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ABSTRACT

Rising energy price volatility and the shift toward renewables are driving the need for energy-aware
production planning. This paper investigates the integration of energy storage systems into dynamic
dispatching to balance production-logistics and energy costs. Building on prior work that introduced a
workload- and price-based dispatching rule, we extend the model to include energy storage loading and
unloading decisions. The rule prioritizes storage refill at low prices and lets machines resort to stored energy
when grid prices rise and the workload is high. A simulation-based evaluation examines scenarios with
different storage capacities whereby decision rule parameters are optimized. Computational results
demonstrate that a reduction of operational costs is possible without deteriorating production logistics
performance. By decoupling energy sourcing from real-time prices, manufacturers achieve both resilience
and cost savings. This research contributes to sustainable manufacturing by offering a practical strategy for
integrating energy storage into production planning under volatile energy conditions.

1 INTRODUCTION

The rising volatility of energy prices, coupled with increasing sustainability pressures, has pushed
manufacturing companies to reconsider their energy consumption strategies. Traditional production
planning approaches have primarily focused on cost efficiency, timely delivery, and resource utilization but
often neglect the impact of fluctuating and uncertain energy prices. With the global energy crisis that peaked
between 2022 and 2023, industries have faced significant price swings, making energy cost optimization a
crucial factor in operational decision-making. Moreover, the growing shift toward renewable energy
sources introduces further complexity, as solar and wind power generation is inherently volatile and
reinforces price fluctuations. However, the recent decline in energy storage costs has made energy storage
systems more attractive, offering manufacturers the opportunity to smooth their electricity demand by
storing excess energy during low-cost periods and resorting to it later when prices are high. Those
developments underpin the urgent need for dynamic, energy-aware production planning concepts that can
adapt to fluctuations in both energy prices and availability, and effectively leverage energy storage systems.

To tackle those challenges, energy-aware decision-making in production systems has emerged as an
important research area. This also applies to short-term, operational planning decisions, typically
encountered at the level of detailed scheduling of jobs on the machines of the shop floor. A large body of
academic research is devoted to job shop and flow shop dispatching incorporating time-of-use (ToU), real-
time pricing (RTP) and power purchase agreement (PPA) considerations, as discussed in a recent article by
Dunke and Nickel (2025). This work also confirms that energy storage systems have not yet received that
much attention in this particular context. Clearly, the storage aspect makes the optimization problem more
complex, raising issues like the following:

o When should energy from storage be used instead of consuming from the grid?

o When should machines be stopped based on energy price, energy storage status, and workload?
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o What is the overall cost advantage of an energy storage and how is it related to the size of the

storage?

e How does an energy storage impact the balance between production-logistics costs and energy

expenses?
To address these questions for production dispatching, it is necessary to simultaneously take into account
dynamic electricity pricing (RTP, ToU) and the availability of energy storage facilities.

Bokor et al. (2024) introduced an energy price and workload-related dispatching rule that dynamically
adjusts machine operational states based on electricity prices and workload levels. This rule effectively
optimizes machine utilization by turning machines on or off in response to short-term energy price
variations. The approach was evaluated using a stochastic multi-item multi-stage job shop simulation
model, leading to significant cost savings through improved production scheduling.

The underlying simulation model now serves as the basis for an extension towards the integration of an
energy storage facility, allowing not only for greater flexibility in energy sourcing but also for increased
cost efficiency, because stored energy might be used during periods of high electricity prices. Therefore,
the decision logic from Bokor et al. (2024) is significantly extended to include energy price, energy storage
status, and machine specific workload. In detail, the developed approach decides for: running machines
with grid energy and refilling the energy storage if energy prices are low; running machines from energy
storage if prices are medium and workload is high; or stopping machines if energy prices are high and
workload is medium. For machines with high workload, processing is always allowed.

Unlike previous approaches, our model does not account for storage acquisition costs, as the primary focus
is on operational decision-making regarding stored energy utilization. This allows us to isolate the true cost
savings potential of energy storage integration without the influence of capital expenditures. Additionally,
the effects of different energy storage capacities are evaluated. This work advances the understanding of
how energy storage can be leveraged to optimize energy costs and improve operational efficiency in
manufacturing processes. Additionally, the findings support the development of dynamic production
planning strategies that can adapt to fluctuating energy prices and the increasing reliance on renewable
energy sources. By evaluating the role of energy storage in balancing production-logistics costs, this
research aims to guide industries toward more sustainable and cost-effective manufacturing practices.

The paper is structured as follows: After introducing the related literature in section 2, the new decision
rule is described in detail in section 3. The simulation model setup as well as the studied production system
and the energy price modelling are introduced in section 4. The computational study is the subject of section
5, followed by a summary of insights in the concluding section 6.

2 LITERATURE REVIEW

Increasing the energy efficiency of manufacturing systems can be achieved in various ways. Duflou et al.
(2012) discuss three primary strategies: 1) the optimization of machine tool design, 2) process/machine tool
selection, and 3) enhancement of process control. The former two measures are technology related, while
the latter can be impacted by operational decision making. Hence process improvements shall be the focus
of the paper at hand and thus also the discussion of related work.

Energy considerations have drastically grown in importance for operational planning and scheduling
over the previous years. In (deterministic) scheduling, flexible job shops received considerable attention in
recent academic research. Dunke and Nickel (2025) present a bi-objective approach to an energy-aware job
shop scheduling problem, trying to find a balance between incurred energy cost and operational efficiency.
Based on a mixed-integer programming formulation, they devise an e-constraint technique for determining
both an approximate and an exact version (for very small instances) of the Pareto frontier. The same trade-
off is also addressed by other methods from operations research, like constraint programming (CP) or meta-
heuristics. Building upon the work of Park and Ham (2022), Terbrack and Claus (2025) present a
lexicographic approach with makespan minimization as the primary objective and various energy-related
aspects (cost, peak demand, emissions) as the secondary ones. Meta-heuristics taking into account the multi-
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objective nature of energy-related scheduling include, for example, the non-dominated sorting genetic
algorithm (NSGA-II) proposed by Burmeister et al. (2024).

Energy awareness has also gained relevance in the field of stochastic simulation of manufacturing
systems. Wenzel et al. (2018) focus on the simulation of material flows and energy flows in production
systems and their integration. They identify requirements, organizational questions, key goals and
performance indicators that are relevant to energy-oriented simulation studies. Koberlein et al. (2022)
present several case studies related to the simulation of production systems with the objective of energy
flexibility, referring to the capability to quickly adapt to fluctuations in energy availability. Barth et al.
(2023) establish a taxonomy for energy-centric simulation modeling, pinpointing dimensions and
characteristics of such models. Recent concrete implementations include, for example, a machine control
mechanism for a two-stage production line with parallel machines (Loffredo et al. 2024). The authors model
the line as a Markov decision process and solve it using a linear programming formulation. For longer lines,
they propose a tailored approximation method whose performance is evaluated using discrete-event
simulation. A similar optimal control problem is described by Frigerio et al. (2024), who analyze the
performance of buffer-based threshold policies to control multiple machines in a serial production line.
Their numerical experiments rely on discrete-event simulation and investigate several aspects like the trade-
off between policy complexity and obtainable energy savings.

Energy storage facilities add a further layer of complexity to the problem settings described above.
They allow for storing certain amounts of energy during periods with low electricity cost or high supply
provided by photovoltaic systems, for example. In the context of deterministic production planning and
scheduling, Hilbert et al. (2023) study a combined lot-sizing and scheduling problem in a parallel machine
environment. They propose a mixed-integer non-linear programming formulation with two conflicting
energy-related criteria and generate Pareto-front representations using a convex combination of the two
criteria. Kim et al. (2022) investigate a single machine scheduling problem with energy-generation and
storage systems. The objective function is purely cost-based, involving production and energy cost-related
components. The authors devise a hybrid genetic algorithm for the problem and measure its performance
given solutions obtained from a mixed-integer programming formulation. Storage systems have also been
incorporated in simulation modeling and analysis of manufacturing systems as latest work in this area
shows. Breitschopf et al. (2023) devise a simulation-based optimization approach for a manufacturing
scenario under consideration of local energy production and a hydrogen-based energy storage system. They
embed a system dynamics simulation model into a genetic algorithm for determining certain production-
related control parameters. A single-machine work center coupled with a battery storage system and a
photovoltaic plant is the basis for the mathematical modeling approach proposed by Materi et al. (2021).
Simulation experiments show that the energy storage system allows for reducing machine speed
fluctuations that would normally arise when trying to reach maximum cost efficiency based on time-of-use
energy prices.

3 THRESHOLD-BASED LOGIC FOR MACHINE AND STORAGE OPERATION

As stated in the introduction, the results from Bokor et al. (2024) showed a significant cost reduction
potential synchronizing machine production with corresponding energy prices. However, to maintain
satisfactory production-logistics performance, machine operation decisions (i.e., processing or idle) must
also account for current workload levels. Consequently, machines may continue operating even during
unfavorable energy price periods if workload demands require it. To address this issue, we extend the
production system by integrating an energy storage system. This extension provides operational support
during periods characterized by unfavorable energy prices, enabling a reduction of overall energy expenses
from the production system’s perspective. Additionally, integrating energy storage helps mitigate peak load
issues within the broader energy grid, for instance, by storing surplus photovoltaic energy during sunny
periods. While this study focuses on production system implications, future research could explore benefits
extended to the wider energy grid.
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3.1 Dispatching Scenario and Decision Framework

The investigated scenario comprises a multi-item, multi-stage production system (detailed in Section 4),
where each machine requires a distinct decision regarding its operating state (operating or idle), supported
by a shared energy storage system. Energy prices vary hourly. For simplicity, energy storage levels are
updated in synchronization with hourly energy price changes and no machine warm-up time is considered.
Decisions regarding the machine operation state (operating or idle) and the energy storage state (charging,
discharging, or standby) rely on three primary inputs: 1) Current energy price p. (globally); 2) Current
energy storage level (globally); 3) Machine-specific workload w; (sum of expected processing and setup
times of queued orders). Execution on the shopfloor is primarily driven by an order list that specifies all
production orders, including item type, quantity, and planned start and end dates. In this study, the order
list is generated using the production planning and control system Material Requirements Planning (MRP),
introduced by Orlicky (1975). However, the proposed dispatching rule is generic and compatible with any
production planning and control system capable of generating order lists — such as ConWIP or Drum-
Buffer-Rope (Bokor et al. 2019).
The decision-making framework is implemented through an energy-aware dispatching rule, consisting of:
e Machine Operation State Decision (per machine):
After completing an order, decide whether to continue with the next order or become idle. For idle
machines, reassess hourly whether restarting is beneficial based on updated price and workload.
o Energy Storage State Decision (globally):

Upon each energy price change, decide whether to charge storage (if not fully charged). Evaluate

whether to discharge energy to support production if prices are unfavorable and storage energy is

available.

3.2 Threshold-Based Decision Logic

The developed energy-aware dispatching rule incorporates four thresholds to guide operational decisions.
Whereby, two thresholds are related to the energy price and two to the workload. Generally, machines halt
operations when no production orders are available. Once a production order is started, it must be completed
without interruption, regardless of energy price changes. Idle machines reassess their state every hour based
on updated inputs. Figure 1 presents a state chart that visualizes the operational logic of the energy-aware
dispatching rule, detailing the relationships between energy price and workload scenarios related to
machine and energy storage states, as well as the selected energy sources.

As shown in Figure 1, the decision-making process first evaluates the current energy price p. against
two energy price-related thresholds. Based on the resulting price scenario, the machine-specific workload
wj is then assessed against the machine-specific workload thresholds. The resulting operational logic is
structured as follows, with Table 1 providing an overview of the notation used:

e Low Energy Price Scenario (p. < P)):

Energy storage charges until full, and all machines continue operating without restriction as long
as production orders are available. This scenario aims to maximize the use of low-cost energy.

e Medium Energy Price Scenario (P; < p. < Py):

Machine j operation depends on its workload w; and energy availability in the storage:

o Ifw; < W, the machine remains idle.

o Ifw,>Ww.
and energy is available in storage, the machine starts a new production order. In the current
logic, it is sufficient that some energy is available in the storage to allow the machine to
produce. If required energy exceeds available energy storage, the machine switches to grid
energy for finishing the current order. Future research could enhance the energy-aware
dispatching rule by introducing an additional threshold that accounts for the minimum
available energy to start operation.
otherwise, the machine does not start a new order or it remains idle.
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o If w; = W,, the machine operates regardless, prioritizing storage when available and
switching to grid energy if necessary.

e High Energy Price Scenario p. > P;:
Machine j operation again depends on its workload w;:

Ifwj > Wy,

o Ifw; < Wy, the machine remains idle.
the machine continues operating, prioritizing stored energy and using grid energy if none is

available. Note that production orders scheduled for the current hour are completed using grid energy once
the energy storage is depleted.
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Figure 1: Threshold-driven state chart for machine and energy storage decisions.

Table 1: Notation.

Description
Current energy price (hourly changing variable).
Current workload of machine j (machine-specific state, updated upon order arrival/departure).
Storage loading price threshold / factor (defines price below which storage charging occurs).
Machine stopping price threshold / factor (defines price above which operational restrictions apply).
Storage-based workload threshold / factor (min. workload required to operate using stored energy).

Grid-based workload threshold / factor (min. workload required to continue operating even at high energy prices).
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4 SIMULATION MODEL

To investigate the energy-aware dispatching rule, we build on the stochastic multi-item, multi-stage
simulation model by Bokor et al. (2024). The framework is extended by introducing additional uncertainty
sources — namely, stochastic energy prices and machine-specific energy requirements. Our dispatching
algorithm is integrated into this enhanced simulation model, implemented using an agent-based discrete-
event approach in AnyLogic 8.8.6. We first recap the production system structure before outlining the
integration of energy-related aspects.

4.1 Production System and Order Generation

The investigated production system is a stochastic multi-item, multi-stage job shop with 8 items {101-108}
and 4 machines {M1.1-M1.4}. Its structure, including the Bill of Materials (BoM) and routing logic, is
shown in Figure 2.

| Job Shop |
‘ 101 H 102 H 103 H 104 H 105 H 106 ” 107 H 108 ‘
A A A A A A A A
M1.1 A B B A B B
ST72 \PT114 PT10.8/ PT120/  PT231 PT9.3 PT6.18
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Figure 2: Investigated production system structure including bill of material.

The two-level BoM includes finished items (level 0) and a shared, always-available component (202)
at level 1, which requires no planning. Each item follows a fixed machine routing (Figure 3), e.g., item 101
runs through M1.1 (A), M1.3 (B), M1.2 (C), and M1.4 (D). All operations involve processing and setup;
setups are required even for identical items and are fixed at 10% of a machine’s daily capacity (1,440 min).
Processing and setup times follow lognormal distributions (CV 0.2). The system is dimensioned for 85%
planned utilization (1,024 min/day per machine) to avoid bottlenecks. Orders include one item type, with
interarrival times lognormally distributed (mean 8 periods, CV 0.2). Order quantities have item-specific
lognormal means (CV 0.5). Customer-required lead times consist of 10 fixed periods plus a variable
lognormal part (mean 5 periods, CV 0.5). Production orders are generated via MRP using four steps:
netting, lot-sizing, backward scheduling, and BoM explosion (Hopp and Spearman 2011). A Fixed Order
Period (FOP 1) policy is applied, with MRP running each period. Orders are released to the shop floor at
their planned start time if materials are available. The release sequence is based on the Earliest Due Date
(EDD), and machines process jobs in First-In-First-Out (FIFO) order.
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4.2  Energy-Aware Dispatching and Energy Price Modeling

At dispatching, the developed energy-aware rule jointly determines both the machine’s operation state
(operating or idle) and the energy storage state (charging, discharging, or standby), based on the current
energy price p. and the current machine workload w; relative to predefined thresholds (see Section 3).
Storage charging from empty to full always requires two hours, regardless of storage capacity.

Unlike Bokor et al. (2024), where deterministic energy prices were assumed, this work introduces
stochastic energy prices. The energy price p. is modeled as a lognormally distributed random variable,
capturing both long-term (monthly) and short-term (hourly) variations. Each month uses 24 different
expected hourly prices (one for each hour of the day), based on real Austrian market data from 2023
(available via the SMARD platform). Figure 3 shows the daily and monthly expected values applied. The
resulting 24-hour expected price profile remains identical across all days within a given month. At the time
of dispatching, the expected hourly price serves as the mean of a lognormal distribution with a CV of 0.2,
from which the realized hourly price is sampled, introducing realistic short-term uncertainty. The monthly
average energy price is used to calculate two energy price-related thresholds (i.e., storage loading price
threshold P, and machine stopping price threshold Py) by multiplying the monthly average with predefined
factors (i.e., P/ and P/). These factors are varied in the numerical study to evaluate their impact on
dispatching behavior and system performance.

® Expected Hourly Energy Price M Realized Hourly Energy Price @ Monthly Average Energy Price

a) b)
150 150

CU / MWh
o
.
—

CU/ MWh

100

50 50
] 5 10 15 20 1 2 3 4 5 6 7 8 9 10 11 12
Hour Month

Figure 3: Energy Price Structure — (a) Short-Term (in June), (b) Long-Term.

In addition to energy prices, dispatching decisions also consider machine-specific workload thresholds.
Each machine’s current workload w; is compared to the machine-specific workload thresholds (i.e., storage-
based workload threshold W. and grid-based workload threshold W,) calculated by multiplying the
machine’s daily capacity (1,440 min) by predefined workload factors (i.e., W/ and w;}). These thresholds
are likewise varied in the numerical study to analyze their influence on dispatching behavior and
performance. Energy costs are calculated hourly by multiplying the realized energy price by each machine’s
occupation time (including setup and processing) and its specific energy requirement. In contrast to Bokor
et al. (2024), machine-specific energy requirements are explicitly modeled: M1.1 requires 2.5 kW, M1.2
and M1.3 each require 5.0 kW, and M1.4 requires 7.5 kW. This machine-specific energy efficiency is
visualized in Figure 2 by colored borders around the machines (red = high, orange = medium, green = low
energy demand). Thus, for instance, if M1.1 operates at 50% utilization within one hour and the realized
energy price is 120 Cost Unit (CU)/MWh, the corresponding energy cost is calculated as 0.12 CU x 0.5
(occupation time) x 2.5 kW (energy efficiency) = 1.25 kWh, resulting in 0.15 CU for that hour.
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5 NUMERICAL STUDY

To evaluate the performance and investigate the behavior of the developed energy-aware dispatching rule,
we conduct a comprehensive numerical study. A full factorial simulation experiment is performed,
examining the influence of one environmental parameter (energy storage capacity) and multiple planning
and dispatching rule parameters. Table 2 summarizes the tested parameters and their respective value
ranges, determined based on preliminary simulation runs.

Table 2: Investigated parameters and value ranges for full factorial design.

Environmental Parameter Investigated Values # Values
Energy Storage Capacity [kWh] {40, 80,160} 3
Planning / Dispatching Rule Parameters Min Max Step Size # Values
Planned Lead Time [day] 3 8 1 6
Storage Loading Price Factor(P;f) 0.50 1.40 0.10 10
Machine Stopping Price Factor (Psf ) 0.50 1.40 0.10 10
Storage-Based Workload Factor(ch ) 0.25 2.50 0.25 10
Grid-Based Workload Factor (W) 0.25 2.50 0.25 10
Total Iterations 180,000
Valid Iterations (P; <P, AW, <W,) 54,450
Total Simulation Runs (5 Replication per Iteration) 272.250

For the environmental setting, the energy storage capacity is varied across three levels: {40, 80, 160}
kWh. These capacities are designed to support the simultaneous operation of all four machines (shown in
Figure 2) solely through stored energy. Given a total machine energy demand of 20 kWh per hour, the
capacities correspond to maximum continuous operating durations of 2, 4, and 8 hours, respectively. For
production planning, we configure the MRP system with a planned lead time (measured in days) and apply
a Fixed Order Period lot-sizing policy. Although MRP parameters are typically item-specific, identical
settings are applied across all items to avoid combinatorial complexity. We focus solely on the planned lead
time, as Bokor et al. (2024) demonstrated its significant impact on energy consumption and dispatching
behaviour. Following their recommendations — minimal lot sizes and no safety stock — we fix the lot size
at FOP 1 and neglect safety stock at planning. For the dispatching rule configuration, we test ten distinct
values for each of the four threshold-related factors (i.e., P/, P/, W/ and ;). The selected parameter ranges
align with those explored in Bokor et al. (2024), although their dispatching rule required only two factors.

As shown in Table 1, the full factorial design results in 180,000 unique parameter combinations.
However, due to the operational logic of the energy-aware dispatching rule, only those satisfying the logical
constraints P; > P; /\ W,,> W, are evaluated, resulting in 54,450 valid configurations. Given the stochastic
nature of the production system — through demand, processing times, and setup times (see Section 4.1) —
each valid configuration is replicated 5 times for statistical robustness, resulting in 272,250 individual
simulation runs. In addition, a baseline scenario without energy storage is simulated, based on the
dispatching rule proposed by Bokor et al. (2024), which considers only two factors — the energy factor and
capacity factor — using identical parameter ranges and step sizes.

Each simulation replication spans 415 simulated days, including a 50-day warm-up period, resulting in
365 effective simulation days — equivalent to one year — for which performance metrics are collected. To
ensure computational efficiency, simulations are executed in parallel across 22 computers. Simulating all
parameters for a single storage capacity took approximately 24 hours. The simulations were run in parallel
on 22 computers, each equipped with an Intel Core i5-10500 (6 cores, 3.1 GHz) and 32 GB of RAM.
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6 NUMERICAL RESULTS

To evaluate the energy-aware dispatching rule, overall costs are considered, combining production-logistics
costs — WIP, FGI, and tardiness — with energy costs. In this setting, raw material costs are assumed to be
70 CU per component, with a 100% value-added markup applied, resulting in a manufacturing cost of 140
CU per finished item. With an annual carrying charge rate of 7%, this leads to holding costs of 4.90 CU per
component in WIP and 9.80 CU per finished item in FGI, both calculated on an annual basis. Tardiness is
penalized significantly more than inventory. The tardiness cost is derived from a target service level of
95%, calculated as service level = I - (FGI costs) / (FGI costs + tardiness costs), following Axséter (2015)
— a cost ratio of 1:19 between FGI and tardiness is obtained. Production orders late at the simulation end
are counted as tardy. Energy costs are based on machine-specific energy efficiency and the energy cost
modeling introduced in Section 4.2.

6.1 Impact of Storage Loading Price Factor

To discuss the effect of the storage loading price factor ! (i.e., used to compute the threshold below which
energy storage is charged, and production is always allowed), Figure 4 shows the best overall costs reached
with the respective factor, applying the best-found parameter combination of all other decision parameters.
Results are shown for the highest energy storage capacity (160 kWh). In addition to the costs, also the
storage usage (measured in kWh of charged energy) is reported.

Energy Costs Storage @ Energy Costs Direct Production ®Production-Logistics Costs @ Storage Charge

40 3505 34,90 34,82 wwere 30
=) il 071 3137 31,92 3247 32,75 2.9
D ~—
o 30 00 =
3 =
z =
a” 40
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é ° 20 13
’ 0

0.9 1.0
Storage Loading Price Pactor

Figure 4: Impact of storage loading price factor on costs and storage utilization.

As illustrated in Figure 4, overall costs exhibit a convex relationship with respect to p/. If B/ is too low,
storage is rarely used, leading to high energy costs due to frequent direct production. Similarly, a very high
threshold also results in high energy costs, but for a different reason, as production from the grid is allowed
too often, and storage remains underutilized. The storage charge curve (purple line) highlights this behavior.
At low thresholds, the energy price drops below the threshold only in few time periods, so storage is charged
infrequently. As a result, most production relies on high-cost grid energy. In contrast, the optimal case
(P/=0.9) leads to extensive use of the storage as approximately 49.25% of the total energy are attributed to
the storage, while the remaining 50.75% result from direct grid consumption, indicating substantial
utilization of the storage system. This indicates that production is predominantly powered by storage, which
is refilled whenever prices are sufficiently low - validating the intended behavior of the dispatching rule.
For high P/, storage charge is again low. Although the storage is typically full in this case, the decision rule
still allows grid-based production, making the storage redundant and underused. Future refinements of the
rule could consider separating the logic for allowing grid-based production from the decision to charge the
storage.
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6.2 Trade-Off between Production-Logistics Costs and Energy Costs.

To better understand the interdependency between energy costs and production-logistics costs, Figure 5
shows the Pareto front obtained from the numerical experiment reported in Section 4.2 again only for the
highest energy storage capacity (160 kWh). The red points represent non-dominated solutions
(configurations) within the predefined parameter ranges (see Table 2). They allow a decision maker to
choose from optimized configurations depending on whether the emphasis is put on logistics cost or on
energy costs. Configurations with production-logistics costs exceeding 20,000 CU were considered
infeasible and have therefore been excluded from the presentation. The overall cost-optimal configuration
(marked in green) is achieved with a low storage-based workload factor w/=0.25 and a low grid-based
workload factor W =0.25. In contrast, the configuration yielding the lowest production logistics costs
(marked in yellow) results in energy costs 11.47% higher. In this case, to P/ is at its maximum value,
implying that machines are effectively always allowed to produce, regardless of energy price. As the other
extreme, the configuration with the lowest energy costs is obtained for w;/=0.75. This setting restricts
machine operation during high energy price periods, reducing energy consumption by 15.73%, but leading
to high penalty costs incurred through excessive delays.
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Figure 5: Pareto front of energy costs vs. production-logistics costs (160 kWh storage).

6.3 Parametrization and Performance Analysis Across Different Storage Capacities

Managers must assess how storage capacity affects cost savings, as summarized in Table 3. The baseline
scenario No storage — reflecting only the machine stopping decision, similar to Bokor et al. (2024) — results
in total costs of 32,621 CU. Introducing a 40 kWh storage system reduces energy costs by 4.6%,
representing a respective statistically significant improvement (a=0.01, **). Increasing the capacity to
80 kWh and 160 kWh further lowers energy costs by 7.0% and 14.4%, respectively, also significant at
a=0.01 (**), compared to the baseline energy costs. Note that the best storage settings were replicated 10
times to test significance. However, looking at the overall costs, doubling or even quadrupling storage
capacity yields only limited additional overall cost savings. Primarily, it can be observed that total energy
costs decrease with increasing storage capacity, as a higher storage capacity enables more kWh to be
charged per cycle at lower energy prices. On the other hand, production-logistics costs remain at similar
levels for low to medium storage capacities and increase for higher storage capacity. An additional insight
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is that the optimal decision parameters appear largely independent of the storage capacity. Storage operating
costs and ROI considerations are excluded here but might be the subject of future research to support an

even more refined decision-making.

Table 3: Performance analysis across storage capacities.

Storage Capacity No Storage 40 kWh 80 kWh 160 kWh
» |Planned Lead Time [day] 5 5 5 6
Tg % Storage Loading Price Factor(Plf) - 1.1 1.1 0.9
g % Machine Stopping Price Factor(PSf ) 1.4 1.1 1.1 0.9
@ E Storage-Based Workload Factor(ch ) - 0.25 0.25 0.25
Grid-Based Workload Factor(Wn‘:) 0.25 0.25 0.25 0.25
2 Energy Costs Storage 17,133 12,954 10,759 7,222
é Energy Costs Direct Production 0 3,387 5.175 7.439
— B |Total Energy Costs 17,133 16,341 15,934 14,661
E 1< Production-Logistics Costs 15.488 15,292 15.292 16.250
-§ Overall Costs 32,621 31,633 31,226 30,911
Energy Costs Reduction Potential - 4.6%** 7.0%%* 14.4%**

7 CONCLUSION

In this paper a threshold-based energy aware machine control approach is described and its effectiveness
for production systems equipped with an energy storage facility is demonstrated. In essence, we proposed
a combined, parameterizable decision rule for charging the energy storage, starting/stopping machines and
satisfying energy requirements for production either from the storage or the grid and we evaluated it in a
numerical simulation study. The results show that using energy storage in combination with the developed
decision rule exhibits a significant cost reduction potential. Besides that, the workload threshold component
of the rule can successfully keep the production logistics costs (inventory and tardiness) at a stable level in
the optimal setting for all tested scenarios (no storage, 40 kWh, 80 kWh, and 160 kWh storage). Although
storage capacity increases exponentially, the resulting cost savings show diminishing marginal returns, each
additional unit of capacity yields progressively smaller benefits. However, the developed model provides
insights into how effective the energy storage is from an overall point of view. The developed decision rule
implements a straightforward logic for handling the trade-off between machine start/stop decisions and the
energy storage charging/unloading management. The results obtained give hints to further enhance our
decision rule. Future research might also address start-up periods of machines, personnel decisions related
to operating machines and different decision parameters with respect to machine and month.
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