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ABSTRACT 

Modern manufacturing environments, such as semiconductor manufacturing, require agile, data-driven 

decision support to cope with increasing system complexity. Discrete event simulation (DES) is a key 
method for evaluating scheduling strategies under uncertainty. Building on a previously introduced low-
code framework for scenario farming, this paper presents an extended and evolving approach that integrates 
machine learning (ML) to enhance scheduling decision support. The framework automates model 
generation, distributed experimentation, and systematic scenario data collection, providing the basis for 
training data-driven decision models. Using the Semiconductor Manufacturing Testbed 2020 as a reference, 

initial experiments demonstrate how simulation-based insights can be transformed into intelligent 
scheduling aids. Key features include model structure synchronization across simulation tools, automated 
experiment design, and modular integration of learning components, providing a first step towards adaptive, 
simulation-driven decision support systems. 

1 INTRODUCTION 

Manufacturing environments are undergoing rapid transformation, becoming far more complex, dynamic, 

and data-driven than in the past. Emerging Industry 5.0 trends and the resulting increased competition are 
putting traditional approaches (e.g., fixed scheduling rules or mathematical optimization) to the test. As 
such, they quickly become obsolete when machines fail, orders change, or production conditions change 
(Tassel et al. 2023; Ngwu et al. 2025). In response, manufacturing companies are increasingly turning to 
more adaptive approaches. One prominent example is discrete-event simulation (DES), which enables the 
detailed analysis and optimization of production processes under varying conditions. 

As highlighted by Vieira et al. (2018), DES methods and tools are of growing importance as key 
technologies. DES models allow the consideration and evaluation of different scenarios, e.g., to validate 
concrete production plans and/or product mixes under the assumption of defined conditions in a risk-free 
environment without requiring excessive financial or time resources (VDI 3633 2014, Reif et al. 2023). 

 While DES offers notable advantages, persistent challenges identified in the literature reveal important 
limitations when it comes to scheduling applications. One major difficulty is accurately representing the 

system complexity and stochastic uncertainties that characterize modern manufacturing environments. 
Although DES allows for a level of detail that exceeds traditional analytical methods, this advantage is 
offset by significant computational requirements. Furthermore, the development and application of DES 
models in simulation studies or as digital twins (DT) requires a thorough description of the production 
system, adequate data provision, and efficient data management. In addition, the success of simulation 
efforts depends heavily on the availability and quality of input data – such as processing times, setup times, 

and arrival rates – which, despite advances in IoT and MES systems, remains a resource-intensive task in 
practice (Lugaresi and Matta 2020; Schlecht et al. 2023; Reif et al. 2023). 

Beyond these fundamental limitations, other challenges complicate the application of DES in practical 
scheduling contexts. Navigating the vast solution space of possible sequences and evaluating each candidate 
through simulation remains computationally demanding, often limiting practical application (Pappert et al. 
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2023). Compounding these issues is the lack of seamless integration between simulation-driven scheduling 
and adjacent PPC functions, such as real-time control and execution systems, which can limit the 
operational impact of simulation studies. Finally, decision support must increasingly balance multiple 

objectives – including throughput, timeliness, and sustainability – while addressing human and 
organizational factors that influence the adoption and effective use of DES-based tools. 

To overcome these limitations and improve the practical utility of simulation-based planning, recent 
developments have increasingly focused on three complementary approaches: automating model 
generation, applying data farming techniques, and using machine learning (ML) for operational decision 
support. In this context, DES models play a central role by serving as a controlled setting for the systematic 

execution of large-scale simulation experiments. Through targeted variation of input parameters and 
operating conditions, commonly referred to as data farming, large amounts of synthetic data can be 
generated to characterize and predict system behavior over a large solution space (e.g. Sanchez 2021). 
These large datasets, in turn, provide a valuable foundation for applying ML techniques that can extract 
actionable insights and predictive patterns (Pappert and Rose 2022). The focus is not on real-time control, 
but on providing robust, data-driven support for operational decisions, enabling manufacturing systems to 

adapt more effectively to variability, uncertainty, and multiple competing objectives. 
Addressing these demands requires simulation frameworks that automate large-scale experiments and 

systematically extract actionable knowledge from the data. Previous research (Leißau and Laroque 2024) 
introduced a modular low-code framework that enables automated scenario farming across simulation 
environments and synchronization of model structures, as demonstrated with the Semiconductor 
Manufacturing Testbed 2020 (SMT2020) (Kopp et al. 2020). While this reduced manual setup and 

execution efforts, results analysis still relied on traditional methods. 
This work extends the framework with a learning-based component designed to systematically 

transform farmed simulation data into intelligent planning decision support. By integrating ML into the 
scenario farming workflow, the approach aims to lower cognitive and technical barriers, accelerate the 
generation of actionable insights, and move towards adaptive, simulation-informed scheduling support 
systems. A first proof-of-concept demonstrates the potential of this extension using SMT2020 as an 

experimental environment. 
The paper is organized as follows: Section 2 reviews the relevant literature on model generation, data 

farming, and ML approaches for decision support. Section 3 introduces an extended framework, 
highlighting its modular structure and learning components. Section 4 outlines the test case. Section 5 
analyzes the results and Section 6 summarizes the results and discusses future research directions. 

2 RELATED WORK 

2.1 Model Generation 

The automated generation and efficient use of DES models are critical enablers for simulation-based 
planning and decision support in manufacturing environments. As outlined in VDI 3633 (2014), the 
development and execution of DES models involves multiple challenges, including data availability, 
acquisition, management, model creation, validation, and application to specific decision problems. 

Recent research emphasizes the importance of automating the model generation process to better 

manage complexity, variability, and the need for faster simulation-driven insights. Lugaresi and Matta 
(2020) propose a structured approach that divides model generation into phases such as data acquisition, 
material flow identification, statistical analysis, rule extraction, code translation, and model validation. 
Schlecht et al. (2023) extend this view by highlighting the role of model synchronization, adaptation, and 
dynamic updating, referring to concepts such as generic template-based simulation (GTS), data-driven 
simulation (DDS), and dynamic data-driven simulation (DDDS) (Haouzi et al. 2013). These paradigms use 

operational data to automatically generate, update, and refine simulation models in near real time. 
Several methods have emerged to support automated DES model generation. For example, process 

mining techniques are used to derive simulation models from event logs and production data (Lugaresi and 
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Matta 2021; Zhu et al. 2023). Complementary approaches focus on data-driven modeling structures and 
adaptive algorithms to translate operational information into executable simulation models (Goodall et al. 
2019). The need for automated, robust data processing frameworks to minimize manual effort and reduce 

errors is widely recognized (Johansson et al. 2003; Vieira et al. 2018). In addition, the use of reusable model 
building blocks (Reif et al. 2023) can further accelerate model development and adaptation when process 
structures or operating conditions change. 

The semiconductor industry is a particularly relevant application domain for these approaches. Early 
work (Tulis et al. 1990; Kim et al. 2009; Rank et al. 2015) addressed key manufacturing dynamics but was 
typically limited to fixed-scope models. More recent studies (Sadeghi et al. 2016; Khemiri et al. 2021) have 

demonstrated the potential of data-driven fab simulation by integrating elements such as equipment failures, 
maintenance activities, and transportation logistics. These contributions also highlight persistent challenges 
related to data adequacy and semantic consistency in the development and deployment of highly automated 
simulation models. 

2.2 Data Farming 

The concept of data farming originally emerged from military simulation efforts aimed at improving 

decision making in dynamic and uncertain environments. Horne and Schwierz (2016) define it as an 
interdisciplinary methodology that integrates simulation, high-performance computing, and statistical 
analysis to systematically explore complex systems. According to Sanchez (2021), data farming studies 
aim to generate large, high-quality simulation datasets that allow for deeper insights into system behavior 
and the discovery of both expected and unexpected outcomes. 

While the origins of data farming are rooted in military applications (e.g., Horne and Schwierz 2008; 

Horne and Meyer 2010), the approach has increasingly gained relevance in industrial contexts. In the 
semiconductor industry, for example, Pappert et al. (2017) apply data farming techniques to develop a 
capacity planning tool that estimates equipment utilization targets under varying production conditions. By 
using regression models to interpolate missing data, their approach enables fast and robust decision support. 
Building on this, Pappert and Rose (2022) describe how pre-generated simulation datasets can be used to 
train neural networks, enabling immediate decision support without the need to repeat time-consuming 

simulations for each scenario. 
These examples demonstrate the potential of data farming to significantly improve the robustness and 

efficiency of planning processes by providing a richer and more comprehensive database. However, recent 
studies (Król et al. 2013; Sanchez et al. 2021; Pappert et al. 2023) highlight ongoing challenges: as planning 
problems become more complex and detailed, the computational demands of large-scale simulation studies 
also increase, placing new demands on simulation frameworks and decision support architectures.  

2.3 Learning Approaches 

The use of ML in combination with DES has become an important strategy for improving scheduling 
decisions in complex manufacturing environments. ML techniques offer the ability to recognize patterns, 
predict outcomes, and adapt strategies based on large amounts of simulation data, addressing the key 
challenges of variability and dynamic change (Sarker 2021). 

Using learning-based methods for scheduling with simulation has evolved in several different 

directions. Early approaches primarily used supervised learning techniques to predict performance metrics 
or replicate scheduling decisions based on simulation data (Bergmann et al. 2015; Murphy et al. 2019; 
Goodall et al. 2019). In addition to classical supervised learning methods, hybrid approaches such as fuzzy 
agent-based systems have been used to improve performance prediction in manufacturing simulations and 
enhance decision support for scheduling tasks (Chen and Wang 2021).  

With the increasing availability of computational resources and advances in deep learning, more 

dynamic strategies have emerged, including the use of deep neural networks trained on simulation data to 
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support rapid scheduling decisions (Pappert and Rose 2022) and ensemble learning methods for adaptive 
dispatch rule selection (Priore et al. 2018). 

Building on these developments, reinforcement learning (RL) has gained particular attention. Advances 

in deep RL algorithms (e.g., deep Q-networks, actor-critical methods) and increasing computational power 
have enabled agents to autonomously learn scheduling policies by interacting with detailed DES models 
(Liu et al. 2022; Sakr et al. 2023). Unlike supervised or ensemble methods, which typically predict 
outcomes or choose among predefined rules, RL approaches enable the discovery of entirely new strategies 
through trial-and-error learning, providing a promising path toward fully adaptive, simulation-based 
scheduling in complex and dynamic environments (Tassel et al. 2023; Yedidsion et al. 2022). 

Reflecting these developments, recent research can be broadly categorized into three main streams: 
supervised and ensemble learning approaches, reinforcement learning approaches, and evolutionary or 
hybrid approaches. While there is overlap – for example, some reinforcement learning models use 
supervised components during pretraining or action selection (Tassel et al. 2023; Alexopoulos et al. 
2023) – this classification serves as a useful framework for analyzing current approaches and identifying 
emerging trends in simulation-based scheduling research. 

3 SOLUTION APPROACH 

Below, the findings of Section 2 are considered in relation to the identified challenges, and an approach is 
proposed that integrates three main components: a generic simulation model tailored to semiconductor 
manufacturing, a low-code framework for automated scenario generation and execution, and a learning 
component aimed at evaluating the feasibility and potential of ML-based decision support. 

3.1 Concept 

The development and application of DES models in scheduling studies typically requires considerable time, 
expertise, and technical resources. The creation of simulation models and the execution of experiments – 
especially in complex domains such as semiconductor manufacturing – are often tightly coupled, manually 
driven, and difficult to scale. This limits the ability to explore larger solution spaces, generate consistent 
training data for ML, or compare different scheduling strategies under varying conditions. 

In order to address these limitations, the proposed solution approach adopts a modular architecture 

consisting of three core components. First, a reusable, generic simulation model tailored to semiconductor 
manufacturing provides a configurable environment for simulation studies. Second, a low-code framework 
for scenario farming automates the generation and execution of simulation runs, ensuring reproducibility 
and reducing manual effort. Third, a learning component is integrated to explore the applicability of ML 
methods within this workflow. 

The learning component does not aim to provide fully automated scheduling but rather serves as a 

demonstrator to assess whether ML models can be effectively trained using structured simulation data. It 
provides a controlled environment for testing different ML techniques, analyzing their performance, and 
identifying practical constraints such as data requirements or generalization issues. The overall approach 
supports methodical experimentation and lays the foundation for future extensions towards adaptive, ML-
based scheduling systems. 

3.2 Generic Semiconductor Simulation Template 

The generic semiconductor simulation template streamlines the creation, validation, and execution of DES 
models in semiconductor manufacturing. It is implemented in AnyLogic (https://www.anylogic.com/) and 
relies on generic building blocks and reusable components that provide a flexible basis for rapidly 
generating accurate simulation models across different production scenarios. In this section, we outline the 
core elements of the template, detailing its structure, methodology, and intended applications. 
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3.2.1 Objectives and Scope 

As part of the modular architecture described in Section 3.1, the template is intended to facilitate 
efficient model generation for semiconductor manufacturing processes, thereby reducing the manual effort 

typically involved in building custom DES models. The template is designed to address common model 
creation challenges such as data integration, standardization, and adaptability. By providing a flexible yet 
standardized approach, the template helps to: 

 
• minimize model development time and reduce the need for extensive programming skills 
• ensure consistency across different simulation studies, leading to improved model reusability and 

comparability 
• enable non-technical stakeholders to participate in the model development process, fostering 

collaboration across interdisciplinary teams 
 

The simulation template is designed to be applicable to various areas of semiconductor manufacturing, 
including production planning, bottleneck analysis, and capacity assessment. The modular structure allows 

users to adapt the template to the specific needs of different production lines or factory environments. 

3.2.2 Implementation 

The modeling logic is based on a two-level agent structure implemented in AnyLogic. At the top level, tool 
group agents represent groups of functionally similar machines, while tool agents within each group model 
individual production tools. This hierarchical structure supports modularity, simplifies initialization, and 
reduces the need to manually model each tool or process step. 

Production lots are released into the model according to a configurable schedule and assigned a product 
type, which determines the processing recipe. Each recipe contains a sequence of steps, including 
processing times, sampling probabilities, and tooling requirements. The quantity of wafers per lot is defined 
by a dedicated parameter (wafer size), ensuring flexible representation of lot characteristics. 

For each step, the model identifies the appropriate toolgroup by matching the characteristics specified 
in the recipe with the available toolgroups in the simulation. Once a toolgroup is selected, operations such 

as dispatching, sampling, batching, and rework handling are performed within the toolgroup agent. This 
centralization at the group level allows for efficient coordination and consistent logic across tools. 

Batching is handled proactively to reduce wait times, with lots grouped based on configurable criteria 
(e.g., product type, process step). After batching, the tool selection process considers tool availability and 
constraints such as lot-to-lens dedication or setup requirements. Capacity constraints are applied per tool 
and configured via cascading parameters during model initialization. 

Stochastic tool failures and preventive maintenance are implemented as separate mechanisms. Failures 
are modeled explicitly using custom logic to reflect random failure events, while preventive maintenance 
follows independently defined schedules, supporting both time-based and usage-based strategies. 

This agent-based modeling approach provides a flexible yet structured way to represent complex 
semiconductor processes, enabling scalable and reusable simulation logic across different scenarios. 

3.3 Low-Code Framework For Scenario Farming 

Efficient experimentation with simulation models – especially when exploring large solution spaces or 
training ML models – requires a high degree of automation, consistency, and repeatability. Manual setup 
and execution of simulation runs is not only time-consuming, but also error-prone, making it unsuitable for 
data-intensive applications such as data farming or ML-based decision support. To address these challenges, 
a low-code framework has been developed that enables automated scenario generation, execution, and data 
collection across multiple simulation environments. 
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3.3.1 Objectives and Scope 

The primary goal of the low-code scenario farming framework is to enable efficient and scalable 
experimentation with DES models by automating the generation, execution, and evaluation of simulation 

scenarios. Unlike traditional simulation studies, which often rely on manual configuration and execution, 
the framework is designed to support structured experimentation workflows, reduce technical barriers, and 
promote reproducibility. Specifically, the framework aims to: 

 
• Reduce the manual effort and complexity of setting up and running experiments, especially in data-

intensive applications such as robust testing or ML. 

• Enable non-experts to define and run simulation scenarios through a low-code interface, facilitating 
broader participation across interdisciplinary teams. 

• Seamlessly integrate with parameterized simulation models, such as the generic semiconductor 
model introduced in Section 3.2, by exposing configurable input parameters and supporting 
standardized output formats. 

• Ensure consistent and reproducible execution across simulation runs, enabling comparative 

analysis and systematic exploration of solution spaces (e.g., data farming). 
• Support downstream integration with learning pipelines, allowing simulation-generated data to be 

used directly for training and validation of ML models. This aspect is explored in more detail in 
Section 3.4, where the learning component is introduced as a proof-of-concept for ML integration 
within the framework. 

 

The framework is domain-agnostic in principle, but it has been tailored and tested in the context of 
semiconductor manufacturing, where large-scale scenarios and reproducible evaluations are particularly 
critical. Its modular structure allows it to be adapted to other use cases that require systematic simulation-
based experimentation, such as capacity planning, scheduling rule comparison, or sensitivity analysis. 

3.3.2 Implementation 

The scenario farming framework is implemented in KNIME, an open-source, node-based analytics platform 

that supports low-code development and visual workflows. This platform was chosen to ensure ease of use, 
transparent data handling, and straightforward extensibility for future use cases.  

The current implementation includes the following core submodules (as of this writing): 
 
1. Import of a DES model: This module allows users to load a DES model, including its file structure, 

simulation entry point, and optional configurations such as database connections or parameter files. 

This supports model reuse across experiments and ensures a standardized setup process. 
2. Model preview and validation: Once imported, the simulation model is parsed, and its internal 

structure is displayed. Input tables, configurable parameters and variables are visualized in table 
views to aid model verification and preparation. This step is critical to ensure consistency and avoid 
downstream configuration errors. 

3. Factor configuration: In this step, the user selects the input parameters (factors) to be explored in 

the solution space. For each factor, the user can define the minimum and maximum values, as well 
as a step size, thereby specifying the resolution and boundaries of the parameter variation. These 
settings determine the granularity of the experiment and define the base configuration for 
subsequent scenario generation. The factor definitions are stored internally and passed to the next 
step for use in the experiment design process. 

4. Design of Experiments (DoE): Based on the factor definitions from the previous step, users can 

configure key parameters of the simulation study-such as simulation start time, run length, number 
of replications, and random seed control. In addition, a DoE method can be selected (e.g., full 
factorial, Latin-Hypercube Sampling (LHS)), which is then used to generate a structured set of 
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experimental configurations. The resulting design is validated and written to the attached 
experiment database, forming the executable scenario matrix for distributed simulation. 

5. Distributed Execution: The simulation runs are executed across local or distributed environments 

to enable scalable data generation. The infrastructure is based on Docker, allowing simulation 
models to be containerized and executed in isolated, reproducible environments. Within KNIME, 
Python scripts are used to automate key container management tasks: writing Docker images, 
creating and starting containers with scenario-specific configurations, monitoring their execution 
status, and automatically removing containers once simulations are complete. This architecture 
supports parallel and flexible deployment, significantly reduces experiment runtime, and enables 

efficient execution of large-scale simulation studies in a controlled and reproducible manner. 
6. ML training and validation: After execution, the simulation output is collected, pre-processed, and 

prepared for downstream ML tasks. This includes feature extraction, data cleaning, and goal 
definition. The processed datasets can then be used to train, validate, and compare ML models. 
This integration aspect is discussed in more detail in Section 3.4. 

 

All submodules are implemented as reusable KNIME components and integrated into a unified 
workflow. The design emphasizes modularity, transparency, and extensibility, allowing users to modify or 
extend individual components without changing the entire workflow.  

3.4 Learning Component 

The final module of the proposed solution architecture is a learning component that explores the 
applicability of ML techniques in simulation-based scheduling. In its current form, the component serves 

as a proof-of-concept within the scenario farming workflow introduced in Section 3.3. It demonstrates how 
simulation-generated data can be structured, used for model training, and evaluated to support data-driven 
analysis and decision support. While not yet intended as an operational scheduling tool, the component is 
designed with extensibility in mind and can form the basis for future integration into adaptive, ML-
supported scheduling systems. 

3.4.1 Objectives and Scope 

The learning component is designed to investigate how ML methods can be systematically applied to 
support scheduling decisions based on simulation-generated data. It aims to explore the conditions under 
which models can be trained to generalize from large-scale scenario data and provide predictive or 
prescriptive insights into production system behavior. The focus is on demonstrating feasibility and 
identifying methodological requirements, rather than delivering a deployable scheduling solution. 

The component is embedded in the KNIME-based workflow and closely linked to the scenario farming 

framework described in Section 3.3. This setup allows automated data preparation, feature extraction, 
model training, and performance evaluation under reproducible conditions. It also allows researchers and 
practitioners to test different ML approaches - such as decision trees, ensemble models, or reinforcement 
learning agents - without requiring changes to the underlying simulation model. 

While the current scope is exploratory, the design is intentionally open for extension. In the future, the 
component may evolve into a modular learning layer that interacts with real-time scheduling systems or 

digital twins to support adaptive decision making in complex manufacturing environments. 

3.4.2 Implementation 

The learning component is technically embedded in the KNIME-based scenario farming workflow and is 
designed to operate on structured simulation output generated by the execution module. It provides a 
modular environment for preparing data, defining learning problems, training machine learning models, 
and evaluating their performance, all within a reproducible and extensible workflow. 
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The implementation follows a typical supervised learning pipeline: data transformation, feature 
engineering, dataset partitioning, model training, and evaluation. Simulation results are collected from the 
experiment database and preprocessed to convert timestamps, durations, identifiers, and categorical inputs 

into numerical formats suitable for model training. Derived features and domain-specific transformations 
can be incorporated as needed, depending on the target use case (e.g., scheduling, resource planning, or 
performance prediction). The component supports integration with Python-based machine learning libraries 
and includes optional use of KNIME's AutoML capabilities, which allow automatic algorithm selection, 
feature filtering, hyperparameter tuning, and validation. These functionalities are accessible through low-
code interfaces and are designed to lower the barrier for non-expert users to experiment with different 

learning approaches. Common evaluation metrics such as accuracy, mean absolute error (MAE), or area 
under the ROC curve (AUC) are used to assess model performance depending on the selected problem type. 

The architecture is intentionally designed to be use case agnostic. Whether the learning goal is binary 
classification, regression, or even policy approximation, the component provides a structured interface for 
applying and comparing different ML methods to simulation-derived datasets. This flexibility supports 
iterative experimentation and lays the foundation for integrating learning-based logic into future adaptive 

scheduling or planning systems. 

4 TEST CASE: SEMICONDUCTOR MANUFACTURING TESTBED2020 

The SMT2020 includes four simulation models, each designed to address different complexities in 
semiconductor manufacturing. Of particular interest for this study is dataset 2, which represents a low-
volume, high-mix (LVHM) environment. This model is tailored to simulate the operational intricacies of 
modern fabs that handle multiple product types under tight delivery schedules.  

The LVHM model features 10 product types with process routes ranging from 242 for type 5 to 583 
steps for type 3, capturing the high variability and customization typical of LVHM factories. The inclusion 
of advanced features such as re-entrant flows, critical queue time (CQT) constraints, and cascading tool 
operations reflects the operational complexity inherent in this manufacturing environment.  

The toolset in the LVHM model includes 105 toolgroups with a number of 913 tools organized into 
functional areas such as diffusion, implant, lithography, and metrology. Specific operational constraints, 

such as lot-to-lens dedication and customized maintenance schedules, highlight the precision required in 
these manufacturing processes. The model also accounts for hot lots, which require dynamic prioritization 
and flexible setup strategies to accommodate sudden changes in production requirements. 

This LVHM model serves as a critical testbed for evaluating advanced operational strategies, providing 
researchers and practitioners with a robust platform to explore and refine production control mechanisms 
in semiconductor manufacturing. A detailed description of the models for the entire testbed can be found 

in the literature (Hassoun et al. 2019; Koop et al. 2020a; Kopp et al. 2020b). In addition, the model data 
can be downloaded from https://p2schedgen.fernuni-hagen.de/.  

5 EXPERIMENT 

Based on the solution approach as a proof-of-concept, the test case described in the previous section is now 
considered within the framework in terms of the execution of large-scale simulation experiments and 
applicability of ML methods. 

5.1 Objectives and Definition of the Simulation Experiment 

We aimed to achieve two objectives with the simulation experiment. First, we aimed to generate a large, 
diverse set of synthetic production data to serve as a training and validation base for ML models within the 
proposed framework. Second, we wanted to systematically vary tool availability in a selected process area 
to generate simulation data that reflects realistic scheduling dynamics under resource constraints. 

For this purpose, we focused on a key resource parameter in the generic semiconductor simulation 

model: the number of tools in all toolgroups assigned to the dielectric area in the SMT2020 2dataset. For 
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each of these toolgroups, the number of tools was sampled independently between a minimum of 2 tools 
and the original number of tools defined in the dataset, using steps of 1. The resulting parameter space was 
explored using LHS to ensure a statistically efficient and well-distributed set of configurations. A total of 

5000 unique simulation scenarios were generated. 
Each configuration was simulated over a 150-day time horizon to generate rich and consistent process 

data. The output includes detailed lot level information such as processing sequences, tool assignments, 
completion times, and associated metadata. 

The resulting data was not directly evaluated in the simulation study itself but was prepared for 
downstream ML tasks. ML models were later trained to predict whether individual lots would meet their 

originally defined due dates under different resource configurations. This evaluation of schedule adherence 
was not part of the simulation analysis but formed the central prediction task for the learning component 
described in Section 3.4. 

5.2 Results 

All configurations were automatically started in Docker containers on a large virtual machine with Ubuntu 
22.04 LTS as operating system on a dedicated simulation server of the University of the Bundeswehr 

Munich. An Intel Xeon Platinum 8362 with 2.80 GHz is installed as the CPU in the simulation server. The 
virtual machine is assigned 128 cores and a total of 1 TB RAM and 1 TB hard drive storage. 

As part of the simulation experiment, 50 Docker containers were started in parallel. For 5,000 
configurations and a real duration of around 7 minutes for each simulation run, this meant a total processing 
time of ~12 hours. By way of illustration, it would take approximately 24 days to run the configurations 
sequentially – assuming they can be started immediately one after the other. 

After running the simulation and preprocessing the data, the resulting dataset was used to train and 
evaluate several supervised ML models using KNIME's AutoML framework. The prediction task focused 
on classifying production lots as on time or late based on their completion date relative to the original due 
date (±24 hours tolerance). 

Among the models tested, Gradient Boosted Trees and Random Forests achieved the best overall 
performance. Gradient Boosted Trees achieved the highest values for AUC (~0.99), Accuracy (~0.95), and 

F-Measure (~0.91), indicating excellent classification ability and robustness even under class imbalance. 
Naïve Bayes also performed well, especially in terms of Balanced Accuracy, suggesting good sensitivity to 
both classes. In contrast, simpler models such as Random Forest and Logistic Regression showed 
limitations, particularly in terms of F-measure and Balanced Accuracy-reflecting challenges in correctly 
identifying late batches. The ROC curves further support these findings, with ensemble-based models 
(Gradient Boosted Trees, Random Forest) showing steep and well-separated curves, while linear models 

lag, see Figure 1. 

Figure 1: Evaluation of ML models trained on simulation-generated data to classify production lots as on 
time or late. The left chart compares models across common performance metrics (AUC, Accuracy, 
Balanced Accuracy, F-Measure), while the right chart shows corresponding ROC curves. 
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Overall, the results demonstrate that ML models can learn meaningful patterns from the simulation-
generated dataset, enabling reliable prediction of on-time delivery based on the production context. These 
results validate the feasibility of the proposed framework and highlight the potential of integrating 

simulation and learning for scheduling decision support. 

5.3 Challenges and Limitations 

Despite the encouraging results, there are still several limitations. The approach relies on synthetic data 
from simulation models, which may not fully capture variability in the real world. Consequently, trained 
ML models may encounter generalization issues when applied to unseen or atypical scenarios. 

Additionally, rare events and nonlinear dynamics may be underrepresented in the generated datasets, 

which limits the predictive accuracy for edge cases. While the current focus has been on supervised learning 
for binary classification, extending to more complex tasks (e.g. reinforcement learning or multi-objective 
settings) introduce further methodological and computational challenges. 

Further work is also required to operationalize integration: translating ML outputs into actionable 
scheduling decisions requires technical interfaces, organizational acceptance, and trust in the system’s 
recommendations. Advancing the framework towards an operational decision support system requires 

closer integration with existing planning processes and the seamless embedding of learning-based 
components in day-to-day decision-making workflows. 

6 CONCLUSION AND OUTLOOK 

Simulation experiments take time and effort. There is little difference between whether a model must be 
created or already exists. Even if an existing model only needs to be updated with new parameters, the 
simulation itself takes time to run (Pappert and Rose 2022). This becomes a practical limitation when 

simulation is used not only for evaluation, but also as a basis for training ML models that require large and 
diverse datasets. The framework presented addresses this challenge by integrating a reusable simulation 
template, automated scenario farming, and a learning component. Together, these elements enable scalable 
experimentation and structured data generation for decision support for scheduling. 

In this context, the experimental results confirm that meaningful patterns can be extracted from 
simulation-generated data to predict schedule adherence. This validates the feasibility of using simulations 

to support operational decision-making.  
As a next step, the authors will increase the functional depth of the simulation template itself. Planned 

enhancements include the implementation of additional control mechanisms (e.g., dynamic scheduling 
rules, more complex batching strategies, lot splitting) and the refinement of process constraints. These 
additions are intended to improve the variability and expressiveness of simulation scenarios, thereby 
enriching the factor space available for analysis and learning. 

In addition, a backward simulation approach, starting from desired target states, is explored as a basis 
for planning under delivery constraints. To improve transparency and trust in the trained models, 
explainable AI techniques will be integrated into the workflow. In parallel, transfer learning strategies will 
be evaluated to reduce training effort and improve adaptability across simulation contexts. 

To promote reusability and collaboration, the entire framework – including the low-code workflow and 
simulation template – will be published on GitHub. This will support further development, transparency, 

and adoption by the simulation and operations research communities. 
Taken together, the proposed framework provides a flexible foundation for developing simulation-

driven, learning-enhanced scheduling tools. The authors intend to gradually evolve this approach into a 
modular decision support system to assist planners in complex, uncertain and time-constrained production 
environments. 
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