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ABSTRACT 

Rising energy price volatility and the shift toward renewables are driving the need for energy-aware 
production planning. This paper investigates the integration of energy storage systems into dynamic 
dispatching to balance production-logistics and energy costs. Building on prior work that introduced a 
workload- and price-based dispatching rule, we extend the model to include energy storage loading and 
unloading decisions. The rule prioritizes storage refill at low prices and lets machines resort to stored energy 
when grid prices rise and the workload is high. A simulation-based evaluation examines scenarios with 

different storage capacities whereby decision rule parameters are optimized. Computational results 
demonstrate that a reduction of operational costs is possible without deteriorating production logistics 
performance. By decoupling energy sourcing from real-time prices, manufacturers achieve both resilience 
and cost savings. This research contributes to sustainable manufacturing by offering a practical strategy for 
integrating energy storage into production planning under volatile energy conditions. 

1 INTRODUCTION 

The rising volatility of energy prices, coupled with increasing sustainability pressures, has pushed 
manufacturing companies to reconsider their energy consumption strategies. Traditional production 
planning approaches have primarily focused on cost efficiency, timely delivery, and resource utilization but 
often neglect the impact of fluctuating and uncertain energy prices. With the global energy crisis that peaked 
between 2022 and 2023, industries have faced significant price swings, making energy cost optimization a 
crucial factor in operational decision-making. Moreover, the growing shift toward renewable energy 

sources introduces further complexity, as solar and wind power generation is inherently volatile and 
reinforces price fluctuations. However, the recent decline in energy storage costs has made energy storage 
systems more attractive, offering manufacturers the opportunity to smooth their electricity demand by 
storing excess energy during low-cost periods and resorting to it later when prices are high. Those 
developments underpin the urgent need for dynamic, energy-aware production planning concepts that can 
adapt to fluctuations in both energy prices and availability, and effectively leverage energy storage systems. 

To tackle those challenges, energy-aware decision-making in production systems has emerged as an 
important research area. This also applies to short-term, operational planning decisions, typically 
encountered at the level of detailed scheduling of jobs on the machines of the shop floor. A large body of 
academic research is devoted to job shop and flow shop dispatching incorporating time-of-use (ToU), real-
time pricing (RTP) and power purchase agreement (PPA) considerations, as discussed in a recent article by 
Dunke and Nickel (2025). This work also confirms that energy storage systems have not yet received that 

much attention in this particular context. Clearly, the storage aspect makes the optimization problem more 
complex, raising issues like the following: 

• When should energy from storage be used instead of consuming from the grid? 
• When should machines be stopped based on energy price, energy storage status, and workload? 
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• What is the overall cost advantage of an energy storage and how is it related to the size of the 
storage? 

• How does an energy storage impact the balance between production-logistics costs and energy 

expenses? 
To address these questions for production dispatching, it is necessary to simultaneously take into account 
dynamic electricity pricing (RTP, ToU) and the availability of energy storage facilities. 

Bokor et al. (2024) introduced an energy price and workload-related dispatching rule that dynamically 
adjusts machine operational states based on electricity prices and workload levels. This rule effectively 
optimizes machine utilization by turning machines on or off in response to short-term energy price 

variations. The approach was evaluated using a stochastic multi-item multi-stage job shop simulation 
model, leading to significant cost savings through improved production scheduling. 

The underlying simulation model now serves as the basis for an extension towards the integration of an 
energy storage facility, allowing not only for greater flexibility in energy sourcing but also for increased 
cost efficiency, because stored energy might be used during periods of high electricity prices. Therefore, 
the decision logic from Bokor et al. (2024) is significantly extended to include energy price, energy storage 

status, and machine specific workload. In detail, the developed approach decides for: running machines 
with grid energy and refilling the energy storage if energy prices are low; running machines from energy 
storage if prices are medium and workload is high; or stopping machines if energy prices are high and 
workload is medium. For machines with high workload, processing is always allowed. 
Unlike previous approaches, our model does not account for storage acquisition costs, as the primary focus 
is on operational decision-making regarding stored energy utilization. This allows us to isolate the true cost 

savings potential of energy storage integration without the influence of capital expenditures. Additionally, 
the effects of different energy storage capacities are evaluated. This work advances the understanding of 
how energy storage can be leveraged to optimize energy costs and improve operational efficiency in 
manufacturing processes. Additionally, the findings support the development of dynamic production 
planning strategies that can adapt to fluctuating energy prices and the increasing reliance on renewable 
energy sources. By evaluating the role of energy storage in balancing production-logistics costs, this 

research aims to guide industries toward more sustainable and cost-effective manufacturing practices. 
The paper is structured as follows: After introducing the related literature in section 2, the new decision 
rule is described in detail in section 3. The simulation model setup as well as the studied production system 
and the energy price modelling are introduced in section 4. The computational study is the subject of section 
5, followed by a summary of insights in the concluding section 6. 

2 LITERATURE REVIEW 

Increasing the energy efficiency of manufacturing systems can be achieved in various ways. Duflou et al. 
(2012) discuss three primary strategies: 1) the optimization of machine tool design, 2) process/machine tool 
selection, and 3) enhancement of process control. The former two measures are technology related, while 
the latter can be impacted by operational decision making. Hence process improvements shall be the focus 
of the paper at hand and thus also the discussion of related work. 

Energy considerations have drastically grown in importance for operational planning and scheduling 

over the previous years. In (deterministic) scheduling, flexible job shops received considerable attention in 
recent academic research. Dunke and Nickel (2025) present a bi-objective approach to an energy-aware job 
shop scheduling problem, trying to find a balance between incurred energy cost and operational efficiency. 
Based on a mixed-integer programming formulation, they devise an 𝜖-constraint technique for determining 
both an approximate and an exact version (for very small instances) of the Pareto frontier. The same trade-
off is also addressed by other methods from operations research, like constraint programming (CP) or meta-

heuristics. Building upon the work of Park and Ham (2022), Terbrack and Claus (2025) present a 
lexicographic approach with makespan minimization as the primary objective and various energy-related 
aspects (cost, peak demand, emissions) as the secondary ones. Meta-heuristics taking into account the multi-
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objective nature of energy-related scheduling include, for example, the non-dominated sorting genetic 
algorithm (NSGA-II) proposed by Burmeister et al. (2024). 

Energy awareness has also gained relevance in the field of stochastic simulation of manufacturing 

systems. Wenzel et al. (2018) focus on the simulation of material flows and energy flows in production 
systems and their integration. They identify requirements, organizational questions, key goals and 
performance indicators that are relevant to energy-oriented simulation studies. Köberlein et al. (2022) 
present several case studies related to the simulation of production systems with the objective of energy 
flexibility, referring to the capability to quickly adapt to fluctuations in energy availability. Barth et al. 
(2023) establish a taxonomy for energy-centric simulation modeling, pinpointing dimensions and 

characteristics of such models. Recent concrete implementations include, for example, a machine control 
mechanism for a two-stage production line with parallel machines (Loffredo et al. 2024). The authors model 
the line as a Markov decision process and solve it using a linear programming formulation. For longer lines, 
they propose a tailored approximation method whose performance is evaluated using discrete-event 
simulation. A similar optimal control problem is described by Frigerio et al. (2024), who analyze the 
performance of buffer-based threshold policies to control multiple machines in a serial production line. 

Their numerical experiments rely on discrete-event simulation and investigate several aspects like the trade-
off between policy complexity and obtainable energy savings. 

Energy storage facilities add a further layer of complexity to the problem settings described above. 
They allow for storing certain amounts of energy during periods with low electricity cost or high supply 
provided by photovoltaic systems, for example. In the context of deterministic production planning and 
scheduling, Hilbert et al. (2023) study a combined lot-sizing and scheduling problem in a parallel machine 

environment. They propose a mixed-integer non-linear programming formulation with two conflicting 
energy-related criteria and generate Pareto-front representations using a convex combination of the two 
criteria. Kim et al. (2022) investigate a single machine scheduling problem with energy-generation and 
storage systems. The objective function is purely cost-based, involving production and energy cost-related 
components. The authors devise a hybrid genetic algorithm for the problem and measure its performance 
given solutions obtained from a mixed-integer programming formulation. Storage systems have also been 

incorporated in simulation modeling and analysis of manufacturing systems as latest work in this area 
shows. Breitschopf et al. (2023) devise a simulation-based optimization approach for a manufacturing 
scenario under consideration of local energy production and a hydrogen-based energy storage system. They 
embed a system dynamics simulation model into a genetic algorithm for determining certain production-
related control parameters. A single-machine work center coupled with a battery storage system and a 
photovoltaic plant is the basis for the mathematical modeling approach proposed by Materi et al. (2021). 

Simulation experiments show that the energy storage system allows for reducing machine speed 
fluctuations that would normally arise when trying to reach maximum cost efficiency based on time-of-use 
energy prices. 

3 THRESHOLD-BASED LOGIC FOR MACHINE AND STORAGE OPERATION 

As stated in the introduction, the results from Bokor et al. (2024) showed a significant cost reduction 
potential synchronizing machine production with corresponding energy prices. However, to maintain 

satisfactory production-logistics performance, machine operation decisions (i.e., processing or idle) must 
also account for current workload levels. Consequently, machines may continue operating even during 
unfavorable energy price periods if workload demands require it. To address this issue, we extend the 
production system by integrating an energy storage system. This extension provides operational support 
during periods characterized by unfavorable energy prices, enabling a reduction of overall energy expenses 
from the production system’s perspective. Additionally, integrating energy storage helps mitigate peak load 

issues within the broader energy grid, for instance, by storing surplus photovoltaic energy during sunny 
periods. While this study focuses on production system implications, future research could explore benefits 
extended to the wider energy grid. 
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3.1 Dispatching Scenario and Decision Framework 

The investigated scenario comprises a multi-item, multi-stage production system (detailed in Section 4), 
where each machine requires a distinct decision regarding its operating state (operating or idle), supported 

by a shared energy storage system. Energy prices vary hourly. For simplicity, energy storage levels are 
updated in synchronization with hourly energy price changes and no machine warm-up time is considered. 
Decisions regarding the machine operation state (operating or idle) and the energy storage state (charging, 
discharging, or standby) rely on three primary inputs: 1) Current energy price pc (globally); 2) Current 
energy storage level (globally); 3) Machine-specific workload wj (sum of expected processing and setup 
times of queued orders). Execution on the shopfloor is primarily driven by an order list that specifies all 

production orders, including item type, quantity, and planned start and end dates. In this study, the order 
list is generated using the production planning and control system Material Requirements Planning (MRP), 
introduced by Orlicky (1975). However, the proposed dispatching rule is generic and compatible with any 
production planning and control system capable of generating order lists – such as ConWIP or Drum-
Buffer-Rope (Bokor et al. 2019). 
The decision-making framework is implemented through an energy-aware dispatching rule, consisting of: 

• Machine Operation State Decision (per machine): 
After completing an order, decide whether to continue with the next order or become idle. For idle 
machines, reassess hourly whether restarting is beneficial based on updated price and workload. 

• Energy Storage State Decision (globally): 
Upon each energy price change, decide whether to charge storage (if not fully charged). Evaluate 
whether to discharge energy to support production if prices are unfavorable and storage energy is 

available. 

3.2 Threshold-Based Decision Logic 

The developed energy-aware dispatching rule incorporates four thresholds to guide operational decisions. 
Whereby, two thresholds are related to the energy price and two to the workload. Generally, machines halt 
operations when no production orders are available. Once a production order is started, it must be completed 
without interruption, regardless of energy price changes. Idle machines reassess their state every hour based 

on updated inputs. Figure 1 presents a state chart that visualizes the operational logic of the energy-aware 
dispatching rule, detailing the relationships between energy price and workload scenarios related to 
machine and energy storage states, as well as the selected energy sources.  

As shown in Figure 1, the decision-making process first evaluates the current energy price pc against 
two energy price-related thresholds. Based on the resulting price scenario, the machine-specific workload 
wj is then assessed against the machine-specific workload thresholds. The resulting operational logic is 

structured as follows, with Table 1 providing an overview of the notation used: 
• Low Energy Price Scenario (pc < Pl): 

Energy storage charges until full, and all machines continue operating without restriction as long 
as production orders are available. This scenario aims to maximize the use of low-cost energy. 

• Medium Energy Price Scenario (Pl ≤ pc < Ps): 
Machine j operation depends on its workload wj and energy availability in the storage: 

o If wj < Wc, the machine remains idle. 
o If wj ≥ Wc  

and energy is available in storage, the machine starts a new production order. In the current 
logic, it is sufficient that some energy is available in the storage to allow the machine to 
produce. If required energy exceeds available energy storage, the machine switches to grid 
energy for finishing the current order. Future research could enhance the energy-aware 

dispatching rule by introducing an additional threshold that accounts for the minimum 
available energy to start operation. 
otherwise, the machine does not start a new order or it remains idle. 
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o If wj ≥ Wm, the machine operates regardless, prioritizing storage when available and 
switching to grid energy if necessary. 

• High Energy Price Scenario pc ≥ Ps: 

Machine j operation again depends on its workload wj: 
o If wj < Wm, the machine remains idle. 

If wj ≥ Wm, the machine continues operating, prioritizing stored energy and using grid energy if none is 
available. Note that production orders scheduled for the current hour are completed using grid energy once 
the energy storage is depleted. 

Figure 1: Threshold-driven state chart for machine and energy storage decisions. 

Table 1: Notation. 

Notation Description 

𝑝𝑐 Current energy price (hourly changing variable). 

𝑤𝑗  Current workload of machine j (machine-specific state, updated upon order arrival/departure). 

𝑃𝑙 / 𝑃𝑙
𝑓
 Storage loading price threshold / factor (defines price below which storage charging occurs). 

𝑃𝑠 / 𝑃𝑠
𝑓
 Machine stopping price threshold / factor (defines price above which operational restrictions apply). 

𝑊𝑐 / 𝑊𝑐
𝑓
 Storage-based workload threshold / factor (min. workload required to operate using stored energy). 

𝑊𝑚 / 𝑊𝑚
𝑓
 Grid-based workload threshold / factor (min. workload required to continue operating even at high energy prices). 

1569



Seiringer, Bokor, Altendorfer, and Braune 
 

 

4 SIMULATION MODEL 

To investigate the energy-aware dispatching rule, we build on the stochastic multi-item, multi-stage 
simulation model by Bokor et al. (2024). The framework is extended by introducing additional uncertainty 

sources – namely, stochastic energy prices and machine-specific energy requirements. Our dispatching 
algorithm is integrated into this enhanced simulation model, implemented using an agent-based discrete-
event approach in AnyLogic 8.8.6. We first recap the production system structure before outlining the 
integration of energy-related aspects. 

4.1 Production System and Order Generation 

The investigated production system is a stochastic multi-item, multi-stage job shop with 8 items {101–108} 

and 4 machines {M1.1–M1.4}. Its structure, including the Bill of Materials (BoM) and routing logic, is 
shown in Figure 2. 

 

Figure 2: Investigated production system structure including bill of material. 

The two-level BoM includes finished items (level 0) and a shared, always-available component (202) 
at level 1, which requires no planning. Each item follows a fixed machine routing (Figure 3), e.g., item 101 

runs through M1.1 (A), M1.3 (B), M1.2 (C), and M1.4 (D). All operations involve processing and setup; 
setups are required even for identical items and are fixed at 10% of a machine’s daily capacity (1,440 min). 
Processing and setup times follow lognormal distributions (CV 0.2). The system is dimensioned for 85% 
planned utilization (1,024 min/day per machine) to avoid bottlenecks. Orders include one item type, with 
interarrival times lognormally distributed (mean 8 periods, CV 0.2). Order quantities have item-specific 
lognormal means (CV 0.5). Customer-required lead times consist of 10 fixed periods plus a variable 

lognormal part (mean 5 periods, CV 0.5). Production orders are generated via MRP using four steps: 
netting, lot-sizing, backward scheduling, and BoM explosion (Hopp and Spearman 2011). A Fixed Order 
Period (FOP 1) policy is applied, with MRP running each period. Orders are released to the shop floor at 
their planned start time if materials are available. The release sequence is based on the Earliest Due Date 
(EDD), and machines process jobs in First-In-First-Out (FIFO) order. 
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4.2 Energy-Aware Dispatching and Energy Price Modeling 

At dispatching, the developed energy-aware rule jointly determines both the machine’s operation state 
(operating or idle) and the energy storage state (charging, discharging, or standby), based on the current 

energy price pc and the current machine workload wj relative to predefined thresholds (see Section 3). 
Storage charging from empty to full always requires two hours, regardless of storage capacity. 

Unlike Bokor et al. (2024), where deterministic energy prices were assumed, this work introduces 
stochastic energy prices. The energy price pc is modeled as a lognormally distributed random variable, 
capturing both long-term (monthly) and short-term (hourly) variations. Each month uses 24 different 
expected hourly prices (one for each hour of the day), based on real Austrian market data from 2023 

(available via the SMARD platform). Figure 3 shows the daily and monthly expected values applied. The 
resulting 24-hour expected price profile remains identical across all days within a given month. At the time 
of dispatching, the expected hourly price serves as the mean of a lognormal distribution with a CV of 0.2, 
from which the realized hourly price is sampled, introducing realistic short-term uncertainty. The monthly 
average energy price is used to calculate two energy price-related thresholds (i.e., storage loading price 
threshold Pl and machine stopping price threshold Ps) by multiplying the monthly average with predefined 

factors (i.e., 𝑃𝑙
𝑓  and 𝑃𝑠

𝑓 ). These factors are varied in the numerical study to evaluate their impact on 
dispatching behavior and system performance. 

 

Figure 3: Energy Price Structure – (a) Short-Term (in June), (b) Long-Term. 

In addition to energy prices, dispatching decisions also consider machine-specific workload thresholds. 
Each machine’s current workload wj is compared to the machine-specific workload thresholds (i.e., storage-
based workload threshold Wc and grid-based workload threshold Wm) calculated by multiplying the 
machine’s daily capacity (1,440 min) by predefined workload factors (i.e., 𝑊𝑐

𝑓 and 𝑊𝑚
𝑓
). These thresholds 

are likewise varied in the numerical study to analyze their influence on dispatching behavior and 

performance. Energy costs are calculated hourly by multiplying the realized energy price by each machine’s 
occupation time (including setup and processing) and its specific energy requirement. In contrast to Bokor 
et al. (2024), machine-specific energy requirements are explicitly modeled: M1.1 requires 2.5 kW, M1.2 
and M1.3 each require 5.0 kW, and M1.4 requires 7.5 kW. This machine-specific energy efficiency is 
visualized in Figure 2 by colored borders around the machines (red = high, orange = medium, green = low 
energy demand). Thus, for instance, if M1.1 operates at 50% utilization within one hour and the realized 

energy price is 120 Cost Unit (CU)/MWh, the corresponding energy cost is calculated as 0.12 CU × 0.5 
(occupation time) × 2.5 kW (energy efficiency) = 1.25 kWh, resulting in 0.15 CU for that hour. 
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5 NUMERICAL STUDY 

To evaluate the performance and investigate the behavior of the developed energy-aware dispatching rule, 
we conduct a comprehensive numerical study. A full factorial simulation experiment is performed, 

examining the influence of one environmental parameter (energy storage capacity) and multiple planning 
and dispatching rule parameters. Table 2 summarizes the tested parameters and their respective value 
ranges, determined based on preliminary simulation runs. 

Table 2: Investigated parameters and value ranges for full factorial design. 

 
For the environmental setting, the energy storage capacity is varied across three levels: {40, 80, 160} 

kWh. These capacities are designed to support the simultaneous operation of all four machines (shown in 
Figure 2) solely through stored energy. Given a total machine energy demand of 20 kWh per hour, the 
capacities correspond to maximum continuous operating durations of 2, 4, and 8 hours, respectively. For 
production planning, we configure the MRP system with a planned lead time (measured in days) and apply 
a Fixed Order Period lot-sizing policy. Although MRP parameters are typically item-specific, identical 
settings are applied across all items to avoid combinatorial complexity. We focus solely on the planned lead 

time, as Bokor et al. (2024) demonstrated its significant impact on energy consumption and dispatching 
behaviour. Following their recommendations – minimal lot sizes and no safety stock – we fix the lot size 
at FOP 1 and neglect safety stock at planning. For the dispatching rule configuration, we test ten distinct 
values for each of the four threshold-related factors (i.e., 𝑃𝑙

𝑓, 𝑃𝑠
𝑓
, 𝑊𝑐

𝑓 and 𝑊𝑚
𝑓
). The selected parameter ranges 

align with those explored in Bokor et al. (2024), although their dispatching rule required only two factors. 
As shown in Table 1, the full factorial design results in 180,000 unique parameter combinations. 

However, due to the operational logic of the energy-aware dispatching rule, only those satisfying the logical 
constraints Ps ≥ Pl ∧ Wm ≥ Wc are evaluated, resulting in 54,450 valid configurations. Given the stochastic 
nature of the production system – through demand, processing times, and setup times (see Section 4.1) – 
each valid configuration is replicated 5 times for statistical robustness, resulting in 272,250 individual 
simulation runs. In addition, a baseline scenario without energy storage is simulated, based on the 
dispatching rule proposed by Bokor et al. (2024), which considers only two factors – the energy factor and 

capacity factor – using identical parameter ranges and step sizes. 
Each simulation replication spans 415 simulated days, including a 50-day warm-up period, resulting in 

365 effective simulation days – equivalent to one year – for which performance metrics are collected. To 
ensure computational efficiency, simulations are executed in parallel across 22 computers. Simulating all 
parameters for a single storage capacity took approximately 24 hours. The simulations were run in parallel 
on 22 computers, each equipped with an Intel Core i5-10500 (6 cores, 3.1 GHz) and 32 GB of RAM. 
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6 NUMERICAL RESULTS 

To evaluate the energy-aware dispatching rule, overall costs are considered, combining production-logistics 
costs – WIP, FGI, and tardiness – with energy costs. In this setting, raw material costs are assumed to be 

70 CU per component, with a 100% value-added markup applied, resulting in a manufacturing cost of 140 
CU per finished item. With an annual carrying charge rate of 7%, this leads to holding costs of 4.90 CU per 
component in WIP and 9.80 CU per finished item in FGI, both calculated on an annual basis. Tardiness is 
penalized significantly more than inventory. The tardiness cost is derived from a target service level of 
95%, calculated as service level = 1 - (FGI costs) / (FGI costs + tardiness costs), following Axsäter (2015) 
– a cost ratio of 1:19 between FGI and tardiness is obtained. Production orders late at the simulation end 

are counted as tardy. Energy costs are based on machine-specific energy efficiency and the energy cost 
modeling introduced in Section 4.2. 

6.1 Impact of Storage Loading Price Factor 

To discuss the effect of the storage loading price factor 𝑃𝑙
𝑓 (i.e., used to compute the threshold below which 

energy storage is charged, and production is always allowed), Figure 4 shows the best overall costs reached 
with the respective factor, applying the best-found parameter combination of all other decision parameters. 

Results are shown for the highest energy storage capacity (160 kWh). In addition to the costs, also the 
storage usage (measured in kWh of charged energy) is reported. 

Figure 4: Impact of storage loading price factor on costs and storage utilization. 

As illustrated in Figure 4, overall costs exhibit a convex relationship with respect to 𝑃𝑙
𝑓. If 𝑃𝑙

𝑓 is too low, 

storage is rarely used, leading to high energy costs due to frequent direct production. Similarly, a very high 
threshold also results in high energy costs, but for a different reason, as production from the grid is allowed 
too often, and storage remains underutilized. The storage charge curve (purple line) highlights this behavior. 
At low thresholds, the energy price drops below the threshold only in few time periods, so storage is charged 
infrequently. As a result, most production relies on high-cost grid energy. In contrast, the optimal case 
(𝑃𝑙

𝑓=0.9) leads to extensive use of the storage as approximately 49.25% of the total energy are attributed to 

the storage, while the remaining 50.75% result from direct grid consumption, indicating substantial 
utilization of the storage system. This indicates that production is predominantly powered by storage, which 
is refilled whenever prices are sufficiently low - validating the intended behavior of the dispatching rule. 
For high 𝑃𝑙

𝑓, storage charge is again low. Although the storage is typically full in this case, the decision rule 
still allows grid-based production, making the storage redundant and underused. Future refinements of the 
rule could consider separating the logic for allowing grid-based production from the decision to charge the 

storage. 
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6.2 Trade-Off between Production-Logistics Costs and Energy Costs. 

To better understand the interdependency between energy costs and production-logistics costs, Figure 5 
shows the Pareto front obtained from the numerical experiment reported in Section 4.2 again only for the 

highest energy storage capacity (160 kWh). The red points represent non-dominated solutions 
(configurations) within the predefined parameter ranges (see Table 2). They allow a decision maker to 
choose from optimized configurations depending on whether the emphasis is put on logistics cost or on 
energy costs. Configurations with production-logistics costs exceeding 20,000 CU were considered 
infeasible and have therefore been excluded from the presentation. The overall cost-optimal configuration 
(marked in green) is achieved with a low storage-based workload factor 𝑊𝑐

𝑓=0.25 and a low grid-based 

workload factor 𝑊𝑚
𝑓=0.25. In contrast, the configuration yielding the lowest production logistics costs 

(marked in yellow) results in energy costs 11.47% higher. In this case, to 𝑃𝑠
𝑓 is at its maximum value, 

implying that machines are effectively always allowed to produce, regardless of energy price. As the other 
extreme, the configuration with the lowest energy costs is obtained for 𝑊𝑚

𝑓=0.75. This setting restricts 
machine operation during high energy price periods, reducing energy consumption by 15.73%, but leading 
to high penalty costs incurred through excessive delays. 

Figure 5: Pareto front of energy costs vs. production-logistics costs (160 kWh storage). 

6.3 Parametrization and Performance Analysis Across Different Storage Capacities 

Managers must assess how storage capacity affects cost savings, as summarized in Table 3. The baseline 
scenario No storage – reflecting only the machine stopping decision, similar to Bokor et al. (2024) – results 
in total costs of 32,621 CU. Introducing a 40 kWh storage system reduces energy costs by 4.6%, 

representing a respective statistically significant improvement (α = 0.01, **). Increasing the capacity to 
80 kWh and 160 kWh further lowers energy costs by 7.0% and 14.4%, respectively, also significant at 
α = 0.01 (**), compared to the baseline energy costs. Note that the best storage settings were replicated 10 
times to test significance. However, looking at the overall costs, doubling or even quadrupling storage 
capacity yields only limited additional overall cost savings. Primarily, it can be observed that total energy 
costs decrease with increasing storage capacity, as a higher storage capacity enables more kWh to be 

charged per cycle at lower energy prices. On the other hand, production-logistics costs remain at similar 
levels for low to medium storage capacities and increase for higher storage capacity. An additional insight 
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is that the optimal decision parameters appear largely independent of the storage capacity. Storage operating 
costs and ROI considerations are excluded here but might be the subject of future research to support an 
even more refined decision-making. 

Table 3: Performance analysis across storage capacities. 

7 CONCLUSION 

In this paper a threshold-based energy aware machine control approach is described and its effectiveness 

for production systems equipped with an energy storage facility is demonstrated. In essence, we proposed 
a combined, parameterizable decision rule for charging the energy storage, starting/stopping machines and 
satisfying energy requirements for production either from the storage or the grid and we evaluated it in a 
numerical simulation study. The results show that using energy storage in combination with the developed 
decision rule exhibits a significant cost reduction potential. Besides that, the workload threshold component 
of the rule can successfully keep the production logistics costs (inventory and tardiness) at a stable level in 

the optimal setting for all tested scenarios (no storage, 40 kWh, 80 kWh, and 160 kWh storage). Although 
storage capacity increases exponentially, the resulting cost savings show diminishing marginal returns, each 
additional unit of capacity yields progressively smaller benefits. However, the developed model provides 
insights into how effective the energy storage is from an overall point of view. The developed decision rule 
implements a straightforward logic for handling the trade-off between machine start/stop decisions and the 
energy storage charging/unloading management. The results obtained give hints to further enhance our 

decision rule. Future research might also address start-up periods of machines, personnel decisions related 
to operating machines and different decision parameters with respect to machine and month. 
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