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ABSTRACT

As AI integration in critical domains grows, evaluating its effectiveness in complex policy environments
remains challenging. We introduce a two-stage simulation framework for assessing AI policy recommen-
dations in the COVID-19 pandemic. First, we train a deep reinforcement learning (DRL) agent using
data from 186 countries to model optimal intervention timing and intensity. Results suggest the DRL
agent outperforms average government outcomes within our simplified model under specific assumptions,
reducing infections and fatalities, improving recovery rates. Second, we employ SEIRD (Susceptible-
Exposed-Infected-Recovered-Dead) modeling to create a dynamic simulation environment, testing the
agent across diverse scenarios beyond historical data. Unlike prior work lacking systematic evaluation,
our framework provides a controlled testbed for high-stakes policy decisions before implementation. This
presents a responsible approach to AI evaluation where real-world experimentation raises ethical concerns.
It highlights the role of simulations in bridging development-deployment gaps while identifying financial
constraints and human-AI interaction as future research priorities.

1 INTRODUCTION

As artificial intelligence becomes increasingly integrated into critical decision-making contexts, evaluating
AI’s effectiveness in complex policy environments presents significant challenges. The high-stakes nature
of pandemic response—where policy decisions directly impact public health outcomes—makes it an ideal
domain for studying AI assistance in complex decision-making (Asan et al. 2020; Maadi et al. 2021).
While prior research has explored human-AI collaboration in various contexts (Amershi et al. 2019),
fundamental questions remain about the potential of AI systems in complex policy formulation and how
to systematically evaluate their performance before real-world deployment.

Pandemic management represents a particularly complex policy challenge. Without effective vaccines
or treatments, highly contagious outbreaks require preventive interventions such as social distancing and
travel restrictions to flatten infection curves and prevent healthcare system collapse (Wu et al. 2020;
Chinazzi et al. 2020). Failure to implement timely and appropriate measures can lead to surging case
numbers, increased mortality, and reduced recovery rates (Khadilkar et al. 2020). A research by Rahmandad
et al. (2021) demonstrated that even minor improvements in policy responsiveness can reduce deaths by
14%—exceeding the impact of vaccinating half the population—underscoring the critical importance of
effective policy-making during pandemic crises.

This paper explores the potential of AI-assisted policy formulation through a two-stage simulation
framework designed to illuminate the underlying policy-making process. Specifically, it is designed for
evaluating pandemic management scenarios. Our research questions include: (1) Can deep reinforcement
learning (DRL) agents learn policy-making strategies that achieve favorable outcomes compared to historical
government decisions in our simplified model? (2) Can simulation environments serve as preliminary testing
grounds for exploring AI performance in simplified policy contexts?

Our main contributions include:
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• A two-stage simulation framework that first provides preliminary exploration of AI performance
against real-world historical data, then explores performance in controlled simulation environments;

• Empirical evidence that a DRL agent trained on data from 186 countries can outperform average
government responses in managing pandemic scenarios within our model constraints; and

• A stylized SEIRD-based simulation environment for preliminary evaluation of AI policy recom-
mendations in controlled pandemic scenarios including diverse unseen pandemic scenarios.

In our first study, we conduct a preliminary exploration of a DRL agent against actual policy decisions
by governments during the COVID-19 pandemic within our model constraints, categorizing interventions
into no-action, moderate, and strict measures (Kwak et al. 2021). Our second study addresses the limitations
of historical data by developing a controlled simulation environment based on the SEIRD epidemiological
model, allowing for sequential policy-making evaluation rather than point-wise comparisons. This approach
provides initial insights into AI’s potential role in policy formulation within simplified models and offers
a preliminary framework for future research on human-AI collaboration in high-stakes policy domains.

Our methodology and findings have implications for simulation research, reinforcement learning appli-
cations, and the design of human-AI collaborative systems across domains where complex decision-making
occurs under uncertainty. By demonstrating how simulated environments can bridge the gap between AI
development and responsible deployment, this work contributes to both the technical advancement of AI
evaluation methodologies and the practical implementation of AI support systems in critical policy contexts.

2 BACKGROUND AND RELATED WORK

Integrating AI into complex systems poses multifaceted challenges beyond technical implementation (Gabsi
2024). Organizations face hurdles such as data integrity issues, scalability, and interoperability between
AI and existing infrastructure (Ekundayo 2024). In parallel, organizational dynamics—like stakeholder
acceptance, ethical risks, and mitigation of discriminatory outcomes—play a crucial role in AI adoption
(Kubilay and Celiktas 2025). Adoption is often driven by perceived usefulness and usability, while trust
depends on users’ perceptions of competence, integrity, and benevolence (Lukyanenko et al. 2022).

Human-centered AI design emphasizes clear system capabilities, transparency in decision-making, and
appropriate user control (Amershi et al. 2019; Chen and Zacharias 2024). While progress has been made in
AI testing and deployment across domains, a persistent gap remains in evaluating AI effectiveness within
complex policy environments (Valle-Cruz et al. 2020). This is especially critical in high-stakes scenarios
like pandemics, where traditional experimentation is often infeasible or unethical (Tomašev et al. 2020).
Our research addresses this gap through a two-stage evaluation framework, combining real-world data
validation with simulation-based testing in controlled environments for policy-focused AI systems.

2.1 AI for Pandemic Modeling and Response

The COVID-19 crisis underscored the need for responsive, data-driven policymaking. AI approaches have
been explored for modeling disease dynamics, including SEIRD models and agent-based simulations of
population-level behaviors (Gawande et al. 2025). Machine learning techniques support outbreak prediction,
resource optimization, and policy evaluation (Ondula 2024). Reinforcement learning (RL), in particular,
has shown promise in formulating adaptive control strategies by learning optimal intervention sequences
from data and simulations (Kwak et al. 2021; Li et al. 2024).

Simulated environments have become essential for training policymakers and testing AI assistants in
risk-free settings (Elendu et al. 2024; Laamarti et al. 2014; Maheu-Cadotte et al. 2018; Kwak et al.
2024). These environments allow users to explore policy impacts and incorporate AI-generated insights.
However, challenges persist. Data limitations hamper model training (Liu 2025), and many AI models lack
mechanistic transparency and generalizability beyond observed contexts. Ethical issues—such as privacy,
bias, and fairness—further complicate public health applications (Ekundayo 2024; Barocas et al. 2019).

978



Abdollahi, Mohammadi, Griffin, and Harteveld

Our research builds on these foundations while addressing key limitations. By combining DRL
with a two-stage evaluation framework—first validating against real-world data, then testing in controlled
simulations—we provide a structured approach to assess AI policy recommendations before deployment.
This methodology specifically tackles the transparency and generalizability concerns by enabling systematic
evaluation across diverse pandemic scenarios beyond historical observations.

2.2 AI Testing and Evaluation Methodologies

Traditional testing approaches fall short for AI systems due to properties like non-determinism, continuous
learning, and opaque decision processes (Menzies and Pecheur 2005; Xiang et al. 2018). These limitations
demand new evaluation frameworks. Key areas include robustness testing, fairness audits, and explainability
assessments (Goodfellow et al. 2014). The quality of training data remains a central factor in reliability.
Several standards offer guidance—ISO/IEC TR 29119-11 targets AI-specific testing challenges (Oviedo et al.
2024), while IEEE 1012 outlines lifecycle verification protocols (IEEE 2017). Emerging methods such as
neurosymbolic AI seek to combine logical reasoning with learning-based approaches to enhance verification
(Renkhoff et al. 2024). Yet, these typically focus on model-level validation rather than full-system testing
in dynamic environments.

Evaluating AI in simulation environments introduces additional complexities. Unlike static benchmarks,
interactive scenarios require assessing behavior over time using metrics like adaptability, learning speed,
and decision quality (Ribeiro et al. 2020). While recent methods improve component verification (Renkhoff
et al. 2024), few offer comprehensive evaluation across both historical data and future-oriented simulations.
Our framework addresses this gap by integrating retrospective validation with simulation-based testing,
enabling end-to-end assessment of AI policy systems. This dual-stage method aims to improve both
reliability in known scenarios and adaptability in prospective ones—critical for real-world deployment in
public policy domains.

2.3 Human-AI Collaboration in Complex Decision Making

Human-AI collaboration research highlights designs that improve decision-making in complex contexts
(Elendu et al. 2024; Gomes et al. 2021). While such systems often outperform humans alone, they may lag
behind AI-only performance (Gomes et al. 2021). However, autonomous AI is often unsuitable in ethically
charged or legally sensitive settings, reinforcing the importance of effective human-AI partnerships.

In high-stakes areas like healthcare and policy, combining human judgment with AI capabilities enhances
decision quality (Gomez et al. 2025). Effective collaboration depends on role clarity, trust, and transparent
interaction (Bansal et al. 2019). The hybrid intelligence model emphasizes synergies between human
insight and machine efficiency (Dellermann et al. 2021).

Key enablers include system explainability and intuitive interfaces (Akinnagbe 2024; Zhang et al. 2024;
Gomez et al. 2025). Rather than replacing human judgment, the goal is to augment it through collaborative
systems. Most prior research focuses on low-stakes or retrospective analyses. Our approach contributes
by enabling prospective, simulation-based testing of AI recommendations in high-stakes contexts. This
controlled environment allows for systematic evaluation of collaboration frameworks before real-world
deployment, providing an ethically sound foundation for studying AI-supported policy decisions (Miller
et al. 2024).

3 METHODS

AI has proven vital in pandemic management, notably demonstrated potential during the COVID-19
pandemic, aiding policy formulation and healthcare resource optimization. Reinforcement learning, coupled
with deep learning, can model aspects of human learning processes. Mnih et al. (2015) showed that RL
algorithms achieve strong performance in complex video games, suggesting potential applications to real-
world socio-technical challenges (Sert et al. 2020; Kwak et al. 2021). This study seeks to design an agent that
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surpasses traditional methods like DQN (Mnih et al. 2015), addressing their limitations through advanced
techniques such as double Q-learning (Van Hasselt et al. 2016) and dueling architectures (Wang et al.
2016), thereby enhancing AI’s ability to support human decision-making in pandemic policy formulation.

3.1 Problem Formulation

We formulate pandemic policy-making as a Markov Decision Process (MDP) where an agent must select
intervention strategies based on the current pandemic state. The state space consists of 7 features representing
pandemic conditions (detailed in Section 3.3), while the action space comprises combinations of lockdown
and travel restrictions (detailed in Section 3.4). Our objective is to learn a policy π that maximizes the
expected cumulative reward, balancing infection reduction, mortality decrease, and recovery increase over
a 100-step pandemic trajectory with decisions made every 7 days.

3.2 Deep Reinforcement Learning Approach

Q-learning is a reinforcement learning approach where an agent learns to make optimal decisions at each
state. Mnih et al. (2015) showed that Deep Q-Networks (DQN) have successfully addressed challenges like
high dimensional input data using deep convolutional neural networks, and serve as a foundational algorithm
underpinning RL approaches but are prone to overestimations. Van Hasselt et al. (2016) developed Double
Q-Networks that resolve the issue of Q-value overestimation but lack in terms of stability, while Wang et al.
(2016) showed that dueling Q-Networks segregate value and advantage estimation, enhancing stability and
efficiency. We employ the Dueling Double DQN (D3QN) algorithm (Kwak et al. 2021), which extends
standard Q-learning by learning two separate value functions: the state value V (s), indicating the overall
desirability of state s, and the advantage function A(s,a), capturing the relative benefit of choosing action a
in that state. The Q-value is then computed as shown in (1), where the mean advantage across all possible
actions is subtracted to normalize A(s,a) around zero:

Q(s,a) =V (s)+

(
A(s,a)− 1

|A | ∑a′
A(s,a′)

)
. (1)

This architecture, shown in Figure 1, separates the evaluation of state importance from action selec-
tion—an essential feature for pandemic scenarios, where some states require immediate intervention while
others allow more flexibility. By learning a state value function V (s) and an advantage function A(s,a), the
agent can better assess when the choice of action matters most. As defined in (1), the Q-value combines
these two streams, with the advantage normalized to prevent uniform inflation across actions. The dueling
structure, paired with double Q-learning, reduces overestimation bias by decoupling action selection and
evaluation (Wang et al. 2016; Mnih et al. 2015). Training is based on replayed experiences (s,a,r,s′),
which improves sample efficiency and prevents the forgetting of rare but important transitions in dynamic
policy environments (Kwak et al. 2021).

3.3 Features

In our study, we represented the pandemic state using a 7-feature vector based on the available dataset (Kwak
et al. 2021). This vector included the number of confirmed cases, recovered cases, and deaths, along with
the growth rates of confirmed cases, recovered cases, and deaths, as well as the population size. To ensure
compatibility with the SEIRD model, integral for generating the simulated environment in our second study,
we omitted six supplementary features from the original dataset—population density, average population
age, GDP, latitude, longitude, and life expectancy. This choice aimed for consistency and comparability
between our two studies, making the simulated SEIRD model align with real-world data. This simplification
facilitates the generalization of results and makes the simulated environment more accessible for educational
purposes too, focusing on key pandemic dynamics and streamlining the model’s implementation.
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3.4 Actions and Reward

In our study, the action space was composed of a combination of lockdown and travel restriction policies,
with discrete values ranging from 0 to 2, resulting in a total of 9 possible actions following the approach
used by Kwak et al. (2021). The different levels were defined as follows:

• Lockdown policy: No action (L0), restricted public social gathering (L1), and nationwide lockdown
(L2)

• Travel policy: No action (T0), flight suspension (T1), and full closure of all borders (T2)

Given the multi-objective nature of pandemic control, we designed our reward function based on three main
variables: the growth in confirmed cases, recovered cases, and deaths. Drawing insights from the literature,
we assigned weights of 2:1:1 to these variables in the reward function, aligning with the approach used by
Kwak et al. (2021). Consequently, our reward function can be formulated as follows:

rt = ri
t +0.5× rd

t +0.5× rr
t . (2)

Here, i, d, and r represent the decrease in infection, decrease in death, and increase in recovery cases,
respectively. The reward function is evaluated at each 7-day decision point, comparing the change in
infection, death, and recovery rates between the current and previous time steps. This temporal granularity
allows the agent to learn the delayed effects of interventions while maintaining computational efficiency.

3.5 Model Architecture and Training Protocol

We utilized the D3QN method introduced by Kwak et al. (2021) to construct our agent. Figure 1 illustrates the
architecture, which implements the value and advantage streams described in Section 3.2. The environment
varies by study: real-world data is used in Study 1, and a simulated SEIRD model in Study 2. The model
includes two hidden layers of size 52 and uses a batch size of 4.

Figure 1: Architecture of AI agent (based on D3QN) integrated with an environment (real-world data
in Study 1; simulated SEIRD model in Study 2). The neural network splits into value stream V (s) and
advantage stream A(s,a), which combine to compute Q-values.

Study 1 uses a dataset of daily pandemic observations from 186 countries, split into training (70%),
validation (10%), and testing (20%) sets with balanced pandemic conditions. Training involves 1000
episodes, each sampling 100-step trajectories (700 days) from historical data in Study 1, or simulating
40-step trajectories (280 days) in the SEIRD environment for Study 2. Both studies follow identical learning
protocols: agents observe states every 7 days and select actions using ε-greedy strategy (ε decays from 1.0
to 0.1 over 500 episodes). Actions are random with probability ε or Q-value-maximizing with probability
1− ε . We employ experience replay and soft target network updates every 100 steps (τ = 0.001).
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4 RESULTS

To evaluate the performance differences between our DRL agent and government policies, we conducted
a counterfactual analysis using the test dataset (2,926 samples). We ran parallel simulations with identical
initial conditions based on real-world data—one following actual government decisions, and the other
using the actions recommended by our trained agent. Figure 2 displays three heatmaps illustrating the
respective policy distributions and their differences. The results reveal a clear behavioral contrast: the
agent consistently favored balanced, moderate interventions, whereas government decisions tended to swing
between inaction and strict enforcement.

Figure 2: Comparison of policy action distributions between the AI agent and the governments. The left
and middle heatmaps show the normalized frequencies of actions taken by the D3QN-based agent and
the governments across lockdown levels (y-axis) and travel restrictions (x-axis). The right heatmap shows
their difference (Agent – Government), where blue cells (positive values) indicate actions more frequently
chosen by the agent, and red cells (negative values) those favored by the governments.

The left heatmap in Figure 2 reveals the agent’s highly concentrated strategy, with 57% of actions
at moderate lockdown with moderate travel restriction [1,1] and 41% at no lockdown with moderate
travel restriction [0,1]. The agent notably avoids strict lockdown measures entirely, demonstrating a
learned preference for balanced, moderate interventions. The middle heatmap shows government actions
dispersed across the action space, with the highest concentration (57%) at the no-intervention position
[0,0], followed by scattered frequencies across various intervention levels. This pattern reflects a reactive
approach, maintaining status quo until circumstances force action. The right heatmap highlights the policy
differences, with deep blue at [1,1] (+0.50) indicating the agent’s strong preference for proactive moderate
measures, while deep red at [0,0] (-0.56) reveals governments’ tendency toward initial inaction. This
contrast demonstrates that our DRL agent has learned to implement consistent preventive measures in
this stylized environment, avoiding both extremes of no action and strict interventions, while governments
exhibit a pattern of delayed response potentially requiring more drastic actions later.

Furthermore, Figure 3 illustrates the cumulative reward trajectories over 100 simulation weeks for
both the DRL agent and government policies. The reward metric, calculated as weighted reductions in
infections and deaths plus recovery increases, is expressed as a percentage of the population. The agent’s
cumulative reward (blue line) exceeds government policies (red line) with the gap widening over time. By
week 100, the agent achieves approximately 12.5% cumulative reward compared to 9.5% for government
policies. While these results within our simplified model align with prior work by Kwak et al. (2021). It
is crucial to acknowledge the comparison’s limitations. Government policies involved a broader portfolio
of interventions beyond our model’s two categories (discrete lockdowns and travel restrictions), operating
under complex economic, social, and political constraints. Thus, our findings reflect performance within
a stylized framework rather than the full complexity of real-world pandemic policy decisions.
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Figure 3: Agent vs Government performance: Cumulative reward (y-axis) over 100 simulation steps (x-
axis). Reward represents weighted average reduction in infection rate (−2×∆infection), mortality rate
(−1×∆deaths), and increase in recovery rate (+1×∆recoveries).

Figure 4: Mean population distribution across different states of the system (S: Susceptible, I: Infected,
R: Recovered, or D: Dead) during the learning process (initial and final phases). The figure excludes
the E: Exposed state for simplicity. Horizontal lines indicate baseline thresholds for healthcare system
capacity: the thicker line represents 2% of the population, and the thinner line represents 1%. Infection rates
exceeding these thresholds are associated with a significant increase in mortality due to system overload.

To establish a benchmark for future studies and support consistent comparison, we conducted a second
investigation. We acknowledge that government decisions are informed by a wide array of information
sources, data of which we do not possess in its entirety. Our trained agent may have overlooked significant
factors influencing government decisions, to which we lack access. To enhance the applicability of
our findings, we utilized the SEIRD model to simulate pandemic scenarios, addressing data limitations
and constraints imposed by available data. In this vein, our second study was based on this simulated
environment, allowing us to test our designed DRL agent and validate the potential of simulation-based
testing in evaluating AI performance.
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Figure 4 illustrates the outcomes of our analysis, specifically comparing the average population in each
state (Susceptible, Infected, Recovered, Dead) during different stages of the learning process (initial and
final 20%). These results demonstrate the promise of our agent to effectively learn and make policies in the
simulated environment. Notably, the agents display proficient management of the pandemic by significantly
increasing overall recovery rates and reducing infection and mortality rates over time.

5 DISCUSSION

The integration of AI into complex policy domains offers both promise and challenges. Our research
examines AI’s potential contribution to pandemic management through a framework combining real-world
data analysis and simulation-based testing. We investigate whether DRL shows potential for application to
support high-stakes policy decisions under uncertainty, providing insights into AI’s capabilities, limitations,
and pathways for responsible integration.

5.1 Potential of AI (specifically DRL) for Pandemic Policy-Making

Our research shows that DRL has potential for application to complex policy decision-making in pandemic
scenarios within controlled environments. Our two-stage framework shows that the DRL agent (based on
D3QN) takes a more balanced approach to pandemic interventions compared to government responses.
While governmental policies during COVID-19 often oscillated between extremes—no restrictions or severe
lockdowns—our agent consistently recommended moderate, calibrated interventions that achieved better
outcomes in the stylized environment. These findings align with findings by Rahmandad et al. (2021) and
Kwak et al. (2021), supporting the utility of our trained agent in simulated policy settings.

Our approach extends previous work by exploring DRL performance relative to historical government
policies within our simplified two-action framework. Training on data from 186 diverse countries—spanning
different demographics, healthcare systems, and governance structures—suggests the model’s capacity to
identify patterns despite substantial heterogeneity. Within our stylized environment, the DRL agent achieves
higher cumulative rewards than government policies. However, these results require cautious interpretation.
Government policies were developed without training data during a novel pandemic, and our static comparison
cannot capture real-time adaptive decision-making. Our comparison is limited to two intervention types
while real-world implementation involves factors beyond our model’s scope: economic trade-offs, social
acceptance, political constraints, and operational complexities (Ramezani et al. 2023). The agent’s apparent
success partly reflects this asymmetry—it learns from complete historical data while policymakers faced
unprecedented uncertainty. Whether these findings generalize to different pathogens or social contexts
remains uncertain (Ali 2024). Thus, while our results suggest potential value in AI-assisted policy analysis,
they should not imply that AI can replace human judgment in pandemic management.

5.2 Simulation-Based Testing of AI Integration into Complex Systems

Our approach provides a framework for evaluating AI in policy domains before real-world deploy-
ment—essential for responsible high-stakes implementation. It addresses data limitations (Ali 2024)
by generating synthetic scenarios beyond historical observations, enables controlled testing across diverse
conditions, and allows rapid iteration without real-world risks. However, our SEIRD model simplifies
population heterogeneity, regional healthcare variations, social compliance behaviors, and economic fac-
tors. These simplifications limit policy recommendation comprehensiveness (Li et al. 2024), and model
assumptions may not hold for novel pandemics. Furthermore, training on simulated data risks circular-
ity—agents may learn simulation artifacts rather than genuine dynamics, producing policies that fail to
generalize (Bengio et al. 2011). While our two-stage validation partially mitigates this risk, distinguishing
meaningful patterns from artifacts remains challenging. Despite these limitations, our approach addresses
the need for benchmarks assessing real-world capabilities (Renkhoff et al. 2024), providing controlled
evaluation environments supporting responsible AI development (Akinnagbe 2024).
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5.3 Going from AI Simulation to Human-AI Interaction

While our research explores AI’s potential in simulated pandemic policy evaluation, real-world implemen-
tation would require meaningful human-AI integration. Complex crisis decisions would likely benefit from
collaboration rather than autonomous AI. Our preliminary findings suggest AI might support decision-
making by identifying balanced strategies within our stylized environment, particularly under time pressure.
However, these insights remain limited to our simplified model and require extensive validation before
real-world application. The transition to effective human-AI interaction presents several challenges. AI
recommendations must be interpretable and explainable to gain stakeholder trust (Dellermann et al. 2021).
Interfaces must facilitate appropriate task allocation, leveraging complementary strengths of human judg-
ment and AI analysis (Bansal et al. 2019). The collaborative system must adapt to different stakeholder
needs while maintaining consistent recommendations. Simulated environments offer promising platforms
for developing and testing human-AI interaction approaches. These environments create safe spaces where
policymakers can interact with AI advisors and incorporate recommendations into decision processes
(Maheu-Cadotte et al. 2018; Laamarti et al. 2014). They provide structured settings where interactions
can be measured, support experiential learning about AI’s strengths and limitations, and allow observation
of decision consequences without real-world risks.

5.4 Ethical Considerations and Future Research

The integration of AI into policy decision-making raises important ethical considerations. Our methodology
represents an ethical approach by advocating for simulation-based testing before high-stakes deployment.
However, several concerns require attention. Bias in AI policy recommendations remains significant—while
our model trains on data from 186 countries, these data reflect existing healthcare disparities that AI systems
might inadvertently amplify (Barocas et al. 2019). Our research suggests maintaining human oversight is
essential, with AI serving in an advisory rather than autonomous capacity (Ekundayo 2024).

Several promising research directions emerge. First, enhancing simulation realism by incorporating
economic impacts, heterogeneous population characteristics, and adaptive social behaviors would better
capture real-world complexity (Renkhoff et al. 2024). Second, developing frameworks for human-AI
collaboration in policy contexts requires careful attention to system design, performance metrics, and
presentation formats that may influence trust and decision quality (Akinnagbe 2024). Building on prior
work that demonstrates the value of keeping experts in the loop for system refinement (Troiano et al. 2025),
advancing AI for policy similarly demands continuous stakeholder involvement to shape, evaluate, and
build trust in AI outputs. Third, more robust evaluation methodologies are needed, including standardized
benchmarks that capture epidemiological outcomes alongside economic impacts and equity considerations
(Ribeiro et al. 2020). Finally, investigating the transferability of AI policy approaches across different
crisis types represents an important extension beyond pandemic management.

6 CONCLUSION

The integration of AI into critical decision-making contexts requires robust evaluation frameworks, par-
ticularly where real-world experimentation raises ethical concerns. Our two-stage simulation framework
addresses this challenge by first training a DRL agent on data from 186 countries to model optimal pandemic
interventions, then testing it in a SEIRD-based simulation environment beyond historical data. Results
indicate the DRL agent outperforms governments’ average outcomes in our test environment, implementing
more balanced intervention strategies that reduce infections and fatalities while improving recovery rates.
The first stage demonstrates the agent’s potential using real-world data within model constraints, while
the second enables evaluation across unobserved scenarios—a methodological contribution to simulation-
based testing. This research presents a responsible AI evaluation methodology for domains where direct
experimentation is problematic. By demonstrating how simulations bridge the AI development-deployment
gap, we provide a pathway prioritizing safety and effectiveness. Future research should enhance simulation
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fidelity, develop comprehensive evaluation metrics, investigate human-AI collaboration frameworks, and
address implementation constraints. Building effective, context-sensitive human-AI collaboration designs
remains central to realizing the potential of AI-supported decision-making in critical domains like pandemic
management and other complex policy environments.

A DATASET

The pre-processed dataset (Kwak et al. 2021) aggregates data from two primary sources:

• Johns Hopkins CSSE COVID-19 data (Johns Hopkins University 2020)
• Oxford OxCGRT policy tracker (University of Oxford 2020)

B SEIRD MODEL

Figure 5: SEIRD epidemic model showing transitions between states with their respective transition rates.

Mathematical expressions illustrating the interplay between distinct disease stages within the SEIRD
model, constructed using ordinary differential equations (ODE):

dS
dt

=−β

N
SI, S(t0) = S0 := N −E0 − I0,

dE
dt

=
β

N
SI −ϑE, E(t0) = E0,

dI
dt

= ϑE − γI, I(t0) = I0,

dR
dt

= (1−µ) · γI, R(t0) = 0,

dD
dt

= µ · γI, D(t0) = 0.

(3)
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