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ABSTRACT

Formalized models of prenatal care delivery have changed little since 1930, typically including 12-14
in-person visits. Recently released guidelines recommend tailoring prenatal care visit frequency based on
patient risk level, potentially integrating telemedicine to increase flexibility for patients. In this paper, we
design a discrete event simulation-based approach to study the impact of these new guidelines on healthcare
systems, focusing on three main metrics: appointment slot utilization, appointment delays due to lack of
capacity, and skipped appointments due to patient cancellations. We find that the tailored approach reduces
appointment slot utilization while supporting the same volume of patients as the conventional approach. We
also see a decrease in appointment delays and skipped appointments. Our findings suggest that adopting
a tailored prenatal care model can reduce provider burnout, allow clinics to accept more patients, and
enhance patients’ care experience.

1 INTRODUCTION

Global investment in prenatal services continues to escalate, with the U.S. alone allocating approximately
$111 billion annually to cover prenatal and childbirth-related care (Peahl and Howell 2021). Despite
this substantial expenditure, pregnancy outcomes in the U.S. persistently lag behind those of peer high-
income nations, indicating a disconnect between financial inputs and clinical effectiveness (Peahl et al.
2021). Alarmingly, these suboptimal outcomes are unequally distributed, as marginalized groups bear a
disproportionate burden of maternal morbidity and mortality (Hoyert and Minifio 2020). In 2021, according
to CDC data, the pregnancy-related mortality ratio for black patients was triple that for non-Hispanic white
patients (69.3 vs 24.3 per 100,000 pregnancies), both of which were much worse than those of the European
Union (6 per 100,000 pregnancies).

Historically, prenatal services in the U.S. have followed guidelines developed by the U.S. Children’s
Bureau dating back to the 1930s, which prescribe 12-14 in-person visits for all pregnancies (Peahl and
Howell 2021). Contemporary research, together with evidence from European countries, shows that in
medically or socially low-risk cases, reducing the number of visits does not lead to poorer health outcomes
for the childbearing individual or the newborn, and can lead to a better experience for both the patient,
the provider and the healthcare system (Carter et al. 2016). For patients, fewer visits may improve social
drivers of health (e.g. reduced need for childcare or transportation support, gaps in employment). This
may reduce the number of canceled or missed appointments. For providers, fewer visits may allow for
additional time to provide services such as anticipatory counseling or guidance and potentially higher job
satisfaction or reduced burnout. For healthcare systems, fewer visits may increase the capacity to see
pregnant individuals, improving access to maternity services, which is declining rapidly, particularly in
rural regions. Finally, the COVID-19 pandemic catalyzed a rapid expansion of telemedicine, demonstrating
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that virtual consultations and home monitoring (e.g., blood pressure measurement) can reliably substitute
conventional in-person care for most visits, while offering enhanced flexibility (Barrera et al. 2021).

Recognizing the need for modernization, the Michigan Plan for Appropriate Tailored Healthcare in
Pregnancy (MiPATH) was instituted in 2020 (Peahl et al. 2021; Peahl et al. 2022). This initiative advocates
for a patient-centered approach wherein the frequency and nature of prenatal visits are adapted according
to pregnancy risk level, encouraging the use of telemedicine as an alternative for most visits in the pathway,
with the exclusion of four “anchor” in-person visits. By replacing a rigid, universal structure with a model
that allows flexibility in both the number of visits and the way these visits are conducted (in-person or
telemedicine), together with reducing the overall number of visits for low-risk patients, MiPATH aims to
narrow systemic gaps in healthcare delivery and improve maternal outcomes (Peahl et al. 2021).

Implementing such a tailored system calls for analytical strategies that account for variations in patient
risk profiles, and capacity constraints. Simulation-based methodologies are powerful “what-if-analysis”
tools for comparing healthcare scenarios, recently applied as a valuable tool in the analysis of the patient
pathway (England et al. 2021; Demir et al. 2018). Such tools enable stakeholders to model how evolving
care pathways may influence clinic congestion, patient wait times, and the overall resource efficiency.

The current system creates several hurdles that especially affect marginalized individuals. The con-
ventional “one size fits all” approach with all in-person visits makes it harder for patients with a lack of
transportation, childcare, or paid time off to be able to come to every visit. Moreover, this approach forces
providers to spend a higher-than-necessary number of visits on low-risk patients, overcrowding the system
with unnecessary visits and reducing access to new patients. In this study, we develop a discrete event
simulation model, applying it within a Michigan Medicine context to elucidate how risk-adaptive prenatal
care protocols can refine healthcare delivery, optimize clinic operations, and potentially redress inequities
embedded in the current prenatal care system.

Our primary contributions are twofold. First, we address a relatively understudied area by modeling
prenatal care pathways, which have received limited attention in the literature. To the best of our knowledge,
ours is only the second study, after Ghrayeb et al. (2023), to quantify the operational impact of tailored
prenatal care pathways. Furthermore, we develop a more comprehensive simulation model compared to
Ghrayeb et al. (2023), relaxing several assumptions (e.g., patient cancellations), which are all listed in
Section 2. This model better captures practical nuances and provides more accurate estimates of the impact
of implementing new pathways. Second, we introduce a framework for simulating and modeling healthcare
data that mimics the current structure of healthcare databases. Our table-based model reflects real-world
systems like EPIC, using interconnected tables to store data efficiently. This modular approach enables
seamless scalability and straightforward customization, simplifying integration into diverse healthcare
environments and supporting future extensions as clinical requirements evolve.

The remainder of this paper is organized as follows. Section 2 provides a detailed description of
the problem, including modeling assumptions and performance metrics. Section 3 outlines our simulation
methodology and its settings, and Section 4 presents the numerical experiments. Finally, Section 5 concludes
the paper and discusses potential directions for future research.

2 PROBLEM DESCRIPTION

Throughout our analysis, our focus is on the clinic capacity, and for this reason, we make a series of
assumptions. When talking about pregnant patients, we focus only on those whose pregnancy goes past the
first trimester (i.e., 12 weeks). This is because before that gestational age, the pregnancy can sometimes
lead to an early miscarriage. We considered a single prenatal care clinic, as the current practice in our
partner health center involves assigning patients to a group of experts rather than a single provider, reducing
the importance of individual clinician availability for scheduling purposes. As soon as a patient initiates
care for their pregnancy, the booking clerk reserves some of the clinic capacity for the entire sequence of
visits for that pregnancy in the following periods (or weeks in our case), subject to capacity constraints and
how far along the patient is in their pregnancy. Although some clinics may use this method in reality, while
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others may choose to schedule one visit at a time, given the time-sensitive nature of prenatal visits and
our focus on the week a visit was scheduled, rather than the specific day, both approaches are equivalent
when it comes to measuring clinic capacity.

Atthe time of arrival, each patient is classified as medically and/or socially high-risk based on information
available. We assume the clinic’s schedulers schedule all the patients arriving in a week at the end of the
week during a “scheduling window” on a first-come, first-served basis, with a priority for high-risk patients.
In this study, we aim to compare the newly proposed prenatal care approach with the previous existing one.
In the conventional approach, all patients are assigned to the same pathway of care, consisting of 14 visits
on average, as shown in Figure 1. The new guidelines propose a tailored approach with different pathways
of care based on the medical risk of the patient, and suggest that social risk should be considered when
addressing telemedicine needs. Medically low-risk patients generally have fewer required appointments,
but both groups can include virtual as well as in-person visits. Figure 1 illustrates the pathways designed
for medically low- and high-risk patients. These new pathways, referred to as “tailored pathway”, are
customized to meet the specific needs of patients. In contrast, the conventional pathway mirrors the high-risk
patient visit pattern for all patients, requiring more frequent visits, which are all in-person. We call this
the “conventional pathway” in the rest of this paper. There are no formal definitions for medical or social
risk, despite their common use in obstetric practice.

Note that medical risk typically reflects patient comorbidities, with commonly agreed diagnoses and
provider-specific variations. We used criteria from Michigan Medicine (e.g., multiple births) to identify
medically high-risk pregnancies. Social risk, a newer concept, includes determinants like food insecurity
and domestic violence. As standardized social risk data collection began only recently (2024), we used
insurance status as a proxy. Our current analysis prioritizes high social-risk patients for telemedicine
appointments, but future approaches may evolve with better understanding.

A patient’s gestational age (i.e., the age of the pregnancy, in weeks) at arrival, in combination with
their due date (i.e., expected date of delivery), determines the weeks in which prenatal appointments are
recommended. Exams, vaccinations, and laboratory tests are generally clustered in four specific in-person
appointments. The other appointments mostly consist of routine monitoring (blood pressure, fetal tones,
etc.), and we therefore assume they can be safely conducted via telemedicine. Appointments are booked
according to each pathway’s recommended visit schedule, but exact timing may deviate if the clinic is fully
occupied in the target week. The allowed delay (i.e., how many weeks the appointment can be delayed
beyond its target week) depends on the patient’s gestational age; these guidelines were derived through
consultation with Michigan Medicine clinicians:

* For appointments from the beginning of the pregnancy to up to 27 weeks, scheduling may be
delayed by up to four weeks beyond the ideal target, as long as it happens before 28 weeks.

»  For 28-35 weeks, scheduling may be postponed by up to two weeks, as long as it happens before
36 weeks.

* For 36 weeks onward, appointments must occur within the target week.

In our setting, the clinic’s weekly capacity is fixed, and we allow for a limited amount of overbooking.
Overbooking slots in a healthy system should rarely be used, as that means overburdening clinicians and
having less time to spend on each patient, but overbooking is a necessary tool to deal with emergencies.
It is often used in prenatal care to improve access to patients at the expense of the clinician’s health. If no
appointment slots are available within these delay windows, and there are no overbooking slots either, the
appointment is skipped entirely. The delays in care and the number of skipped appointments are especially
important to track. Prenatal care is extremely time-sensitive: exams that can be done at 20 weeks cannot
be as reliable or effective when conducted at 22 weeks. For this reason, keeping track of how far from
the target due date the actual appointment was scheduled can offer insight into the state of the system.
Skipped appointments instead capture all the appointments that the system has failed to offer to a patient,
and therefore are “infinitely” delayed. Finally, we assume that within each scheduling window, the clinic
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Figure 1: Timeline for tailored prenatal care pathways in medically low- (top) and high-risk (bottom)
pregnancies. The conventional pathway mirrors the high-risk pathway, with the only difference being that
every visit is conducted in-person. Note: solid-bordered rectangles indicate required in-person visits, while
dash-bordered rectangles represent visits that can be either in-person or via telemedicine, depending on
patient preference.

prioritizes medically high-risk patients first, then patients with social risk, then all other patients, on a first
come, first serve basis.

Uncertainty in this model stems from three sources. First, the number of new patients who initiate
prenatal care per week varies on a weekly basis. Second, patients have unique characteristics, including
their gestational age at arrival, gestational age at delivery, and risk factors. Third, cancellation and no-show
rates cause variation in clinic visit volume, and these rates depend on each patient’s visit type and risk
level.

An appointment may be canceled or missed (no-show) with probabilities that vary according to the visit
type (in-person or virtual) and patients’ characteristics (socially high-risk patients are assumed to be more
prone to cancellation for in-person visits). No-shows are scheduled appointments where the patient does
not come to the clinic for care. The slots for patients who no-show cannot be reallocated to other patients,
whereas cancellations are assumed to occur with sufficient advance notice to allow for the redistribution
of visits. Consequently, even if an appointment is successfully scheduled, it may not be completed. These
events are different from skipped appointments, where instead the system’s overcrowding didn’t allow the
appointment to be scheduled in the first place.

We track a range of performance metrics to gauge the impact of different pathways for prenatal care
and telemedicine policies. From the patient’s perspective, these include the average delay from the target
appointment week, as well as the total number of skipped visits. From the provider’s perspective, patient
slot utilization reflects how effectively available capacity is used for prenatal care. Specifically, we measure
these metrics as follows:

e Utilization: This metric computes the percentage of appointment slots that were used at each period
(in our case, week). For a generic week ¢, we define the utilization rate as:

U = Number of used appointme.nt slot in period ¢ % 100, )
Total number of available slots

where a “used slot” is a slot that was assigned to an appointment that was not missed by a patient.
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* Delayed appointment: This metric measures the average delay in appointments beyond their target
dates due to insufficient capacity (excluding cancellations). For period ¢:

ZA‘: Delay of appointment j in period ¢
D, = j=1 y pp Jmp @)

~ Total number of appointments scheduled in period ¢

where A; is the total number of appointments scheduled for period ¢.
*  Skipped appointment: This metric computes the percentage of appointments that were skipped due
to the lack of capacity, and not due to cancellations or no-shows. For period ¢:

S Number of appointments skipped with a target due date for week ¢
t =

100 3
Total number of appointments scheduled in period ¢ . ©)

3 METHODOLOGY

This section first provides a detailed description of the data used in our simulation model, followed by an
overview of the structure of the model.

3.1 Data Analysis

Working with Michigan Medicine, we utilize data from EPIC, the electronic health record (EHR) system
used by our partner providers. In our analysis, we include patients who gave birth between January 1,
2021, and March 31, 2022, and received at least one prenatal care visit in-person or telemedicine format,
for a total of 4,992 pregnancies (data available to us at the time of our study). Using the same criteria as
described in Ghrayeb et al. (2023), we classify patients as either medically high-risk or medically low-risk.

From this dataset, we also derive distributions and summary statistics for patient arrival rate, gestational
age at arrival (GAA), gestational age at birth/departure (GAD), preference for telemedicine, and no-show
rates. Arrival rate, GAA, and GAD allowed us to model the overall flow of patients in and out of the clinic,
while telemedicine preference and no-show rate informed the way our simulation schedules individual
appointments. Finally, in collaboration with providers in Michigan Medicine’s Obstetrics & Gynecology
Department, we obtained data about weekly clinic capacity for a single Obstetrics & Gynecology clinic,
for both in-person and telemedicine visits. These results were used directly in the simulation model as
user-inputted parameters, allowing us to replicate the current Michigan Medicine prenatal care system as
closely as possible. Historical data also revealed that socially high risk patients have a higher chance of
being no-shows compared to socially low-risk patients. Tables 1 and 2 summarize the input parameters for
the simulation model.

Table 1: Simulation arrival inputs, by medical risk level.

Parameter Medical Risk Level

High Low
Arrival Rate Poisson (A = 1.5) Poisson (A =1)
Gestational Age at Arrival Poisson (A = 10) Poisson (A = 10)
Gestational Age at Departure | Normal (4 =39,0 =2) | Normal (4 =39,0 =2)
Social High Risk Percentage | 40% 30%

Based on our collaborators’ input, we modeled a typical Michigan Medicine provider to have 24
appointment slots per week, with up to three additional slots reserved for overbooking. This was broken
up into 18 in-person and six virtual slots. Finally, we assume that a patient’s first visit takes double the
time of a normal return visit, therefore requiring two slots.
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Table 2: Simulation no-show inputs, by social risk level.

Appointment Type Sgcial Risk Level
High | Low

In-Person 1.6% | 0.7%

Virtual 1.6% | 0.6%

3.2 Simulation Model

Herein, we discuss the logic flow of the simulation model, as well as a more detailed description of the
table-based approach.

3.2.1 Table-Based Approach

Our simulation model employs a table-based approach that demonstrates the structure of healthcare databases,
such as those used in EPIC, where data is organized into various interconnected tables. This approach
is inherently scalable and modular, allowing for straightforward expansion and adaptation as healthcare
needs evolve. This compatibility with existing data structures streamlines the adoption and customization
of our model across a variety of healthcare contexts, ensuring its practical utility and ease of integration
into current systems. We use this approach to process random events, translate them into actionable tasks,
and store the results to easily compute metrics.
We use five different tables to assist with the information flow (demonstrated in Figure 2):

1. Generate tasks for new events created

2. Update the appointment table with new appointments and cancellations
3. Assign patients to available slots

4. Allocate specific time slots to patients' appointments

5. Update the appointment table to reflect current utilization

1 2
Event Table Task Table Slot Table

Appointment
Table

Example of an event Example of a task

A new high-risk patient initiated care at the Schedule the third in-person appointment
clinic during week 16 of pregnancy. for a low-risk patient who arrived in week 14

Figure 2: A flow diagram illustrating the table-based simulation approach.

»  Patient Table: The Patient Table stores all the information related to patients, including their risk
level, GAA and GAD, allowing us to keep track of the generated population.

» Event Table: The Event Table holds all information concerning all the random events in the
simulation, such as new patient arrivals, appointment cancellations, and no-shows. All patient
characteristics, such as risk level, GAA, GAD, and preference for visit type, are recorded in the
Event Table and stored in the Patient Table upon arrival of the patient into the system. In summary,
this table enables us to keep track of cancellations, no shows, and new patient arrivals.
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e Task Table: All events are translated into deterministic tasks, which are stored in the Task Table.
The role of this table is to translate a relatively broad event, like the arrival of a new patient, into
a series of specific actionable tasks, like n “schedule appointment for week t” tasks.

* Slot Table: The Slot Table holds all appointment slots that a clinic (or provider) has available
within a period, mimicking the clinic’s availability. This table stores all the information about the
providers’ availability and specialty. Each slot can have different properties: some of them may be
only for virtual visits, some only for new patients, etc.

»  Appointment Table: The Appointment Table stores the information of each appointment, specifically
which slot was used to fill which task, connecting the slot to a specific visit of a patient. With this
table, we can track changes in the schedule in case of cancellations or of a patient’s early delivery.

We now move to describe in detail the overall flow of the simulation.

3.2.2 Simulation Overview

Based on the assumptions described in Section 2, we construct our discrete event simulation model and
illustrate its structure in Figure 3. As shown in this figure, the simulation averages results across a number
of replications to calculate our performance metrics. Within each replication, we model clinic flow for
a user-defined number of periods (or weeks). For each period 7, a certain number of new patients P are
generated, according to a user-specified distribution for patient arrivals. Attributes for each of the P patients,
such as their GAA and GAD and their medical and social risk, are generated at this time.

Once these attributes are generated, individual tasks are created to schedule appointments for each patient.
The number and frequency of these appointments are dictated by the patient’s risk level and pathway. Each
of these scheduling tasks is given a “due date”, which is the period in which the corresponding appointment
needs to be scheduled. For example, if a task’s due date is period 10 and its target period is 12, it should
be scheduled sometime between weeks 10 and 12. If capacity constraints prevent it from fitting within that
window, the task is skipped.

Tasks are then sorted according to the prioritization policy set by the user. An example of a policy
could be to prioritize scheduling appointments for patients in their third trimester over patients in their
first trimester. All tasks with a due date of the current period ¢ are then performed. If an appointment is
canceled, a cancellation task is generated for the next period. Afterward, tasks are performed in the sorted
order. For scheduling tasks, we check the slot table for any free slots in the period specified and update
the slot and appointment tables if a suitable slot is found. For cancellation tasks, the number of available
slots is incremented. At the end of each replication, we calculate the slot utilization, number of skipped
appointments, and average delay in appointments.

4 EXPERIMENTS

The simulation model was built using Python and all scenarios were run on a computer with an Intel Core
i7 2.8 GHz CPU and 16 GB RAM. Based on a set of ad-hoc experiments (Figure 4), we determined the
warm-up period of our simulation to be 40 weeks. This also aligns with the duration of pregnancy; if the
system starts from empty, it takes around 40 weeks for patients to start to deliver and leave the system. To
ensure that our metrics in each replication only reflect the system at steady state, we run the simulation for
100 weeks, and only consider the last 60 weeks to compute our metrics. Furthermore, we run the simulation
model for 50 replications, and we take the average metric from each period and compare the distribution of
those metrics across scenarios. We chose 50 replications as it is sufficient to ensure statistically significant
results. Our experiments also confirmed that increasing the number of replications would not significantly
impact our conclusions. Finally, we used independent two-sample t-tests with a confidence level of 95%
to compare the following scenarios.
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Figure 3: A flow diagram illustrating the simulation model.

4.1 Model Validation

849
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Our simulation was validated primarily through validation sessions with domain experts. Expert panels
reviewed the model’s structure, input logic, and preliminary output, confirming that projected capacity
utilization, overbooking rates, and patient-delay distributions matched the ranges they routinely observe in
comparable settings. We calibrated all arrival patterns, service times, and resource counts directly from
Michigan Medicine’s historical scheduling database (as described in Section 3.1), ensuring that the daily
number of patients and appointments reproduced real-world volumes as closely as possible.
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Figure 4: Warm-up period analysis for the simulation model.

4.2 Scenarios and Results

We consider two levels for our experiments:

*  Conventional vs. tailored pathways: Following our definition of conventional and tailored pathways
in Section 2, we compare these pathways to quantify the impact of adopting the tailored approach.
*  FPatient mix: The proportion of high-risk patients at Michigan Medicine is generally higher than
that of non-academic health centers, due to its status as a large academic center. To ensure our
findings are generalizable across different settings, we evaluate the tailored pathway under four
scenarios, varying the high-risk patient proportion at 25%, 50%, 60%, and 75%. Note that at
Michigan Medicine, approximately 60% of the prenatal care population is classified as high-risk.

When comparing the tailored and conventional pathways in terms of provider utilization, tailoring care
significantly reduces utilization for all patient mixes (Figure 5). As expected, the greatest reduction occurs
for the 25% high-risk patient mix, as a larger proportion of the patient population is low-risk and therefore
impacted by the reduced-visit pathway in the tailored paradigm. Note that even in the conventional paradigm,
the utilization percentage (i.e., the proportion of appointment slots filled), never exceeds 85%. However, we
still observe appointment delays and skipped appointments, implying that overbooking exists in the system.
This is due to the heterogeneity in patients’ pathways and the subsequent demand for appointments; there
may be some weeks in the horizon when the clinic is completely booked or overbooked, and others when
the clinic is not utilizing all of its appointment slots.

Tailoring care also significantly reduces the number of skipped appointments for all patient mixes, for
both low-risk and high-risk patients (Figures 6b and 6a). Notably, for the 25% high-risk patient population,
tailoring care almost completely eliminates the number of skipped appointments. Recall that appointments
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are skipped if it is not possible to schedule them within a certain threshold of their target week. This
implies that appointments that occur in the third trimester, when appointments can only be delayed by one
week, are more likely to be skipped.
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Figure 6: Comparing tailored and conventional pathways in terms of the percent of appointments skipped.
The horizontal bars represent a statistically significant difference between the conventional and tailored
care scenarios, based on a standard two-sample t-test.

Similarly, tailoring care significantly reduces the amount of delay for all patient mixes, for both low-risk
and high-risk patients (Figures 7b and 7a). While the amount of delay is not high for even the conventional
paradigm (< 1 week for all experiments), any delay in prenatal care is not ideal. Also note that as capacity
becomes more constrained, our scheduling policy is more inclined to skip appointments, as delaying them
within an appointment’s delay threshold may not be feasible.

Overall, these results highlight the magnitude of the operational savings that result from adopting a
tailored prenatal care paradigm. Generally, tailoring care significantly reduces the number of skipped and
delayed appointments, ensuring that patients receive prenatal care when they need it. Tailoring care also
reduces capacity utilization in clinics, offering providers the flexibility to better adapt to unanticipated
changes in their patients’ care, and potentially to accommodate more patients.

5 CONCLUSIONS

This study employed discrete-event simulation to model operations at a prenatal care clinic, evaluating
the operational efficiency of novel patient pathways compared to conventional practice. We explicitly
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Figure 7: Comparing tailored and conventional pathways in terms of the number of delayed appointments.
The horizontal bars represent a statistically significant difference between the conventional and tailored
care scenarios, based on a standard two-sample t-test.

simulated various sources of uncertainty, including patient arrivals, cancellations, and no-shows, and assessed
performance using three key metrics, such as clinic slot utilization, percentage of delayed appointments,
and percentage of skipped appointments. Our numerical results indicate that adopting tailored pathways
at Michigan Medicine could significantly enhance clinic performance across these metrics. Moreover, we
demonstrated the potential of tailored pathways to yield substantial improvements in diverse healthcare
settings.

Medical literature supports that adopting tailored pathways does not negatively impact patient outcomes
or service quality. Considering the demonstrated potential for considerable gains in operational efficiency,
we recommend that prenatal care providers currently utilizing conventional practices strongly consider
transitioning to tailored pathways. To facilitate this shift, our team is developing an accessible, free, and
user-friendly dashboard, providing practitioners and healthcare managers with an accelerated version of our
simulation model. This dashboard is designed to effectively communicate our findings, allowing providers
to evaluate potential benefits tailored specifically to their clinical contexts.

Future research could address certain limitations of our current study. Our simulation does not presently
accommodate multiple-clinic scenarios, and adaptations may be necessary to accurately model healthcare
systems comprising multiple clinics. Additionally, our approach models capacity at the clinic level rather
than individual provider availability. However, given recent trends indicating a reduced emphasis on
continuity of care in prenatal settings - where patients routinely consult with multiple providers throughout
their pregnancy - this limitation does not substantially affect our conclusions. Nevertheless, a valuable
extension of our research would be explicitly considering continuity of care, especially in clinical contexts
where it remains critical.
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