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ABSTRACT

Malaria remains a major global health threat, especially for children under five, causing hundreds of
thousands of deaths annually. Proactive Community Case Management (ProCCM) is an intervention
designed to enhance early malaria detection and treatment through routine household visits (sweeps),
complementing existing control measures. ProCCM is crucial in areas with limited healthcare access and
low treatment-seeking rates, but its effectiveness depends on transmission intensity and the coverage of
existing interventions. To quantify the impact of ProCCM, we calibrated an agent-based simulation model
for settings with seasonal transmission and existing interventions. We evaluated how different ProCCM
scheduling strategies perform under varying treatment-seeking rates in reducing severe malaria cases. Our
proposed heuristics—greedy and weighted—consistently outperformed a standardized, uniformly spaced
approach, offering practical guidance for designing more effective and adaptive malaria control strategies.

1 INTRODUCTION

Malaria remains one of the most pressing public health challenges worldwide, particularly in sub-Saharan
Africa. In 2023 alone, the World Health Organization estimated 263 million cases and 597,000 malaria-
related deaths, with the majority occurring in children under five in Africa (WHO 2024). Despite decades
of progress driven by preventive tools like insecticide-treated nets, indoor residual spraying, and
intermittent preventive treatment in pregnancy, malaria control has plateaued in recent years (Paaijmans
and Lobo 2023). This stagnation is compounded by persistent gaps in access to timely diagnosis and
treatment, especially in rural and remote regions. Early detection and prompt malaria treatment are essential
to reduce both severity of disease and mortality (Mousa et al. 2020). However, barriers such as geographic
distance, transportation costs and lack of health system trust often prevent individuals from seeking care
quickly.

To address these barriers, Senegal introduced Prise en Charge a Domicile (PECADOM) in 2008, a form
of malaria community case management (mCCM) where trained community health workers (CHWs)
residing in villages diagnose and treat malaria cases locally (Programme National de Lutte contre le
Paludisme 2010). While this approach significantly expanded access to care, the utilization of CHWSs
remained suboptimal, and preventable malaria morbidity and mortality persisted (Linn et al. 2015).

To improve upon PECADOM’s passive structure, a proactive variant—Proactive Community Case
Management (ProCCM), or PECADOM Plus—was piloted in Senegal beginning in 2012. Under ProCCM,
CHWs perform regular household sweeps during the transmission season, visiting every household in the
village to screen for symptomatic individuals. CHWs use rapid diagnostic tests (RDTs) to confirm malaria
infection and administer artemisinin-based combination therapy (ACT) to positive cases. Those showing
signs of severe disease are referred to a health facility for urgent care. By bringing care directly to patients,
ProCCM aims to increase access to care by shortening time to treatment, reducing transmission by lowering
the infectious reservoir, and ultimately reduce the number of severe malaria cases. A 2013 pilot study in
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the Saraya Health District in Senegal demonstrated that weekly ProCCM sweeps throughout the
transmission season led to a substantial drop in symptomatic prevalence compared to villages with limited
or no household visits (Linn et al. 2015). These findings led to the national adoption and gradual scale-up
of the ProCCM strategy across Senegal.

Despite the demonstrated effectiveness of ProCCM in improving malaria case detection and treatment,
there is little evidence on its impact on severe malaria cases — a critical outcome for malaria control. The
interaction between ProCCM and contextual factors like treatment-seeking rates have not been
systematically evaluated. Moreover, few empirical or modeling studies have explored how to optimize the
frequency, timing, and distribution of ProCCM sweeps based on local conditions, including weather
patterns and epidemiological trends. This lack of evidence leaves program implementers without clear
strategies for maximizing the impact of ProCCM in different transmission settings.

In this study, we develop and apply a simulation-based framework to investigate the effectiveness of
ProCCM in reducing severe malaria cases given various treatment seeking behaviors and we assess the
potential for improving the impact of ProCCM through adaptive sweep scheduling. Using the Saraya Health
District in Senegal as a case study, we extend a validated agent-based malaria transmission model that
incorporates individual-level disease progression, mosquito dynamics, immunity development, and
treatment-seeking behavior. We propose and compare three heuristics for sweep scheduling: (1) an evenly
spaced approach, (2) a greedy algorithm that targets days of highest symptomatic burden, and (3) a weighted
method that balances prevalence distribution with temporal spacing. These strategies are evaluated across
a range of treatment-seeking rates to understand their impact on severe malaria cases.

2 METHODS

2.1 Malaria Transmission Model

We adapted the agent-based simulation model for malaria transmission originally developed by (Griffin et
al. 2016), extending the mosquito dynamics and incorporating ProCCM sweeps based on the frameworks
proposed by (White et al. 2011) and (Wang et al. 2024). The simulation explicitly tracks individual human
agents through daily transitions across infection states, and updates their age and immunity level, while
modeling mosquito populations as a compartmental system. Figure 1 illustrates the full transmission flow
between and within the human and mosquito systems.
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Figure 1: Simulation model transmission flow diagram which incorporates interactions between a mosquito
compartmental model and an agent-based model of human capturing age, immunity, and malaria status
(infection state) in each day.
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2.1.1 Human Infection States

Table 1 outlines the human infection stages captured in the model. A human infection begins in the
susceptible (S) stage, following a successful bite by an infectious mosquito. After infection, the malaria
parasite first passes through a pre-erythrocytic liver stage, which typically lasts 1-2 weeks, before
progressing to the blood stage. During this stage, as the parasite density increases, the infected individual
may begin to exhibit mild clinical symptoms (Cy;), with the probability of symptom onset determined by
their immunity level. If no symptoms appear, the individual progresses to an asymptomatic patent infection
(Ap), where the parasite is still detectable by RDT. Some of these parasites may develop into gametocytes,
making the human infectious to mosquitoes. Individuals in the mild clinical stage (C),), may seek treatment
(T), after which they receive a temporary period of protection (P) before returning to the susceptible stage
(5). If not treated, they may self-recover and transition to (Ap) and then to asymptomatic subpatent stage
(As), where the parasite becomes undetectable by RDT but still present. Alternatively, some untreated
individuals may deteriorate into the severe clinical stage (Cs), where there is a defined probability of death
(D). In contrast to the original model where the C,, stage was fixed at 5 days (Griffin et al. 2016), we allow
its duration to vary uniformly between 1 and 9 days, which better captures the clinical variability of malaria
progression, known to worsen rapidly—sometimes within 24 hours. This model also allows for
superinfection (the infection of a host already carrying a malaria parasite with a genetically distinct strain
of the parasite) during both the Ag and Ap stages. The full state transition diagram is shown in Figure 1.

Table 1: Human infection stages.

Stage  Description

S Susceptible

Ap Asymptomatic patent infection

Ag Asymptomatic subpatent infection
Cy Clinical mild stage

Cs Clinical severe stage

T Treatment

D Death

P Protection after treatment

2.1.2 Mosquito Dynamics

The mosquito life cycle is modeled using a compartmental approach. The aquatic stages include eggs (E),
larvae (L), and pupae (PL), which progress sequentially in water. Upon emergence as adults, mosquitoes
enter the susceptible adult (SM) compartment. After biting infectious humans (in Cy;, Cs, Ap or Ag stages),
susceptible mosquitoes become exposed (EM) and eventually progress to the infectious (/M) stage after
an extrinsic incubation period. These infectious mosquitoes can then transmit malaria to susceptible
humans (), or create superinfection for asymptomatic patent or subpatent (Ap or Ag) patients creating a
bidirectional infection loop between humans and mosquitoes. The mosquitos in the adult stage (SM, EM
or IM) will produce eggs, and subsequently evolve into the next generation.

2.1.3 Treatment Seeking and Sweep Modeling

Th agent-based simulation model explicitly tracks treatment-seeking behavior at the individual level. For
individuals in either the mild clinical (Cy;) or severe clinical (Cs) stages, there is a daily probability,
defined as the treatment-seeking rate (TSR), that they will access formal healthcare services. Empirical
studies have shown no significant difference in TSR between children and adults across several malaria-
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endemic countries; therefore, we assume a uniform TSR for all individuals in the population (Battle et al.
2016).

In addition to routine treatment-seeking, this model incorporates ProCCM sweeps, where community
health workers actively visit households and screen for symptomatic individuals. In the model, each sweep
is assumed to perfectly identify and treat all symptomatic individuals (those in Cy; and Cs) present on the
sweep day. As a result, all such individuals immediately transition to the treatment stage (T'), bypassing the
usual probabilistic TSR-based care access.

2.2 Study Site and Model Calibration

The ProCCM pilot study was conducted in 2013 in the Saraya Health District, Senegal, where malaria
transmission is highly seasonal, with the peak transmission season typically lasting from June to November.
Weekly household sweeps conducted from July 8 to November 25—a period that largely overlapped with
the peak transmission season. In total, 20 sweeps were implemented in the intervention group/villages,
while 3 sweeps were conducted in the comparison group (control villages) to collect data on symptomatic
malaria prevalence. In addition to the sweeps, two other malaria control interventions took place in both
groups during this period: a Long-Lasting Insecticide-treated Net distribution campaign from July 15 to
July 25, and a Seasonal Malaria Chemoprevention campaign conducted from November 1 to November 4.

A key metric from this study is the symptomatic malaria prevalence, defined as the proportion of
individuals who had experienced fever within the previous 48 hours, tested positive via RDT, and had not
yet received treatment, relative to the total population. In our model, once symptomatic individuals seek
treatment or are identified during a sweep, they are transitioned to the treatment stage (T') (Figure 1) and
are no longer considered symptomatic, even though clinical symptoms could persist for several days given
treatment. We used this symptomatic prevalence measure, along with data on the number of symptomatic
individuals who sought treatment, to calibrate the model. Specifically, the calibration was based on multiple
metrics from the pilot study, including symptomatic prevalence in both control and intervention villages,
the number of self-reported malaria cases in both groups, and the total number of systematically detected
cases in the intervention village. We also incorporated contextual transmission information using real
rainfall data from the National Centers for Environmental Information, as well as estimates of the
entomological inoculation rate (EIR) and Plasmodium falciparum parasite prevalence among children aged
2-10 years (PfPR 2-10) from Malaria Atlas Project (MAP) (MAP 2025). More details can be found in
(Griffin et al. 2016), (White et al. 2011) and (Wang et al. 2024).

The parameters we estimated during calibration included the environmental carrying capacity, the
number of days of rainfall contributing to larval habitat availability, and the baseline treatment-seeking rate.
The best-fitting baseline TSR was found to be 0.03 for both the control and intervention villages prior to
the introduction of ProCCM sweeps. During the intervention period, we tested the effectiveness of ProCCM
under various TSRs, driven by the additional treatment opportunities and the information about the
availability of free treatment provided by the health workers. These sweeps significantly reduce the burden
of untreated clinical infections and contribute to the overall reduction in severe cases and malaria
transmission in the population.

23 Sweep Heuristics

We propose three different heuristics for determining the best timing for ProCCM sweeps: 1) uniform, 2)
greedy, and 3) weighted. To enable a fair comparison across strategies, we define a fixed planning horizon
from July 8 to November 25, matching the intervention period used in the 2013 pilot study. This
corresponds to days 189 through 329 when expressed on a day-of-year scale. To evaluate the effectiveness
of each heuristic, we analyze the relationship between the number of sweeps and the resulting reduction in
severe malaria cases. Specifically, we vary the total number of sweeps from 5 to 20, the latter aligning with
the weekly sweep schedule implemented during the original pilot.
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The uniform heuristic considers evenly distributed sweeps. Sweeps are distributed across identical
interval within the planning horizon, given a fixed number of total sweeps. This heuristic will result in
predefined sweep dates, which will serve as the baseline for our comparison with the other more adaptive
heuristics.

The greedy heuristic is designed to make the sweep schedule more adaptive to variations in malaria
transmission. Due to the seasonal nature of weather and the influence of other malaria control interventions,
the malaria burden can fluctuate significantly even within the peak season. To better align ProCCM sweeps
with these dynamic patterns, the greedy heuristic selects sweep days iteratively based on the estimates of
symptomatic prevalence, prioritizing the days with the highest transmission while ensuring adequate
spacing between interventions. The pseudo code for the greedy heuristic can be found in Figure 2.

The greedy heuristic begins by initializing the set of potential sweep days as the full planning horizon
and defining key parameters: the total number of sweeps to perform and a radius that enforces a minimum
gap between sweep days. The sweep_days set, which contains the list of selected intervention days, is
initialized to be empty. In each iteration of the algorithm, the current sweep_days are fixed in the simulation,
which is run multiple times (e.g., 500 iterations) to estimate the average symptomatic malaria prevalence
for each day. Days that fall within the exclusion radius of existing selected sweep day are removed from
consideration to avoid overlap. From the set of remaining available days, the day with the highest average
prevalence is selected and added to sweep days. This process continues until all sweep slots are filled,
resulting in a schedule that concentrates interventions on the most critical days while maintaining a practical
distribution across the season. In this algorithm, various radius values (2,3,4 and 5) were tested and we
chose the best performing value (i.e., radius=5) with respect to reducing the number of severe cases.

HEURISTIC 2: GREEDY

Define days = set of days in planning horizon

Define sweep days = set of days to perform sweeps
Define radius = minimum number of days between sweeps
Define n_sweeps = number of sweeps to perform

Initialize sweep days =0
For i=1ton sweeps do
Fix sweep days in simulation
Run simulation (500 iterations)
Compute average prevalence for each day in days
For all s in sweep_days do
Define exclude dayss = {d in days: d in s + radius}
End For
Set valid days = {d in days: d & exclude days;for all s}
Find max_day = day in valid days with highest average prevalence
Update sweep days = union of (sweep_days, max_day)
16 End For
17 Return sweep days

RV SN RN e NV R NI

Figure 2: Pseudo code for the greedy heuristic.

Finally, the weighted heuristic is designed to incorporate prevalence data while maintaining temporal
equity in the allocation of sweeps. Unlike the greedy heuristic, which may neglect lower transmission
periods in favor of peak times, the weighted method ensures that no extended gaps occur between
interventions, reducing the risk of untreated symptomatic cases over extended periods. The pseudo-code
for the weighted heuristic is represented in Figure 3.
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The heuristic begins by running a baseline simulation without any ProCCM sweeps to estimate daily
symptomatic prevalence across the planning horizon. Next, the algorithm computes a cumulative sum of
the daily prevalence and normalizes it to span the interval [0,1], representing the temporal distribution of
malaria burden. This normalized curve is then partitioned into equal-length intervals, corresponding to the
number of sweeps to be scheduled. For each interval, the day with a cumulative prevalence closest to the
interval’s upper bound is selected as a sweep day. This heuristic ensures that sweep timing reflects the
intensity of transmission while also providing even temporal coverage, resulting in a simple, data-driven
strategy that balances responsiveness with fairness.

HEURISTIC 3: WEIGHTED

1 Define days = set of days in planning horizon
2 Define sweep days = set of days to perform sweeps
3 Define n_sweeps = number of sweeps to perform
4 Initialize sweep days =0
5 Initialize daily symptomatic prevalence based on simulation without sweep
6  Compute cumulative sum of daily symptomatic prevalence and normalize
7 Define norm, = normalized cumulative prevalence on day d in days
8  Divide [0,1] into i = n_sweeps + 1 intervals of equal length
9 Define farget; = upper bound of interval i for i in (1 to n_sweeps)
10 Fori=1ton sweepsdo
11 Find target day; = day d with normyg closest to target;
12 Update sweep days = union of (sweep days, target day;)
13 End For
14 Return sweep days
Figure 3: Pseudo code for the weighted heuristics.
3 RESULTS

3.1 Symptomatic Malaria Prevalence and Sweep Plan

Figure 4 and Figure 5 report the average symptomatic malaria prevalence over time under the greedy
heuristic (with radius 5 days) and weighted heuristic, respectively, for different treatment-seeking rates
(TSRs). Each subplot corresponds to a different number of sweeps, for 5, 10, 15 and 20 sweeps. Since
sweep days are selected by these heuristics based on the symptomatic prevalence curve, these prevalence
plots indirectly reveal the timing of sweep implementation as indicated by the steep drops in prevalence
when symptomatic individuals move immediately to the treatment state during a sweep. We present figures
for the greedy and weighted heuristics and exclude the uniform heuristic as its sweep schedule is fixed and
unresponsive to dynamic transmission patterns.
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Figure 4: Symptomatic malaria prevalence with 5, 10, 15, and 20 sweeps using the greedy heuristic with
radius 5 across four treatment seeking rates (TSR = 0.05, 0.20, 0.35, 0.50).
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Figure 5: Symptomatic malaria prevalence with 5, 10, 15, and 20 sweeps using the weighted heuristic across
four treatment seeking rates (TSR = 0.05, 0.20, 0.35, 0.50).

3.2 Severe Malaria Cases

Figure 6 presents the average number of severe malaria cases under the three sweep scheduling heuristics
— uniform, greedy (with radius 5), and weighted — for TSR values of 0.05, 0.20, 0.35, and 0.50. Each
subplot corresponds to a specific TSR level and plots the average severe case count as a function of the
number of sweeps, which ranges from 5 to 20. The figure shows that as TSR increases, the number of severe
cases decreases across all sweep strategies and sweep counts. At TSR = 0.05, the average number of severe
cases starts above 20 with 5 sweeps and declines to around 7 by 20 sweeps. At TSR = 0.20, the curve begins
near 10 and reaches approximately 3.5 at the maximum sweep count. At TSR = 0.35, the values range from
about 4.5 to 2.5. The lowest range is observed at TSR = 0.50, where the average number of severe cases
falls between just over 2 and around 1.5 across the sweep range. These trends demonstrate a consistent drop
in severe malaria burden as the treatment-seeking rate increases, irrespective of the heuristic used or the
number of sweeps applied.

When comparing the performance of the different heuristics, the greedy strategy yields the lowest
severe case counts across nearly all sweep budgets, especially between 5 and 15 sweeps. In many cases, the
greedy strategy results in noticeably sharper reductions in severe cases compared to the other two methods.
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The weighted strategy tends to perform moderately, while the evenly spaced heuristic shows the highest
average severe case counts across most settings. As the number of sweeps approaches 20, the difference in
performance between the three heuristics narrows significantly, with all three strategies converging to
similar levels of effectiveness across TSR levels.

The relative reduction in severe cases from increasing the number of sweeps from 5 to 20 is more
pronounced at lower TSRs. At TSR = 0.05, this reduction exceeds 60%, dropping from over 20 to around
8 severe cases. At TSR = 0.20, the drop is approximately 55%, from near 10 to just below 5. At TSR =0.35,
the reduction is about 40%, and at TSR = 0.50, the reduction is roughly 25%. While the absolute number
of severe cases declines in all scenarios with more sweeps, the magnitude of that reduction decreases as
TSR increases.
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Figure 6: Predicted severe malaria cases given 5-20 sweeps using the three heuristics across four treatment
seeking rates (TSR = 0.05, 0.20, 0.35, 0.50).

4 DISCUSSION

4.1 Operational Insights

This study highlights the value of ProCCM in reducing severe malaria cases, the critical role of treatment-
seeking rates, and the operational improvements achievable through adaptive scheduling strategies. Across
all tested scenarios, increasing the number of ProCCM sweeps consistently reduces the burden of severe
malaria, underscoring the overall effectiveness of the intervention. TSR plays a dual role — it not only
determines how quickly symptomatic individuals access treatment, but it also affects both the relative
impact of ProCCM and the optimal timing of sweeps. Adaptive strategies, such as the greedy and weighted
heuristics, deliver meaningful improvements over uniform scheduling, particularly in low-access settings.
These enhancements can be substantial, with adaptive approaches reducing severe cases by an additional
20% under low TSR conditions.

The effectiveness of ProCCM in lowering severe malaria incidence is consistent and robust across all
conditions. Regardless of the specific scheduling strategy or TSR level, increasing the frequency of
community sweeps reliably decreases the average number of severe cases. This effect is especially
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important in regions like Senegal, where TSR is typically below 0.05 (Gaye et al. 2020). In such low-access
environments, ProCCM plays a vital role in reaching symptomatic individuals who would otherwise remain
untreated. For instance, with a TSR of 0.05, increasing sweep counts reduces severe cases from around 20
to just 8. However, as TSR rises, both the absolute burden of severe cases and the relative benefit of
ProCCM decline, since more symptomatic individuals are treated through existing healthcare services. At
a TSR of 0.5, increasing sweeps from 5 to 20 results in less than a 30% reduction in severe cases, indicating
reduced dependence on ProCCM in high-access settings.

Malaria transmission follows a pronounced seasonal pattern that shapes both the effectiveness and
timing of ProCCM interventions. As illustrated in Figures 4 and 5, symptomatic prevalence is low during
the early dry season, begins to increase around day 190, and peaks between July and November. This
seasonal peak is not uniform — following an initial surge, prevalence temporarily drops before rising again
toward a secondary peak, partly due to the impact of other interventions. The shape of this prevalence curve
is influenced by both TSR and the number of sweeps. At low TSRs, the curve is more volatile due to
accumulated untreated cases; at higher TSRs, prompt treatment flattens the curve. These dynamics affect
sweep scheduling strategies. The greedy heuristic tends to cluster sweeps around peak periods and remains
stable across different TSR levels due to its burden-driven design. In contrast, the weighted strategy adapts
more flexibly to TSR changes by distributing sweeps proportionally to historical prevalence. Still,
regardless of TSR or scheduling strategy, the overall transmission pattern remains largely unchanged, as
asymptomatic carriers—who are not targeted by ProCCM—continue to drive transmission. This highlights
an important finding: ProCCM cannot interrupt transmission on its own.

Among all scheduling strategies evaluated, the greedy heuristic with a five-day exclusion radius
consistently produced the best results. Alternative exclusion radii of 2, 3, and 4 days were tested, but the
five-day buffer yielded the greatest reduction in severe cases. This suggests that sweeps placed too close
together provide diminishing returns. While the greedy strategy is highly effective at targeting peak burden
periods, the weighted approach remains valuable for promoting temporal equity — an important
consideration in public health service delivery. By contrast, the uniform strategy, which spaces sweeps at
fixed intervals regardless of burden, performed the worst in all settings. Although this result aligns with
expectations, our analysis quantifies the performance gap: in low-TSR environments, adaptive strategies
can achieve up to 20% greater reduction in severe cases compared to uniform scheduling. These findings
demonstrate the significant potential of optimizing ProCCM operations and underscore the importance of
data-driven, context-specific planning in malaria control.

4.2 Limitations

This study has several limitations that should be acknowledged. First, while the model incorporates the
development of immunity and successfully captures children as a high-risk population, it does not explicitly
represent pregnant women, another group particularly vulnerable to severe malaria. During pregnancy,
infected erythrocytes adhere to placental glycosaminoglycan receptors, reducing the protective effect of
pre-existing immunity and increasing susceptibility (Rogerson et al. 2007). Given the high birth rate in
many malaria-endemic regions, excluding this group may lead to an underestimation of the total number of
severe cases. Nonetheless, since this omission does not alter the overall transmission dynamics captured by
the model, we believe that the relative trends in case reduction and the comparative effectiveness of
different sweep strategies remain valid.

Second, our ability to validate the simulation model is limited by the scarcity of high-quality field data.
In many high-transmission settings, treatment-seeking rates are low, and healthcare infrastructure is limited,
resulting in sparse and incomplete records of both symptomatic and severe malaria cases. This makes it
challenging to directly compare model outputs with empirical observations. Moreover, predicting severe
malaria is inherently difficult due to the high variability in individual immune responses and the fact that
most infected individuals do not progress to severe disease. These constraints introduce uncertainty into
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absolute case count projections, but the model still offers valuable insights into the relative performance of
different ProCCM strategies under varying operational conditions.

5 CONCLUSION AND FUTURE WORK

This study evaluates the effectiveness of different sweep scheduling heuristics for Proactive Community
Case Management (ProCCM) in reducing severe malaria cases across a range of treatment-seeking
behaviors. By integrating an agent-based malaria transmission model with adaptive intervention strategies,
we demonstrate that data-informed, adaptive sweep plans—particularly the greedy and weighted
heuristics—consistently outperform evenly spaced approach, achieving up to 20% greater reduction in
severe cases. The greedy strategy, especially when paired with a five-day spacing radius, achieves the
greatest reduction in severe cases by concentrating interventions on high-burden periods. Meanwhile, the
weighted strategy offers an equitable alternative that remains sensitive to transmission dynamics. Our
findings also highlight how TSR influences both the burden of disease and the relative benefit of ProCCM,
with the largest impact observed in low-access settings.

A key direction for future work is the development of heuristics that utilize only historical and current
information, enabling timely and adaptive decision-making without relying on full knowledge of future
transmission patterns. Such strategies should be robust to uncertainty and grounded in data typically
available in resource-constrained settings. We also aim to incorporate additional high-risk groups, such as
pregnant women, into the model and improve empirical validation through expanded data collection efforts.
By bridging simulation with field constraints, we hope to support the design of more effective, equitable,
and operationally feasible malaria control policies.
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