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ABSTRACT 

Malaria remains a major global health threat, especially for children under five, causing hundreds of 
thousands of deaths annually. Proactive Community Case Management (ProCCM) is an intervention 
designed to enhance early malaria detection and treatment through routine household visits (sweeps), 
complementing existing control measures. ProCCM is crucial in areas with limited healthcare access and 
low treatment-seeking rates, but its effectiveness depends on transmission intensity and the coverage of 
existing interventions. To quantify the impact of ProCCM, we calibrated an agent-based simulation model 
for settings with seasonal transmission and existing interventions. We evaluated how different ProCCM 
scheduling strategies perform under varying treatment-seeking rates in reducing severe malaria cases. Our 
proposed heuristics—greedy and weighted—consistently outperformed a standardized, uniformly spaced 
approach, offering practical guidance for designing more effective and adaptive malaria control strategies. 

1 INTRODUCTION 

Malaria remains one of the most pressing public health challenges worldwide, particularly in sub-Saharan 
Africa. In 2023 alone, the World Health Organization estimated 263 million cases and 597,000 malaria-
related deaths, with the majority occurring in children under five in Africa (WHO 2024). Despite decades 
of progress driven by preventive tools like insecticide-treated nets, indoor residual spraying, and 
intermittent preventive treatment in pregnancy, malaria control has plateaued in recent years (Paaijmans 
and Lobo 2023). This stagnation is compounded by persistent gaps in access to timely diagnosis and 
treatment, especially in rural and remote regions. Early detection and prompt malaria treatment are essential 
to reduce both severity of disease and mortality (Mousa et al. 2020). However, barriers such as geographic 
distance, transportation costs and lack of health system trust often prevent individuals from seeking care 
quickly. 

To address these barriers, Senegal introduced Prise en Charge à Domicile (PECADOM) in 2008, a form 
of malaria community case management (mCCM) where trained community health workers (CHWs) 
residing in villages diagnose and treat malaria cases locally (Programme National de Lutte contre le 
Paludisme 2010). While this approach significantly expanded access to care, the utilization of CHWs 
remained suboptimal, and preventable malaria morbidity and mortality persisted (Linn et al. 2015). 

To improve upon PECADOM’s passive structure, a proactive variant—Proactive Community Case 
Management (ProCCM), or PECADOM Plus—was piloted in Senegal beginning in 2012. Under ProCCM, 
CHWs perform regular household sweeps during the transmission season, visiting every household in the 
village to screen for symptomatic individuals. CHWs use rapid diagnostic tests (RDTs) to confirm malaria 
infection and administer artemisinin-based combination therapy (ACT) to positive cases. Those showing 
signs of severe disease are referred to a health facility for urgent care. By bringing care directly to patients, 
ProCCM aims to increase access to care by shortening time to treatment, reducing transmission by lowering 
the infectious reservoir, and ultimately reduce the number of severe malaria cases. A 2013 pilot study in 
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the Saraya Health District in Senegal demonstrated that weekly ProCCM sweeps throughout the 
transmission season led to a substantial drop in symptomatic prevalence compared to villages with limited 
or no household visits (Linn et al. 2015). These findings led to the national adoption and gradual scale-up 
of the ProCCM strategy across Senegal. 

Despite the demonstrated effectiveness of ProCCM in improving malaria case detection and treatment, 
there is little evidence on its impact on severe malaria cases — a critical outcome for malaria control. The 
interaction between ProCCM and contextual factors like treatment-seeking rates have not been 
systematically evaluated. Moreover, few empirical or modeling studies have explored how to optimize the 
frequency, timing, and distribution of ProCCM sweeps based on local conditions, including weather 
patterns and epidemiological trends. This lack of evidence leaves program implementers without clear 
strategies for maximizing the impact of ProCCM in different transmission settings. 

In this study, we develop and apply a simulation-based framework to investigate the effectiveness of 
ProCCM in reducing severe malaria cases given various treatment seeking behaviors and we assess the 
potential for improving the impact of ProCCM through adaptive sweep scheduling. Using the Saraya Health 
District in Senegal as a case study, we extend a validated agent-based malaria transmission model that 
incorporates individual-level disease progression, mosquito dynamics, immunity development, and 
treatment-seeking behavior. We propose and compare three heuristics for sweep scheduling: (1) an evenly 
spaced approach, (2) a greedy algorithm that targets days of highest symptomatic burden, and (3) a weighted 
method that balances prevalence distribution with temporal spacing. These strategies are evaluated across 
a range of treatment-seeking rates to understand their impact on severe malaria cases. 

2 METHODS 

2.1 Malaria Transmission Model 

We adapted the agent-based simulation model for malaria transmission originally developed by (Griffin et 
al. 2016), extending the mosquito dynamics and incorporating ProCCM sweeps based on the frameworks 
proposed by (White et al. 2011) and (Wang et al. 2024). The simulation explicitly tracks individual human 
agents through daily transitions across infection states, and updates their age and immunity level, while 
modeling mosquito populations as a compartmental system. Figure 1 illustrates the full transmission flow 
between and within the human and mosquito systems. 

 
Figure 1: Simulation model transmission flow diagram which incorporates interactions between a mosquito 
compartmental model and an agent-based model of human capturing age, immunity, and malaria status 
(infection state) in each day. 
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2.1.1 Human Infection States 

Table 1 outlines the human infection stages captured in the model. A human infection begins in the 
susceptible (𝑆) stage, following a successful bite by an infectious mosquito. After infection, the malaria 
parasite first passes through a pre-erythrocytic liver stage, which typically lasts 1–2 weeks, before 
progressing to the blood stage. During this stage, as the parasite density increases, the infected individual 
may begin to exhibit mild clinical symptoms (𝐶!), with the probability of symptom onset determined by 
their immunity level. If no symptoms appear, the individual progresses to an asymptomatic patent infection 
(𝐴"), where the parasite is still detectable by RDT. Some of these parasites may develop into gametocytes, 
making the human infectious to mosquitoes. Individuals in the mild clinical stage (𝐶!), may seek treatment 
(𝑇), after which they receive a temporary period of protection (𝑃) before returning to the susceptible stage 
(𝑆). If not treated, they may self-recover and transition to (𝐴") and then to asymptomatic subpatent stage 
(𝐴#), where the parasite becomes undetectable by RDT but still present. Alternatively, some untreated 
individuals may deteriorate into the severe clinical stage (𝐶#), where there is a defined probability of death 
(𝐷). In contrast to the original model where the 𝐶! stage was fixed at 5 days (Griffin et al. 2016), we allow 
its duration to vary uniformly between 1 and 9 days, which better captures the clinical variability of malaria 
progression, known to worsen rapidly—sometimes within 24 hours. This model also allows for 
superinfection (the infection of a host already carrying a malaria parasite with a genetically distinct strain 
of the parasite) during both the 𝐴# and 𝐴" stages. The full state transition diagram is shown in Figure 1. 

Table 1: Human infection stages. 

Stage Description 
𝑆 Susceptible 
𝐴" Asymptomatic patent infection 
𝐴# Asymptomatic subpatent infection 
𝐶! Clinical mild stage 
𝐶# Clinical severe stage 
𝑇 Treatment 
𝐷 Death 
𝑃 Protection after treatment 

2.1.2 Mosquito Dynamics 

The mosquito life cycle is modeled using a compartmental approach. The aquatic stages include eggs (𝐸), 
larvae (𝐿), and pupae (𝑃𝐿), which progress sequentially in water. Upon emergence as adults, mosquitoes 
enter the susceptible adult (𝑆𝑀) compartment. After biting infectious humans (in 𝐶!, 𝐶#, 𝐴" or 𝐴# stages), 
susceptible mosquitoes become exposed (𝐸𝑀) and eventually progress to the infectious (𝐼𝑀) stage after 
an extrinsic incubation period. These infectious mosquitoes can then transmit malaria to susceptible 
humans	(𝑆), or create superinfection for asymptomatic patent or subpatent (𝐴" or 𝐴#) patients creating a 
bidirectional infection loop between humans and mosquitoes. The mosquitos in the adult stage (𝑆𝑀, 𝐸𝑀 
or 𝐼𝑀) will produce eggs, and subsequently evolve into the next generation. 

2.1.3 Treatment Seeking and Sweep Modeling 

Th agent-based simulation model explicitly tracks treatment-seeking behavior at the individual level. For 
individuals in either the mild clinical (𝐶!) or severe clinical (𝐶#) stages, there is a daily probability, 
defined as the treatment-seeking rate (TSR), that they will access formal healthcare services. Empirical 
studies have shown no significant difference in TSR between children and adults across several malaria-
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endemic countries; therefore, we assume a uniform TSR for all individuals in the population (Battle et al. 
2016). 

In addition to routine treatment-seeking, this model incorporates ProCCM sweeps, where community 
health workers actively visit households and screen for symptomatic individuals. In the model, each sweep 
is assumed to perfectly identify and treat all symptomatic individuals (those in 𝐶! and 𝐶#) present on the 
sweep day. As a result, all such individuals immediately transition to the treatment stage (𝑇), bypassing the 
usual probabilistic TSR-based care access. 

2.2 Study Site and Model Calibration 

The ProCCM pilot study was conducted in 2013 in the Saraya Health District, Senegal, where malaria 
transmission is highly seasonal, with the peak transmission season typically lasting from June to November. 
Weekly household sweeps conducted from July 8 to November 25—a period that largely overlapped with 
the peak transmission season. In total, 20 sweeps were implemented in the intervention group/villages, 
while 3 sweeps were conducted in the comparison group (control villages) to collect data on symptomatic 
malaria prevalence. In addition to the sweeps, two other malaria control interventions took place in both 
groups during this period: a Long-Lasting Insecticide-treated Net distribution campaign from July 15 to 
July 25, and a Seasonal Malaria Chemoprevention campaign conducted from November 1 to November 4. 

A key metric from this study is the symptomatic malaria prevalence, defined as the proportion of 
individuals who had experienced fever within the previous 48 hours, tested positive via RDT, and had not 
yet received treatment, relative to the total population. In our model, once symptomatic individuals seek 
treatment or are identified during a sweep, they are transitioned to the treatment stage (𝑇) (Figure 1) and 
are no longer considered symptomatic, even though clinical symptoms could persist for several days given 
treatment. We used this symptomatic prevalence measure, along with data on the number of symptomatic 
individuals who sought treatment, to calibrate the model. Specifically, the calibration was based on multiple 
metrics from the pilot study, including symptomatic prevalence in both control and intervention villages, 
the number of self-reported malaria cases in both groups, and the total number of systematically detected 
cases in the intervention village. We also incorporated contextual transmission information using real 
rainfall data from the National Centers for Environmental Information, as well as estimates of the 
entomological inoculation rate (EIR) and Plasmodium falciparum parasite prevalence among children aged 
2–10 years (PfPR 2–10) from Malaria Atlas Project (MAP) (MAP 2025). More details can be found in 
(Griffin et al. 2016), (White et al. 2011) and (Wang et al. 2024). 

The parameters we estimated during calibration included the environmental carrying capacity, the 
number of days of rainfall contributing to larval habitat availability, and the baseline treatment-seeking rate. 
The best-fitting baseline TSR was found to be 0.03 for both the control and intervention villages prior to 
the introduction of ProCCM sweeps. During the intervention period, we tested the effectiveness of ProCCM 
under various TSRs, driven by the additional treatment opportunities and the information about the 
availability of free treatment provided by the health workers. These sweeps significantly reduce the burden 
of untreated clinical infections and contribute to the overall reduction in severe cases and malaria 
transmission in the population. 

2.3 Sweep Heuristics 

We propose three different heuristics for determining the best timing for ProCCM sweeps: 1) uniform, 2) 
greedy, and 3) weighted. To enable a fair comparison across strategies, we define a fixed planning horizon 
from July 8 to November 25, matching the intervention period used in the 2013 pilot study. This 
corresponds to days 189 through 329 when expressed on a day-of-year scale. To evaluate the effectiveness 
of each heuristic, we analyze the relationship between the number of sweeps and the resulting reduction in 
severe malaria cases. Specifically, we vary the total number of sweeps from 5 to 20, the latter aligning with 
the weekly sweep schedule implemented during the original pilot.  
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The uniform heuristic considers evenly distributed sweeps. Sweeps are distributed across identical 
interval within the planning horizon, given a fixed number of total sweeps. This heuristic will result in 
predefined sweep dates, which will serve as the baseline for our comparison with the other more adaptive 
heuristics. 

The greedy heuristic is designed to make the sweep schedule more adaptive to variations in malaria 
transmission. Due to the seasonal nature of weather and the influence of other malaria control interventions, 
the malaria burden can fluctuate significantly even within the peak season. To better align ProCCM sweeps 
with these dynamic patterns, the greedy heuristic selects sweep days iteratively based on the estimates of 
symptomatic prevalence, prioritizing the days with the highest transmission while ensuring adequate 
spacing between interventions. The pseudo code for the greedy heuristic can be found in Figure 2. 

The greedy heuristic begins by initializing the set of potential sweep days as the full planning horizon 
and defining key parameters: the total number of sweeps to perform and a radius that enforces a minimum 
gap between sweep days. The sweep_days set, which contains the list of selected intervention days, is 
initialized to be empty. In each iteration of the algorithm, the current sweep_days are fixed in the simulation, 
which is run multiple times (e.g., 500 iterations) to estimate the average symptomatic malaria prevalence 
for each day. Days that fall within the exclusion radius of existing selected sweep day are removed from 
consideration to avoid overlap. From the set of remaining available days, the day with the highest average 
prevalence is selected and added to sweep_days. This process continues until all sweep slots are filled, 
resulting in a schedule that concentrates interventions on the most critical days while maintaining a practical 
distribution across the season. In this algorithm, various radius values (2,3,4 and 5) were tested and we 
chose the best performing value (i.e., radius=5) with respect to reducing the number of severe cases.  

 
Figure 2: Pseudo code for the greedy heuristic. 

Finally, the weighted heuristic is designed to incorporate prevalence data while maintaining temporal 
equity in the allocation of sweeps. Unlike the greedy heuristic, which may neglect lower transmission 
periods in favor of peak times, the weighted method ensures that no extended gaps occur between 
interventions, reducing the risk of untreated symptomatic cases over extended periods. The pseudo-code 
for the weighted heuristic is represented in Figure 3. 
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The heuristic begins by running a baseline simulation without any ProCCM sweeps to estimate daily 
symptomatic prevalence across the planning horizon. Next, the algorithm computes a cumulative sum of 
the daily prevalence and normalizes it to span the interval [0,1], representing the temporal distribution of 
malaria burden. This normalized curve is then partitioned into equal-length intervals, corresponding to the 
number of sweeps to be scheduled. For each interval, the day with a cumulative prevalence closest to the 
interval’s upper bound is selected as a sweep day. This heuristic ensures that sweep timing reflects the 
intensity of transmission while also providing even temporal coverage, resulting in a simple, data-driven 
strategy that balances responsiveness with fairness.  

 
Figure 3: Pseudo code for the weighted heuristics. 

3 RESULTS 

3.1 Symptomatic Malaria Prevalence and Sweep Plan 

Figure 4 and Figure 5 report the average symptomatic malaria prevalence over time under the greedy 
heuristic (with radius 5 days) and weighted heuristic, respectively, for different treatment-seeking rates 
(TSRs). Each subplot corresponds to a different number of sweeps, for 5, 10, 15 and 20 sweeps. Since 
sweep days are selected by these heuristics based on the symptomatic prevalence curve, these prevalence 
plots indirectly reveal the timing of sweep implementation as indicated by the steep drops in prevalence 
when symptomatic individuals move immediately to the treatment state during a sweep. We present figures 
for the greedy and weighted heuristics and exclude the uniform heuristic as its sweep schedule is fixed and 
unresponsive to dynamic transmission patterns.  
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Figure 4: Symptomatic malaria prevalence with 5, 10, 15, and 20 sweeps using the greedy heuristic with 
radius 5 across four treatment seeking rates (TSR = 0.05, 0.20, 0.35, 0.50). 

 
Figure 5: Symptomatic malaria prevalence with 5, 10, 15, and 20 sweeps using the weighted heuristic across 
four treatment seeking rates (TSR = 0.05, 0.20, 0.35, 0.50). 

3.2 Severe Malaria Cases 

Figure 6 presents the average number of severe malaria cases under the three sweep scheduling heuristics 
— uniform, greedy (with radius 5), and weighted — for TSR values of 0.05, 0.20, 0.35, and 0.50. Each 
subplot corresponds to a specific TSR level and plots the average severe case count as a function of the 
number of sweeps, which ranges from 5 to 20. The figure shows that as TSR increases, the number of severe 
cases decreases across all sweep strategies and sweep counts. At TSR = 0.05, the average number of severe 
cases starts above 20 with 5 sweeps and declines to around 7 by 20 sweeps. At TSR = 0.20, the curve begins 
near 10 and reaches approximately 3.5 at the maximum sweep count. At TSR = 0.35, the values range from 
about 4.5 to 2.5. The lowest range is observed at TSR = 0.50, where the average number of severe cases 
falls between just over 2 and around 1.5 across the sweep range. These trends demonstrate a consistent drop 
in severe malaria burden as the treatment-seeking rate increases, irrespective of the heuristic used or the 
number of sweeps applied.  

When comparing the performance of the different heuristics, the greedy strategy yields the lowest 
severe case counts across nearly all sweep budgets, especially between 5 and 15 sweeps. In many cases, the 
greedy strategy results in noticeably sharper reductions in severe cases compared to the other two methods. 
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The weighted strategy tends to perform moderately, while the evenly spaced heuristic shows the highest 
average severe case counts across most settings. As the number of sweeps approaches 20, the difference in 
performance between the three heuristics narrows significantly, with all three strategies converging to 
similar levels of effectiveness across TSR levels. 

The relative reduction in severe cases from increasing the number of sweeps from 5 to 20 is more 
pronounced at lower TSRs. At TSR = 0.05, this reduction exceeds 60%, dropping from over 20 to around 
8 severe cases. At TSR = 0.20, the drop is approximately 55%, from near 10 to just below 5. At TSR = 0.35, 
the reduction is about 40%, and at TSR = 0.50, the reduction is roughly 25%. While the absolute number 
of severe cases declines in all scenarios with more sweeps, the magnitude of that reduction decreases as 
TSR increases. 

 
Figure 6: Predicted severe malaria cases given 5-20 sweeps using the three heuristics across four treatment 
seeking rates (TSR = 0.05, 0.20, 0.35, 0.50). 

4 DISCUSSION 

4.1 Operational Insights 

This study highlights the value of ProCCM in reducing severe malaria cases, the critical role of treatment-
seeking rates, and the operational improvements achievable through adaptive scheduling strategies. Across 
all tested scenarios, increasing the number of ProCCM sweeps consistently reduces the burden of severe 
malaria, underscoring the overall effectiveness of the intervention. TSR plays a dual role — it not only 
determines how quickly symptomatic individuals access treatment, but it also affects both the relative 
impact of ProCCM and the optimal timing of sweeps. Adaptive strategies, such as the greedy and weighted 
heuristics, deliver meaningful improvements over uniform scheduling, particularly in low-access settings. 
These enhancements can be substantial, with adaptive approaches reducing severe cases by an additional 
20% under low TSR conditions. 

The effectiveness of ProCCM in lowering severe malaria incidence is consistent and robust across all 
conditions. Regardless of the specific scheduling strategy or TSR level, increasing the frequency of 
community sweeps reliably decreases the average number of severe cases. This effect is especially 
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important in regions like Senegal, where TSR is typically below 0.05 (Gaye et al. 2020). In such low-access 
environments, ProCCM plays a vital role in reaching symptomatic individuals who would otherwise remain 
untreated. For instance, with a TSR of 0.05, increasing sweep counts reduces severe cases from around 20 
to just 8. However, as TSR rises, both the absolute burden of severe cases and the relative benefit of 
ProCCM decline, since more symptomatic individuals are treated through existing healthcare services. At 
a TSR of 0.5, increasing sweeps from 5 to 20 results in less than a 30% reduction in severe cases, indicating 
reduced dependence on ProCCM in high-access settings. 

Malaria transmission follows a pronounced seasonal pattern that shapes both the effectiveness and 
timing of ProCCM interventions. As illustrated in Figures 4 and 5, symptomatic prevalence is low during 
the early dry season, begins to increase around day 190, and peaks between July and November. This 
seasonal peak is not uniform — following an initial surge, prevalence temporarily drops before rising again 
toward a secondary peak, partly due to the impact of other interventions. The shape of this prevalence curve 
is influenced by both TSR and the number of sweeps. At low TSRs, the curve is more volatile due to 
accumulated untreated cases; at higher TSRs, prompt treatment flattens the curve. These dynamics affect 
sweep scheduling strategies. The greedy heuristic tends to cluster sweeps around peak periods and remains 
stable across different TSR levels due to its burden-driven design. In contrast, the weighted strategy adapts 
more flexibly to TSR changes by distributing sweeps proportionally to historical prevalence. Still, 
regardless of TSR or scheduling strategy, the overall transmission pattern remains largely unchanged, as 
asymptomatic carriers—who are not targeted by ProCCM—continue to drive transmission. This highlights 
an important finding: ProCCM cannot interrupt transmission on its own. 

Among all scheduling strategies evaluated, the greedy heuristic with a five-day exclusion radius 
consistently produced the best results. Alternative exclusion radii of 2, 3, and 4 days were tested, but the 
five-day buffer yielded the greatest reduction in severe cases. This suggests that sweeps placed too close 
together provide diminishing returns. While the greedy strategy is highly effective at targeting peak burden 
periods, the weighted approach remains valuable for promoting temporal equity — an important 
consideration in public health service delivery. By contrast, the uniform strategy, which spaces sweeps at 
fixed intervals regardless of burden, performed the worst in all settings. Although this result aligns with 
expectations, our analysis quantifies the performance gap: in low-TSR environments, adaptive strategies 
can achieve up to 20% greater reduction in severe cases compared to uniform scheduling. These findings 
demonstrate the significant potential of optimizing ProCCM operations and underscore the importance of 
data-driven, context-specific planning in malaria control. 

4.2 Limitations 

This study has several limitations that should be acknowledged. First, while the model incorporates the 
development of immunity and successfully captures children as a high-risk population, it does not explicitly 
represent pregnant women, another group particularly vulnerable to severe malaria. During pregnancy, 
infected erythrocytes adhere to placental glycosaminoglycan receptors, reducing the protective effect of 
pre-existing immunity and increasing susceptibility (Rogerson et al. 2007). Given the high birth rate in 
many malaria-endemic regions, excluding this group may lead to an underestimation of the total number of 
severe cases. Nonetheless, since this omission does not alter the overall transmission dynamics captured by 
the model, we believe that the relative trends in case reduction and the comparative effectiveness of 
different sweep strategies remain valid. 

Second, our ability to validate the simulation model is limited by the scarcity of high-quality field data. 
In many high-transmission settings, treatment-seeking rates are low, and healthcare infrastructure is limited, 
resulting in sparse and incomplete records of both symptomatic and severe malaria cases. This makes it 
challenging to directly compare model outputs with empirical observations. Moreover, predicting severe 
malaria is inherently difficult due to the high variability in individual immune responses and the fact that 
most infected individuals do not progress to severe disease. These constraints introduce uncertainty into 
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absolute case count projections, but the model still offers valuable insights into the relative performance of 
different ProCCM strategies under varying operational conditions. 

5 CONCLUSION AND FUTURE WORK 

This study evaluates the effectiveness of different sweep scheduling heuristics for Proactive Community 
Case Management (ProCCM) in reducing severe malaria cases across a range of treatment-seeking 
behaviors. By integrating an agent-based malaria transmission model with adaptive intervention strategies, 
we demonstrate that data-informed, adaptive sweep plans—particularly the greedy and weighted 
heuristics—consistently outperform evenly spaced approach, achieving up to 20% greater reduction in 
severe cases. The greedy strategy, especially when paired with a five-day spacing radius, achieves the 
greatest reduction in severe cases by concentrating interventions on high-burden periods. Meanwhile, the 
weighted strategy offers an equitable alternative that remains sensitive to transmission dynamics. Our 
findings also highlight how TSR influences both the burden of disease and the relative benefit of ProCCM, 
with the largest impact observed in low-access settings. 

A key direction for future work is the development of heuristics that utilize only historical and current 
information, enabling timely and adaptive decision-making without relying on full knowledge of future 
transmission patterns. Such strategies should be robust to uncertainty and grounded in data typically 
available in resource-constrained settings. We also aim to incorporate additional high-risk groups, such as 
pregnant women, into the model and improve empirical validation through expanded data collection efforts. 
By bridging simulation with field constraints, we hope to support the design of more effective, equitable, 
and operationally feasible malaria control policies. 
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