). Recently, the focus here has been on methods for processing and generating natural
language, in particular using so-called Large Language Models (LLMs). These can process texts and
generate new text based on the recursive principle of predicting the next most probable word or token
(Brown et al. 2020). LLMs are based on the principle of transformer architecture (Vaswani et al. 2017).
This is a special architecture based on artificial neural networks that is very well suited for processing
(usually very large) amounts of sequence data. These can be used to generate text in the sense of Large
Language Models (Brown et al. 2020), but other tasks can also be efficiently accomplished using
transformer networks, for example text classification, time series analysis and prediction or speech
recognition (Vaswani et al. 2017). Transformer architectures are particularly helpful when converting from
one sequence to another (Seq2Seq), e.g. for machine translation, text-to-speech or speech-to-text (Sutskever
et al. 2014). Before the rise of transformer architectures, such sequence processing tasks were typically
performed with so-called recurrent neural networks. A recurrent neural network (RNN) is a type of artificial
neural network that processes information sequentially by using previous outputs as input for subsequent
steps, allowing it to learn temporal dependencies, whereby the improved development of RNN-technology
is called Long Short-Term Memory (LSTM) (Gers et al. 1999). RNNs can be used in a generative manner
(Graves 2014), and while transformer networks are generally used for complex tasks that require training
on very large amounts of data, generative recurrent networks (GRN) can be used efficiently for smaller
tasks (Peng et al. 2023).

Apart from the dominance of transformer-based architectures, for the generation of rather static, non-
sequential data, two other methods are relevant: Variational Autoencoder (VAE) (Kingma and Welling
2014) and Generative Adversarial Networks (GAN) (Goodfellow et al. 2014). A Variational Autoencoder
(VAE) is a generative model that consists of an encoder and decoder. The encoder converts data into a
compressed, probabilistic representation, so that realistic new data can be generated from this distribution
(Kingma and Welling 2014). Generative Adversarial Networks (GANSs), on the other hand, consist of two
competing networks: a generator produces artificial data, while a discriminator attempts to distinguish real
from generated data. Through mutual training, the generator produces increasingly realistic data until the
discriminator can hardly differentiate between real and synthetic examples (Goodfellow et al. 2014). Both
approaches were originally developed for image generation tasks but can also be used for other areas of
application. In the field of image generation, Diffusion Models are currently among the most modern
technologies (Song et al. 2021). Furthermore, Neural Radiance Fields (NeRFs) are the most recent
development in this field and are used to generate 3D scenes from two-dimensional images (Mildenhall et
al. 2020).

2.2 Hybrid Systems Modelling and Phases of a Simulation Study

According to the relevant literature in the field, a simulation study can typically be divided into multiple
phases (Law 2003; Mustafee and Powell 2018; Wilsdorf et al. 2022): At the beginning there is a thorough
investigation of the real problem, which serves as the starting point. This is followed by the transfer of this
problem into a conceptual model that depicts the essential characteristics and relationships of elements in
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the underlying system. In the next step, this conceptual model is implemented in the form of a computer-
based, executable simulation model, followed by a phase of verification and validation in which the
correctness of the model is evaluated technically and to ensure that it actually and adequately represents its
real-world counterpart. Finally, targeted experiments and analyses are carried out in order to find solutions
for the formulated real-world problem. Some authors divide the phases of a simulation study into even more
individual steps, while others combine various aspects into one phase. In this article, the phases of a
simulation study are divided into the following seven categories. This categorization serves as a basis for
the subsequent literature review in the next section and will be maintained consistently throughout the rest
of the paper: (1) problem definition and conceptual modelling, (2) simulation input modelling,
(3) implementation, (4) verification and validation, (5) design of experiments, (6) execution of simulation
runs, (7) analysis, presentation and documentation of results. When combining multiple modeling
approaches or simulation techniques within a single simulation, we refer to this as a hybrid simulation study
(Mustafee and Powell 2018). This approach aims to enhance the functionality and accuracy of the
simulation with respect to the system under investigation, or even to enable the development of models that
would otherwise not be feasible. Hybrid systems modeling, in turn, describes the integration of different
methods and techniques from various disciplines into one or more phases of the simulation study (Mustafee
and Powell 2018). This also applies to the use of Generative Al within a simulation study, so when
generative methods are employed in at least one phase of a simulation project, this can also be considered
as a form of hybrid systems modeling.

3 THE USE OF GENERATIVE AI AND SIMULATION

3.1 Methodology

In order to evaluate the use of generative methods within simulation studies, a detailed literature review
was carried out, based on the method of Webster and Watson (Webster and Watson 2002). For this purpose,
the relevant databases for scientific literature were searched. The search terms used were the methods
presented in Section 2.1 in combination with the keyword simulation. The literature identified was then
filtered based on the following criteria, which is also illustrated in Figure 1:

o The simulation method used must correspond to the term simulation in the consensual sense of this
conference, i.e. simulation is the replication of a real system by an artificial computer model in
order to understand and analyze its behavior over time and derive insights from it (Banks 1999;
Shannon 1998).

o The generative method must have been used within a simulation study. Although this did not have
to be explicitly declared as a simulation study, it should be clear from the context that the phases
of a simulation study presented in Section 2.2 were at least rudimentarily run through. The
generative method used must provide a recognizable added value for the simulation study that
would not have been achievable without its use. If the combination of simulation and generative
method is only evaluated from a theoretical, potential-based perspective, the paper will only be
used for analysis if the added value is sufficiently justified argumentatively and/or or with
convincing prototypical efforts.

e If the same authors or group of authors deal with the (almost) identical topic in several papers, one
paper was chosen to represent the corresponding approach.

matches criteria?

Search term: Definition of simulation Has generative method Reducing thematically identical
{Generative method}  [==P»| — been used within a =P contributions per author group
+ simulation simulation study? to one contribution (optional)

Figure 1: Summary of literature filtering process.
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This left a total of 36 papers for in-depth analysis. It is evident that LLMs are by far the most widely used
method, followed by GANs and generative recurrent networks. The extracted literature was then classified
into two-dimensional concepts consisting of the generative method on the one hand and the phase (or
phases) of the simulation study that the method was used in. Table 1 provides the comprehensive concept
matrix summary of all the papers analyzed.

3.2  Literature Analysis

The first steps can be summarized as Problem Definition and Conceptual Modeling. However, there are
only a few studies that use Generative Al in this phase. In addition, the use of Generative Al here mainly
is limited to more theoretical analysis that points out future potential. For example, Giabbanelli et al. (2024)
outline a concept in which end users pose problem questions in natural language and a LLM automatically
assigns them to a suitable simulation model. According to this paper, this would mean a fundamental change
in model selection and problem formulation, with language models taking over the mapping between
analysis questions and existing simulation models. LLMs could also help to facilitate model conception.
Akhavan and Jalali (2024) for example report that LLMs could be used to support the structuring of causal
diagrams for system dynamics models, for example by suggesting variable relationships or questioning
model assumptions in natural language.

A frequent use case for Generative Al according to the analyzed literature is during the phase of Data
Collection and Input Data Modeling. In many simulation projects, preparing the input data is a critical step,
and this is where generative methods are especially useful. For example, Kotnana et al. (2022) demonstrate
how a GAN can help with the synthesis of artificial population data. Their method replaces or complements
traditional demographic methods (such as iterative proportional fitting) and generates fine-grained synthetic
populations as input for agent-based models. In addition, GANs have also been used to generate motion
and trajectory data for simulations. Roy et al. (2022) use a GAN to generate realistic animal movement
trajectories based on GPS tracking data of animal populations. These generated trajectories then serve as
input data or scenarios in ecological simulations to investigate behavioral patterns with more variety than
the limited available real-world data would provide. Montevechi et al. (2021) present a GAN-based method
for modeling stochastic input distributions in discrete event simulation. Instead of using traditional
statistical distribution fitting, their GAN learns complex distributions (e.g. arrival or process time
distributions) directly from data, which can be advantageous for multivariate distributions or distributions
that are difficult to parameterize. Sequence- and time-series-based generative models (LSTM, Seq2Seq)
are frequently used in particular when temporal sequences need to be modeled or generated. Camargo et al.
(2021) use a combination of GAN and LSTM for generating precise time-intervals for event-logs. They
propose the use of a hybrid approach: A simulation model should first generate sequential event sequences
and then a deep learning model can predict the time intervals between these events. A related approach is
presented by Cen et al. (2020): here, a combination of LSTM and VAE was used to generate samples from
a fitted random distribution for simulation input. They call this approach Neural Input Modeling (NIM). Jia
et al. (2024) use a transformer network for modeling random distributions. They argue that this approach
allows for a more realistic simulation of the distributions in highly complex stochastic systems, where
traditional random distributions may fail to capture the underlying real-world distribution with sufficient
accuracy. Borysov et al. (2019) use VAE:s in the context of simulation input data generation for agent-based
simulation of transportation systems. They use their VAE-based approach to generate scalable realistic
agents with multiple attributes, which is particularly useful when empirical data is insufficient.

Regarding the phase of Model Implementation, two general sub-categories can be distinguished: The
use of Generative Al to support model the implementation process (1) and the integration of Al directly
into the simulation itself so that it can drive the model’s behavior (or certain parts of it) at runtime (2).

1098



Feldkamp

Table 1: Matrix showing all analyzed papers, mapped to generative method and corresponding phase within
the simulation study. The color intensity is based on the number of papers in the respective cell. A paper
can be assigned to multiple cells.

Phase of Simulation Study
Problem
Definition and | Data Collection Analysis and
Conceptual | and Simulation Model Validation and Design of Execution of | Presentation of
Modelling Input Modelling| Implementation | Verification Experiments Runs Results
(Akhavan and (Akhavan and (Giabbanelli et al.
= |Jalali 2024) Jalali 2024) (Giabbanelli et al. [2024)
ﬂ (Giabbanelli et al. (Giabbanelli 2024) (Vezhnevets et al.
2024) 2023) 2023)
(Borysov et al.
= 2019)
§ (@ i e (Cen et al. 2020)
2022)
z . (Montevechi et al. |(Feldkamp et al.
s (Bicher et al. 2024). 2022) 2022)
(Camargo et al.
2021)
(Cen and Haas (Hajisharifi et al.
% 2022) 2024)
(Woerrlein and (Cen et al. 2020)
Strassburger
2020)
s
£ (Maftouni et al
S 5 aftouni et al.
E (Jia et al. 2024) 2023)
£
=
s _ (Chung et al.
. D
g = 2024)
£ = (Finn et al. 2024)
=] (Shi et al. 2024)
a (Chen et al. 2024)
= (Chen et al. 2025)
z (Li et al. 2023)
Sum 2 10 14 4 2 12 4

The first sub-category for implementation primarily includes papers in which Al is used to generate
code for creating the simulation model or to configure the simulation software based on the conceptual
model. For example, Akhavan and Jalali (2024) emphasize that LLMs can generate code frameworks or
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derive simulation scripts from textual model descriptions for system dynamic models. According to this
paper, this use of LLMs can speed up implementation, but requires human review for quality assurance of
the generated code. Du Plooy and Oosthuizen (2023) similarly report that an LLM was able to reliably
translate a given simple system dynamics model into working Python code. However, multiple papers agree
that in principle, the LLM-based creation of simulation models in the sense of text-to-code is not yet mature
enough for practical use, but promises great future potential (Akhavan and Jalali 2024; Du Plooy and
Oosthuizen 2023; Frydenlund et al. 2024; Jackson et al. 2024).

When integrating Generative Al into the simulation model itself, a frequent use case in this context is
agent-based modeling. Many papers focus on so-called generative agents. In this approach, LLMs are used
directly as an integrated component within each agent in order to control its behavior. Park et al. (2023),
for example, present an architecture for agents that integrates an LLM that is able to store, synthesize and
retrieve agent’s experiences in order to generate more dynamic behavior. Ferraro et al. (2024) and
Vezhnevets et al. (2023) adopt similar approaches by integrating Large Language Models (LLMs) into their
agents, allowing Generative Al to guide both the agents' decision-making and their interactions with one
another. However, a challenge remains in managing the interaction between the LLM and the simulation
environment. This includes, for example, converting the language model's text output into relevant actions
within the simulation, as well as implementing processes to control computing time and ensure consistency
(Ferraro et al. 2024; Vezhnevets et al. 2023). Ghaffarzadegan et al. (2024) introduce the term “Generative
Agent-Based Modeling”: Pre-trained language models are coupled with agent-based simulation in order to
better simulate human decision. While this use case is dominated by LLMs, there is also one paper by
Bicher et al. (2024) in which GANs are used to model the decision-making process of agents.
Diamatopoulos et al. (2024) present a short concept for integrating LLMs into a discrete event simulation
of block-chains. In this approach, LLMs can simulate malicious node behavior as well as cooperation
attacks. Woerrlein and Strassburger (2020) use a generative seq2seq-LSTMs within a simulation model to
add an additional dimensions of output data. In their application for production simulation, the generative
method can provide a dynamic power consumption curve, which the discrete event-driven simulation
technique itself cannot provide in this form. In the context of model implementation, it's also worth
mentioning the potential of Generative Al in the field of image generation. Among the more modern
generative methods are Neural Radiance Fields (NeRFs) and Diffusion Models. For example, in traffic and
driving simulation scenarios, their capabilities are leveraged. Chen et al. (2024) emphasize in their review
paper that realistic 3D scene generation and rendering using NeRFs is an emerging area of research in traffic
simulation, with significant potential for future development. Li et al. (2023) present a platform for large-
scale traffic simulation and discuss how NeRFs could be used to generate synthetic traffic scenes from
driving videos without having to manually invest the effort to create 3D assets of vehicles or buildings.
Chen et al. (2025) show a similar approach in which NeRFs are used to generate realistic driving simulation
environments with high visual quality based on lidar and camera data. These can then be used as a simulated
training environment for autonomous driving.

The phase of Verification and Validation is traditionally one of the most demanding steps of a
simulation study, but there are only a few noteworthy approaches that make use of Generative Al: Akhavan
and Jalali (2024) outline that a LLM can provide hints for debugging system dynamics models, e.g. by
suggesting possible implementation errors or logic errors based on a description of unexpected behavior.
However, there are still hardly any real-world implementations and results available. In fact, the
experiments by Du Plooy and Oosthuizen (2023) showed that although a LLM was capable of designing a
model, it could not autonomously identify or correct existing errors (such as wrong parameter values).
There is therefore still a methodological gap here: LLMs have so far seem to lack reliable mechanisms to
understand the internal computational logics of simulation models to make targeted bug fixes. However,
for validation purposes the use-cases are more mature. For example, Montevechi et al. (2022) use GANs in
a very innovative way for the validation of simulation models. Here, the discriminator of a GAN is used to
check the output of a simulation model against real-world data in order to assess whether the data generated
by the simulation model is indistinguishable from real-world data. This method leverages the pattern
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recognition capabilities of the GAN’s discriminator network very cleverly. However, the V&V with Al
support still holds a lot of untapped potential. Giabbanelli (2023) outlines that future developments in LLMs
could enable such applications, although they have so far remained largely of conceptual/theoretical nature.
According to this paper, these models could potentially help identify hypotheses for possible simulation
results or reveal errors in model assumptions that are otherwise difficult to explain. Maftouni et al. (2023)
use transformers in the V&V phase for system dynamics models. Specifically, they present a concept for
calibration in which a transformer-based deep learning model is used specifically for parameter
identification, that works as follow: first, the system dynamics model itself is used to generate a large
amount of synthetic data. This data then serves as a training basis for the transformer, which learns the
relationships between the simulation model’s outputs and the underlying parameters. After training, the
transformer can then predict the appropriate model parameters for new input data, enabling an automated,
data-driven calibration of the simulation model.

Generative Al has so far been used rather rarely for the Design of Experiments. Giabbanelli et al. (2024)
address experiment design by proposing that an LLM could automatically derive suitable simulation runs
from an end user's query. Feldkamp et al. (2022) present a concept that uses GANs to generate simulation
experiment plans. Specifically, they use GANs in the context of robustness optimization of production
systems, where two GANSs alternately generate experiment plans for decision and noise factors in order to
arrive at a solution that is as robust as possible, i.e. insensitive to variation from noise factors.

In the phase of Execution of Runs, the dominant use case for Generative Al clearly is metamodeling,
also known as surrogate modeling. Deep learning-based methods have become indispensable in the field of
metamodeling and generative models are also finding their way into this discipline. The aim of
metamodeling is to create a surrogate using some initial data from the simulation model. This surrogate can
then predict the simulation output faster in order to save computational effort, which is beneficial for
simulation models with long runtimes (Barton 2015). A good example for using Generative Al in terms of
metamodeling is the work of Cen and Haas (2022). They used graph neural networks in combination with
VAE and LSTM, capable of imitating the dynamic outputs of a simulation model. Instead of predicting
static single outputs, this metamodel generates entire time-series of output data. This enable rapid prediction
of numerous output scenarios, making it especially valuable in the context of digital twins, where fast and
extensive scenario analysis is essential. Another interesting publication is by Shi et al. (2024), which
demonstrate an innovative approach for coupling physical simulations with a Diffusion Model. Diffusion
Models belong to a newer class of generative models and are primarily intended for image generation tasks.
They are therefore not yet widely used in simulation projects. In this paper, however, a Diffusion Model
was used to create a metamodel. This approach is based on flow and heat simulations. Those simulations
serve as input for a Diffusion Model, which then generates high-resolution flow fields. Occasionally,
expensive, exact simulation results are used to specifically control the Diffusion Model. In this way, the
Diffusion Model generates high-quality samples that come very close to the results of a complex numerical
simulation and can be used in applications such as fluid dynamics and heat transport in additive
manufacturing (Shi et al. 2024). Chung et al. (2024) use Diffusion Models to generate physically plausible
initial conditions in fluid simulations, which significantly reduces simulation time through better
initialization. Even if this is not metamodeling in the traditional way, it is included in this overview as
metamodeling in the broader sense. Finn et al. (2024) use Diffusion Models to build simulation surrogates
for the fast and efficient forecasting of sea-ice. Transformer networks are also frequently used as simulation
surrogates in the context of metamodeling. This has been applied, for example, for discrete event models
(Najafi and Lu 2023) or for physical model such as heat transfer simulation, fluid mechanics simulation
(Chen et al. 2023; Geneva and Zabaras 2022) or solid mechanics simulation (Feng and Zhou 2024). This
shows that transformer models are able to learn physical laws and make them available in the form of fast
approximations (Geneva and Zabaras 2022). To surrogate simulation models of fluid-particle systems,
Hajisharifi et al. (2024) present an approach based on LSTMs. With regard to further applications in the
context of Execution of Runs besides metamodeling, Giabbanelli et al. (2024) propose the idea that an LLM
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could initiate the simulation run autonomously once the inputs have been identified, for example, by issuing
a command to the simulation software as soon as all parameters have been defined.

As expected, the final phase, Analysis and Presentation of Results, exclusively contains papers that
propose the use of LLMs. However, there is still surprisingly little research in this area, and practical
applications and case-studies remain rare. Much of the work in this field tends to be either a work-in-
progress or based on theoretical/prototypical visions. However, this situation is likely to change rapidly in
the near future, since LLMs seem to be one of the most trending topics in any data-science-related research.
Giabbanelli was among the first to highlight the potential of LLMs for data analysis tasks within simulation
studies for automatic summarization of simulation results. For example, Giabbanelli (2023) suggests using
LLMs for documentation to automatically generate sections of a research report or project documentation
based on model descriptions, input data, and results. Akhavan and Jalali (2024) mention the use of LLMs
to write up or even interpret results from system dynamics models, and that LLMs could be used to help
create the model documentation. Giabbanelli et al. (2024) expanded on their vision in a subsequent paper,
proposing that LLMs could have the potential to streamline the entire simulation process for end users,
from formulating questions to interpreting results, all through a conversational interface. Their vision is to
have an end-to-end LLM-powered system that enables users without simulation expertise to access existing
models, execute simulation runs, and get the results in an intuitive, dialogue-based format. Table 2 shows
a summary of the technical properties of the generative methods considered in this review as well as their
possible applications in the context of simulation studies.

Table 2: Technical details, strengths and weaknesses of relevant generative methods.

Technical details Strengths in specific phases of the Relative advantages and disadvantages
simulation study compared to other methods
Transformer-based neural networks, Particularly suitable for problem + Excellent for large amounts of data, text
S |sequence data processing, text generation | definition, model implementation (code |processing, interaction in natural language.
= | by predicting next tokens. generation), model logic substitution - High computational requirements, difficult to
enerative agents), and for analysis interpret/validate, numerical precision must be
~ generative agents), and f lysis / terpret/validat 1p t b
documentation of results. considered.
Encoder-decoder architecture with Well suited for generating agent + Stable for probabilistic models, advantageous
g |probabilistic latent space. Generates data | attributes, for time series generation and | for small amounts of data; more robust training
< | from learned distributions. as a surrogate model. than GANs.
> - Lower quality of detail than GANs or diffusion
models, less suitable for sequential data.
Two competing neural networks Particularly strong for generating + Very realistic data generation (e.g. movement
7 | (generator & discriminator), adversarial | realistic input data (e.g. population data, | profiles).
é training. movement data). Also suitable for - Instability in training; less robust than VAEs;

validation using discriminator network | inefficient for sequential tasks.
and for generating experiment designs.

Sequential and recurrent processing Useful for generating time series in + Less resource-intensive than transformer for
é through the neural network. LSTM- input data or for generating dynamic time series data. Efficient for small data sets.
© |architecture for improved modeling of | output as a surrogate model (e.g. energy |- Weaker for long contexts. Slower & less scalable
temporal dependencies in sequences. curves). than transformer for large data sets.
D Specialized neural networks for large Particularly suitable for surrogate + Very scalable & precise for complex tasks.
4 g amounts of sequence data. modeling in physical simulations, as Superior to GRNSs for long-term dependencies.
& & | Versatile applications (text classification, | well as for model calibration. - High memory & computational requirements and
=S prediction, translation). long training times.

Iterative data reconstruction from noise. | Suitable for high-resolution surrogate |+ Excellent quality & resolution for physical

.§ E Primarily used for image generation. models in physical simulations (e.g. simulation scenarios. More stable than GANs.
= S flow fields). - Long inference times, high computational
E = requirements and less established for structured
numerical data.
Generation of three-dimensional scenes | Realistic generation of 3D assets and + Superior in realistic 3D scene generation from
E from two-dimensional images using environments for simulation models and | 2D views.
2 volumetric neural networks. virtual training environments. - Limited flexibility outside of visual contexts.

Very high computing & data requirements.
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33 Conceptualization

The broad perspective of a Generative Al-based end-to-end system, as postulated in (Giabbanelli et al.
2024), is only partially a reality as of today. However, the overall synthesis across all the papers analyzed
shows that Generative Al can be used in all phases of a simulation study. Figure 2 shows a summary of the
key areas for integration of Generative Al along the phases of a simulation study according to the literature
reviewed in the previous section.

Support for problem Support for Rendering of visualization  Integration in the Generation of Support of result
analysis and conceptual model selection and animation simulation model at experiment designs  interpretation and analysis
model creation f K_ runtime ‘/_/ #

Problem
. Model idati ; ) :
definition & Input implemen- Vah(;jtlon De51gn_of Execution Analyilstv&
conceptual modelling . & experl- of runs presentation
modelling tation verification ments of results
Fitting of input distributions Debugging and Validation and Metamodeling / Summarization
Generation of input data Code generation  verification calibration surrogates of results

Figure 2: Key areas of application for Generative Al in simulation studies.

Generative Al is most frequently used in the phases of input modeling, model implementation and
execution of runs (especially metamodeling). The phases that remain less explored are the initial problem
definition and concept modeling and — surprisingly — the automated analysis and documentation of results.
Especially in the analysis phase, the rising popularity and integration of Large Language Models suggest
rapid and widespread future adoption.

In the context of problem definition and conceptual model creation, Generative Al can help to better
grasp the problem to be simulated and to select a suitable model. In the field of input modeling, Generative
Al is already frequently used, particularly in the generation of realistic synthetic data, for example, arrival
times, movement patterns or population characteristics. It is also possible to generate synthetic scenarios or
alternative system states, which helps when defining model boundaries or agent attributes. Methods such
as GANs and VAE:s are able to approximate complex distributions and generate realistic data from a small
number of examples. This is particularly valuable when historical data is incomplete or difficult to access.
Diffusion Models and NeRFs extend this potential by generating image or 3D data that can be used for
realistic simulation environments, visualizations and animations.

During implementation, generative models support the technical design of the simulation. Either by
supporting the creation of the model or through integration into the model itself, for example to control
model logic using neural networks or to generate additional output dimensions. In agent-based models, for
example, the internal decision logic can be replaced by generative methods, which is beneficial for
implementing dynamic and realistic behavior. In the area of verification and validation, automation through
Generative Al is not very common, but initial approaches do exist, both for debugging support and through
automated validation and calibration.

In the design of experiments phase, generative methods can make valuable contributions to the
generation of experiment plans, for example for the automated definition of new or extreme scenarios,
which are required for robustness and sensitivity analyses. Their ability to generate parameter
configurations beyond traditional sampling methods enables the targeted generation of useful scenarios,
cases and experiments. This creates a bridge to the next phase: the execution of simulation runs. This phase
is dominated by the approach of using generative models of all kinds in the form of metamodeling, i.e. to
approximate the simulation model or sub-processes of it in order to reduce the computational effort for
complex simulation models with long runtimes.

The phase of analysis, presentation and documentation of results shows promising potential applications
for Generative Al. Especially LLM-based methods can be leveraged to summarize results or automatically
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generate management reports. Comprehensible, sophisticated texts can be generated from model
descriptions, code fragments and result logs. Although this use case is currently still rather visionary, it is
foreseeable that such automated analysis and documentation processes will become increasingly important
in the future, both in a practice and scientific context.

4 CONCLUSION AND OUTLOOK

Generative Al enriches all aspects of simulation studies, from data collection and model implementation to
the interpretation of results. This work provides a comprehensive overview of the current state of research
and demonstrates the extent to which Generative Al can support and enhance the complex process of a
simulation study. The broad spectrum of approaches enables a deeper understanding of how simulation and
Al can grow together in the future. However, despite the variety of the papers analyzed, there are also
noticeable gaps and underrepresented topics. There is currently still a lack of holistic approaches that cover
the entire simulation life cycle using Generative Al. Although there are already visions of an end-to-end
use of Large Language Models, these have so far remained largely conceptual and focus on one specific
method. In practical implementations and applications, the focus is usually on one isolated phase of the
simulation study. A cross-system framework that automatically integrates a variety of Generative Al
methods from problem formulation through implementation to the presentation of results does not yet exist.
This represents both a methodological challenge (integration of different methods) and an organizational
one (lack of standards and interfaces). Although especially LLMs enable enormous progress in interaction
using natural language, they also raise methodological questions for the simulation community, particularly
regarding the validity and credibility of models. For example, hallucinations or training biases in Generative
Als could affect the validity of simulation results. Although such problems have already been discussed
and theoretically considered in some papers, there has so far been a lack of structured studies on quality
assurance measures when using Generative Al in simulation. Methodological guidelines or benchmarks for
evaluating generative simulation elements have not yet been established. In addition, issues relating to the
integration of Generative Al itself into simulation models must also be investigated more intensively in the
future.
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