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ABSTRACT

Biopharmaceutical drugs have transformed modern medicine, yet their manufacturing processes remain
challenged by yield variability and rising production costs. This paper explores a promising application
in a new domain to improve biomanufacturing efficiency through the backpass production method. Our
production setting consists of two bioreactors: a dedicated bioreactor for production of a high-value product
A, and a shared bioreactor for product A and a lower-value product B. The backpass method allows biomass
to be transferred from the dedicated to the shared bioreactor, enabling additional production of product
A while bypassing extensive upstream processing steps. We examine the performance of three backpass
strategies, defined based on feedback from our industry partner, and use discrete event simulation to answer
industry-specific questions related to the system’s performance regarding throughput and profitability. This
analysis provides practitioners with a decision-support framework for capital investments and operational
planning.

1 INTRODUCTION

Biopharmaceutical drugs have transformed modern medicine and improved the health and well-being of
both humans and animals. The use of living organisms in biopharmaceutical manufacturing introduces
unique challenges, including uncertainty and variability in yield, lead times, and costs. As market demand
and competition rise, the industry shifts to optimizing operations by improving throughput and resource
allocation, ultimately reducing the costs of these life-saving biopharmaceuticals. A typical biomanufacturing
process consists of two main steps: upstream processing (USP) and downstream processing (DSP). The USP
involves growing bacterial cultures through a series of fermentation processes progressing from laboratory-
scale setups to large bioreactors, all aimed at producing biomass under carefully controlled conditions.
A bioreactor is a controlled environment, typically a stainless steel vessel, where microorganisms, cells,
or enzymes are cultivated to carry out fermentation. Fermentation is a biochemical process that converts
substrates (such as sugars) into products (such as biomass) through metabolic activity. DSP then purifies
the biomass using centrifugation, filtration, and other steps (Martagan et al. 2024).

One approach to addressing the challenges in biomanufacturing is to increase bioreactor profitability
and optimize resource allocation by implementing the emerging backpass production strategy. The backpass
principle is applicable for a biomanufacturing system consisting of two bioreactors operating in parallel.
The first bioreactor is dedicated to producing a high-value product in a batch-wise campaign. Throughout
this paper, we refer to the high-value product as product A and the corresponding bioreactor as the dedicated
bioreactor. The second bioreactor serves as a shared resource between the two production lines within the
biomanufacturing facility. By default, it produce batches of product B, which has a lower value compared
to product A, but it can also be used to produce an additional batch of product A through a backpass action.
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We will refer to this flexible bioreactor as the shared bioreactor. During a backpass action, a predetermined
fraction of the biomass from the dedicated bioreactor is transferred to the shared bioreactor, after which the
biomass accumulation continues in both bioreactors until the growth stops and the biomass is harvested.
By performing a backpass action, an additional batch of product A is produced in the shared bioreactor
without requiring the time consuming scale-up steps prior to the main fermentation in the shared bioreactor.
However, the backpass action carries inherent risk, as there is a chance of failure that could result in the
loss of the transferred biomass. Therefore, the success of the backpass depends on carefully balancing the
potential gain in high-value product against the risk of losing it.

Figure 1: Illustrative example of the backpass production strategy.

Figure 1 illustrates the backpass production method for our problem setting including the dedicated
and shared bioreactor. The solid lines depict the current practice of batch fermentation within the dedicated
bioreactor, characterized by a continuous cycle comprising a lag phase, an exponential growth phase, a
stationary phase, and subsequent harvesting. This process is followed by a bioreactor setup before initiating
the next batch of product A. Each time the shared bioreactor finishes producing a batch of product B
and becomes available after a bioreactor setup, a decision must be made: either to perform a backpass
action (i.e., transfer a predetermined fraction of product A from the dedicated bioreactor to the shared
bioreactor) or to redirect the shared bioreactor to produce another batch of product B. In our problem
setting, we assume only one backpass action per batch is allowed. If the decision is made to proceed with
the backpass, there exists a risk of failing the backpass action, which would lead to a loss of the transferred
biomass fraction. In addition, a failed backpass action inevitably results in a time consuming setup time
in the shared bioreactor. If the transfer is successful, biomass for product A continues to grow in both
bioreactors until the stationary phase is reached, after which the contents of the bioreactors are harvested.
Note that the time until reaching the stationary phase after backpass is most likely not the same for both
bioreactors, as it heavily depends on the starting biomass amount and inherent uncertainties. Subsequently,
after being harvested and completing the required setup time, the dedicated bioreactor initiates a new batch
of product A. After the setup time for the shared bioreactor, a decision must be made about whether to
perform a backpass action. If a backpass is not feasible because the dedicated bioreactor is still in the
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setup phase, the shared bioreactor will by default start the production of another batch of product B. A
successful backpass action results in an additional batch of product A without requiring scale-up from seed
to main fermentation. However, the timing of the backpass action is crucial as the risk of failure of the
backpass increases with higher and lower amounts of biomass. If the backpass action is taken too early, the
culture will still be in the slow-growing lag phase, resulting in insufficient biomass for effective growth.
Conversely, if the action is taken near the end of the exponential growth phase, there is a risk that the
culture is already transitioning to the stationary phase, where growth ceases. In both cases, the backpass
is more likely to fail, potentially resulting in the loss of transferred biomass and requiring a setup time to
clean and sterilize the shared bioreactor.

In practice, there is limited understanding on how to best use the shared bioreactor for backpass with
the goal of increasing profitability while managing risk-reward trade-offs. Using Discrete Event Simulation
(DES), we investigate the performance of different backpass strategies and their effect on profitability and
throughput of product A and B respectively. Together with our industrial partner MSD, we determined three
backpass strategies for performance evaluation: Naive Backpass (always perform the backpass regardless of
risks), AB Backpass (a simple one-step look-ahead strategy based on expected profit), and Time Threshold
Backpass (perform backpass during a prespecified time window). We will compare these strategies to the
No Backpass benchmark policy, in which the dedicated and shared bioreactor exclusively produces product
A and B, respectively.

The Naive and AB Backpass strategies focus solely on the fermentation environment and ignore USP and
DSP planning constraints. However, the Time Threshold Backpass policy offers a more practical approach,
as it does take planning constraints into account by limiting the backpass action to fixed time windows.
Using a DES model, we will compare the performance of the Naive, AB, and Time Threshold Backpass
strategies to obtain managerial insights on the performance effect of adhering to planning constraints. We
will perform a sensitivity analysis for a wide range of practical settings to get a better understanding of the
performance of different backpass policies. In addition, we will analyze the trade-off between increasing
planning flexibility and the impact on profitability and throughput of product A and B respectively.

The remainder of this work is structured as follows. In Section 2, we review related literature from
both a life sciences and operations research perspective. In Section 3, we outline our DES model, which
is followed by our numerical experiments in Section 4. In Section 5, we provide concluding remarks and
outline directions for future research.

2 RELATED WORK

From a (bio-)manufacturing perspective, backpass may seem similar but should not be confused with
two-stage fermentation (also known as cascade fermentation), a common strategy in bioprocessing where
fermentation occurs in two sequential bioreactors, each optimized for their own specific conditions. This
approach enhances throughput and yield, exemplified by bioethanol production, where the first stage involves
hydrolysis of biomass into fermentable sugars, followed by a second stage where yeast ferments these
sugars into ethanol (Rastogi and Shrivastava 2017). The key difference between backpass and two-stage
fermentation is that both bioreactors in two-stage fermentation serve a different purpose, whereas in backpass
both bioreactors produce the same product. Backpass also shares similarities with bleed-feed, which is
another biomanufacturing method in which a fraction of biomass is extracted from a bioreactor, allowing
growth to continue while skipping a setup and hence enhancing overall biomass throughput. However, in
backpass, the extracted biomass is transferred to a shared bioreactor for further fermentation, instead of
being harvested and send to DSP (Koca et al. 2023).

In this paper, we use simulation to analyze the performance of the backpass biomanufacturing envi-
ronment. Recently, simulations such as digital twins have found their way into biomanufacturing with
applications ranging from integration into bioreactor technology (Zobel-Roos et al. 2020) to advanced in-
process control strategies for enhanced operational efficiency (Park et al. 2021), and real-time optimization
(Udugama et al. 2021). A digital twin allows for the simulation of different scenarios and consequently
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digital twins and simulation often appear together in the literature. For example, Van Den Houten et al.
(2023) looked at a complex scheduling problem in multi-product biomanufacturing systems consisting of
continuous and batch processes, focusing on optimizing production schedules for makespan and lateness.
It compares the rolling-horizon approach to a global optimization strategy, showing that the rolling-horizon
method outperforms the global strategy in both real and synthetic scenarios. Another simulation example
within biomanufacturing is Morey et al. (2024), who used a hybrid approach to combine simulation and a
queuing model for optimizing a biomanufacturing system that produces low-volume, high-variability, and in-
dividualized products in order to increase efficiency and support for bottleneck analysis in biomanufacturing
design. A simulation methodology which is often used for modeling a manufacturing environment in order
to identify bottlenecks, simulate resource allocation and complex system interactions as well as performing
what-if scenario analyses is DES (Banks 2005). An example of a DES use case within biomanufacturing is
Sachidananda et al. (2016), who present a DES model for a biopharmaceutical company to evaluate capital
investments in manufacturing. It facilitates ’what-if’ scenario planning and shows significant improvements
over the current process, including reduced throughput time, better resource utilization, lower operating
costs, and fewer bottlenecks. Also, Oyebolu et al. (2019) developed a DES for continuous bioprocesses
within a scheduling context, exploring dynamic scheduling policies to improve operational decisions in
multi-product facilities. Using shared resources is a frequently recurring theme in biomanufacturing since
resources such as bioreactors are often shared for different products. Therefore, finding effective sharing
strategies or coming up with a good schedule is of importance. Limon and Krishnamurthy (2020) studied
biomanufacturing scheduling with "no-wait" constraints, using a mixed-integer linear programming model
to minimize total tardiness and allow for schedule revisions. They proposed a dynamic scheduling approach
and compared it to traditional methods, validated through collaboration with industry partners to create a
practical scheduling tool.

Our work makes several contributions to the emerging field of simulation in biomanufacturing. To the
best of our knowledge, this project is among the first to simulate the backpass concept and systematically
analyze its trade-offs in terms of profitability and throughput. We evaluate the performance of three
practical backpass strategies defined in collaboration with our industry partner. Using realistic industry
data, our results provide actionable insights for practitioners and highlight the potential benefits of backpass
technology in improving profitability and throughput.

3 SIMULATION MODEL

3.1 Performance Metrics

In this paper, we study the performance of a manufacturing system consisting of a dedicated and shared
bioreactor operating in parallel. The dedicated bioreactor only produces consecutive batches of product A,
which is our main product of interest. The shared bioreactor produces product B, but also has the ability to
produce product A via a backpass action. The primary objective is to increase the overall profit generated
by the facility through the production of batches A and B. The secondary objective is to obtain insights
into how much product A and B can be produced under given backpass strategy. For any given backpass
strategy and scenario evaluated in our simulation model, the production rate of product A and B produced
is captured by Equation (1), which describes the biomass throughput T Pi for product i ∈ {A,B}. Here,
xi

tot is the total amount of biomass of product i produced during the simulation horizon Tsim. Given that
the value of a unit of biomass for products A and B, represented by cA and cB, can vary in value, and
considering that product A is deemed the more valuable product (i.e., cA > cB), we will express the overall
profit Π of the system in terms of biomass units of product A using the throughput for both products and the
(cB/cA) ratio, which is described in Equation (2). Therefore, our performance metrics will be throughput
for product A and B and normalized profit per time respectively.

T Pi =
xi

tot

Tsim
, for i ∈ {A,B} (1)
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Π = T PA +

(
cB

cA

)
T PB (2)

3.2 Biomass Growth and Risk Dynamics

We model biomass growth of product A using the Gompertz Equation (3), which is commonly used to
describe the S-shaped growth curves of microbial fermentation processes (Wang and Guo 2024):

x(t) = c1e−c2e−c3t
. (3)

Here, x is the biomass in dimensionless units, t is the cultivation time in hours, and c1,c2 and c3 are
growth parameters. Figure 2 shows the biomass growth profiles and the corresponding Gompertz fit for 27
batches of product A coming from our industrial partner. The data has been anonymized such that biomass
x ranges between 0 and xmax = 20. For product B, the production duration is randomly sampled from a
normal distribution, where the mean (tB

avg) and standard deviation (σB) are based on fermentation times
coming from the Gompertz curves dataset as shown in Figure 2. Note that these distribution parameters
are such that the probability of sampling a negative duration is negligible.

When performing a backpass action, in which a fraction b of the current biomass of product A xA
current is

transferred from the dedicated to the shared bioreactor, there exists a probability that the action fails. Failure
leads to the transferred cells (i.e., a biomass amount of bxA

current) becoming non-viable for further growth
in the shared bioreactor, thereby requiring disposal. The probability of a failed backpass action, denoted
by p(x), is dependent on the biomass amount x, where higher and lower biomass amounts correspond to
increased probability of failure (i.e., p(x) is convex in x). We model p(x) as a modified, inverted Beta
distribution represented by Equation (4) in which we first normalize biomass x via x

xmax
, such that x

xmax
∈ [0,1].

Similarly, u ∈ [0,1] is used to identify the maximum of the Beta probability density function, providing a
normalization factor for consistent scaling. We additionally apply min and max operators to enforce the
range x ∈ [0,1]. Note that similar to growth, the risk dynamics are a batch specific feature. Therefore, the
risk profile p(x) is scaled such that it ranges between 0 and the maximum biomass xmax for a given batch:

p(x) = min

1, max

0,1−λ
Beta( x

xmax
;α,β )

max
u∈[0,1]

Beta(u;α,β )

 . (4)

In Equation (4), Beta is the Beta probability density function given by:

Beta(x;α,β ) =
xα−1(1− x)β−1

B(α,β )
, (5)

in which B(α,β ) is the Beta function with parameters α and β . In our simulation analysis, we consider
three specific parameter sets for the distribution in Equation (4) to represent a broad range of realistic
settings for the backpass failure probability. Figure 3 shows these three risk scenarios, representing no,
medium and high risk. The distributions are modeled using Equation (4), where α = 1.5 and β = 1.5
and where variations in the scale parameter λ influence the associated risk profiles. Specifically, λ = 5
corresponds to no risk, whereas λ = 0.5 corresponds to high risk.

3.3 Backpass Strategies

In our simulation, the benchmark policy is to not perform a backpass action, which we will refer to as the
No Backpass (NB) policy. Under this policy, product A is continuously produced in subsequent batches
in the dedicated bioreactor and the same holds for product B in the shared bioreactor. To evaluate the
potential advantages of backpass under different scenarios, we examine the following three strategies and
compare their performance metrics profitability and throughput to the benchmark policy:
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Figure 2: Biomass growth curves and Gompertz
fit product A.

Figure 3: Risk scenarios inverse Beta distribu-
tion.

• Naive Backpass (NAB) always performs a backpass action if possible, which is when the dedicated
bioreactor is growing product A and the shared bioreactor is empty and available after a setup time.

• AB Backpass (ABB) is a one-step look-ahead policy based on the expected profit. It compares
the average expected profit for the next batch on both bioreactors when performing a backpass
action to the expected throughput for the next batch on both bioreactors when no backpass is
performed. It essentially assesses whether producing a batch of product A or product B in the
shared bioreactor yields the highest short-term profit per time unit. If the condition in Equation (6)
is met, i.e., if the one-step look-ahead expected profit under a potential backpass action exceeds the
expected profit under no backpass action, a backpass action is performed. If the condition is not
met, production continues under the no backpass scenario. In Equation (6), xA

avg is the conditional
empirical expected value of biomass product A given the current biomass has been reached without
entering the stationary phase (i.e., the expected average biomass for xA

max > xA
current , where xA

max
represents the maximum biomass of the remaining Gompertz growth curves after xA

current ). More
formally, xA

avg = Ê[xA
max | xA

max ≥ xA
current]. The conditional empirical expected average fermentation

time of a batch A, denoted as tA
avg, is calculated in a manner analogous to that of xA

avg. The terms
t∗ and t∗∗ refer to the time for an average batch of A to reach biomass amount xA

current(1−b) and
xA

currentb respectively. The term (1− p(xA
current)) represents the probability of a successful backpass

action. For the NB situation, the expected profit for producing a batch of product B in the shared
bioreactor is calculated using xB

avg(cB/cA) and tB
avg, which is the average production time for a batch

B.

Expected profit under backpass︷ ︸︸ ︷(
xA

avg − xA
current(1−b)

tA
avg − t∗

)
︸ ︷︷ ︸

Dedicated bioreactor

+(1− p(xA
current))

(
xA

avg − xA
currentb

tA
avg − t∗∗

)
︸ ︷︷ ︸

Shared bioreactor

>

Expected profit under no backpass︷ ︸︸ ︷(
xA

avg − xA
current

tA
avg − tcurrent

)
︸ ︷︷ ︸

Dedicated bioreactor

+

(
xB

avg(cB/cA)

tB
avg

)
︸ ︷︷ ︸

Shared bioreactor
(6)

• Time Threshold Backpass (TTB) only performs a backpass if possible and if the time since the start
of fermentation in the dedicated bioreactor falls within a prespecified time window [T ∗−∆,T ∗+∆],
which is coordinated with USP and DSP planning. Here T ∗ is the target time in hours with T ∗ ∈ kTw,
where Tw is the time window in hours, k = 1,2,3, .. and ∆ represents the bandwidth in hours. The
reason for a time-driven threshold is because some of the critical USP and DSP steps such as the
media preparation work in fixed cycles. Using the TTB allows for the simulation of our most
realistic backpass scenario, as it takes the coordination of a potential backpass action with USP
and DSP planning into account.
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3.4 Simulation Flow

Figure 4 provides a high-level overview of the backpass DES flow. The simulation involves two bioreactors:
(i) a dedicated bioreactor (D), which exclusively produces batches of product A; and (ii) a shared bioreactor
(S), which can produce either a batch of product B or a batch of product A via a backpass action. At the
simulation start (t = 0), one event is scheduled for each bioreactor. For D, this entails sampling a Gompertz
growth trajectory from the empirical dataset shown in Figure 2. The resulting production event on D is
assigned batch-specific properties: a start time tD

start, an end time tD
end, and a maximum biomass xA

max, which
is reached at tD

end.
For S, it is not initially known whether the event will be used for product B or for receiving a backpass

of product A. It is assigned a start time tS
start, indicating when the bioreactor becomes available. Both

events are added to an event list, which is sorted chronologically by start time. At all times, the event
list contains exactly two entries: one scheduled event for D and one for S. At each decision point, the
simulation identifies the next event to execute, Ec, based on the earliest start time: t = min(tD

start, t
S
start).

If Ec is the event on S, this implies tS
start < tD

start, meaning D is unavailable (e.g., due to a setup time
Ts). In that case, S is used to produce a batch of product B, yielding a reward of xB

avg. A new production
event on S is then scheduled by sampling a duration from tB ∼ N (tB

avg,σB) and adding the setup time Ts,
resulting in a new start time: tS

start = t + tB +Ts. If Ec is the event on D, a batch of product A is being
produced in the dedicated bioreactor. A backpass is feasible if the shared bioreactor becomes available
before D finishes: tS

start < tD
end. If backpass is infeasible (i.e., there is no overlap), the batch is harvested in

D, yielding a reward of xA
max. A new event is then scheduled on D by sampling another Gompertz growth

trajectory, with a start time of tD
end +Ts. If backpass is feasible, whether it occurs depends on the policy

being simulated. Under the NAB (naive always-backpass) policy, backpass always occurs. Under the ABB
and TBB policies, the decision depends on expected profit or a predefined time window, respectively. If
the policy conditions are not met, S is used to produce product B (as described above), and a new event
is scheduled on S.

Meanwhile, production in D continues and may overlap with the newly scheduled S event. If the policy
permits a backpass, the action is executed with a success probability of 1− p(xA

current). If successful, a
biomass amount of b · xA

current is transferred to S, while (1−b)xA
current remains in D. Both tD

end and tS
end are

updated based on the original Gompertz growth trajectory, which remains unchanged. Since the batch is
split, each bioreactor contributes a reward of xA

max, resulting in a total reward of 2xA
max. New events are

then scheduled on both bioreactors. Importantly, each D event allows for at most one backpass. If the
backpass fails (with probability p(xA

current)), the transferred biomass in S is lost and no reward is obtained.
D continues its production to completion and yields xA

max at harvest. New events are scheduled accordingly.
This process repeats until the simulation reaches the time horizon Tsim at which point the performance
metrics throughput and profit are calculated.

4 NUMERICAL EXPERIMENTS

We conduct an extensive set of numerical experiments based on representative industry data. In Section 4.1,
we first present the experimental setup and the base case scenario parameters. In Section 4.2, we explore
the trade-off between the expected profit and the throughput for products A and B. In these experiments,
we range the value ratio (cB/cA) ∈ (0,1], consider different backpass fractions b ∈ (0,1) and capture the
performance under several risk scenarios modeled through λ ∈ {0.5,1,5}. In Section 4.3, we investigate the
effect of increased planning flexibility on our performance metrics. Specifically, the bandwidth parameter
∆ of the TTB policy is analyzed by ranging ∆ ∈ [1,24].

4.1 Experimental Setup and Base Case Scenario

Table 1 shows the base case scenario parameters which will be used as the default settings in our numerical
experiments. The biomass growth dynamic values for xA

avg,x
B
avg, t

A
avg, t

B
avg and σB are based on the anonymized

911



Dirckx, Kapteijns, Drent, and Martagan

Figure 4: Flowchart backpass DES.

dataset from our industrial partner. As a default setting we consider the biomass value ratio (cB/cA) and
the backpass fraction b to be 0.25 and 0.5 respectively. For the default risk scenario we take λ = 1 and
keep α and β fixed at 1.5 as it represents the medium risk scenario. The bioreactor setup time Ts for both
batch A and B is assumed to be 24 hours and after the warm-up period we will simulate for a year, which
corresponds to 8736 hours. In accordance with our industrial partner, we will consider the TTB policy
parameters Tw and ∆ for the base case scenario to be 24 and 3 hours respectively.

Table 1: Parameters base case scenario.

Parameter Description Value Unit

xA
avg Average biomass batch A 15.48 -

xB
avg Average biomass batch B 15.48 -

tA
avg Average fermentation time batch A 70.25 hours

tB
avg Average fermentation time batch B 70.25 hours

σB Standard deviation fermentation time batch B 10.51 hours
(cB/cA) Biomass unit value ratio 0.25 -
b Backpass fraction 0.50 -
α Risk scenario shape parameter 1.50 -
β Risk scenario shape parameter 1.50 -
λ Risk scenario scale parameter 1 -
Ts Bioreactor setup time batch A and B 24 hours
Tsim Simulation duration 8736 hours
Tw Time window TTB policy 24 hours
∆ Bandwidth TTB policy 3 hours

4.2 Analysis on Throughput and Profitability

We first consider the base case scenario and investigate the effect of changing the parameters (cB/cA) ratio,
backpass fraction b and λ on the performance metrics profit and throughput.

Figure 5 illustrates the impact of varying the ratio of (cB/cA) on profit and throughput within the
base case scenario. The analysis yields several managerial insights. First, beyond a certain threshold of
the (cB/cA) ratio, it becomes from a financial perspective disadvantageous to engage in backpass actions,
regardless of the backpass policy employed. Prior to reaching this critical juncture, the implementation of
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backpass actions is most profitable, as both NAB and ABB policies exhibit alignment in their performance
outcomes. Second, the ABB policy demonstrates a limited capacity to adjust to this turning point, as
evidenced by the persistent profit gap when compared to the NB policy after the (cB/cA) threshold . This
indicates that while the ABB policy attempts to adapt, it does not fully capture the risk-reward trade-off in
this context. Third, the shift in this risk-reward trade-off, as indicated by the profit turning point, results in
a decline in T PA for the ABB policy whereas T PB starts to increase. In contrast, the throughput metrics for
the other policies remain relatively stable, as they lack the adaptability necessary to respond to fluctuations
in expected profit.

Figure 5: Effect of (cB/cA) ratio on profit and throughput for base case scenario parameters including
99% confidence intervals.

The impact of varying the backpass fraction b on profit and throughput within the base case scenario
is depicted in Figure 6. Overall, an increase in the backpass fraction is associated with a decline in profit.
This phenomenon can be attributed to the fact that, in the event of a backpass action failure, a higher
backpass fraction results in a greater loss of biomass. Consequently, it is advisable to maintain a lower
backpass fraction to optimize profit.

Figure 6: Effect of backpass fraction b on profit and throughput for base case scenario parameters
including 99% confidence intervals.
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Figure 7 illustrates the profit and throughput across various risk scenarios within the base case scenario.
Consistent with our expectations, an increase in λ (indicating a lower risk of backpass failure) is associated
with a more advantageous backpass environment. This favorable condition leads to an increase in profit,
an increase in T PA, and a corresponding decrease in T PB.

Figure 7: Effect of risk scenario parameter λ on profit and throughput for base case scenario parameters
including 99% confidence intervals.

4.3 Analysis on Planning Flexibility

Upon examining the profit depicted in Figures 5, 6, and 7, it becomes evident that the optimal decision varies
based on the specific scenario and parameters, with the choice being either to execute a backpass action or to
forgo it entirely. In contrast, the performance of the TTB policy is positioned between these two extremes,
as its effectiveness is constrained by adherence to the USP and DSP constraints. Consequently, either the
NB policy or the NAB/ABB policy appears to yield the highest profit, contingent upon the simulation
parameters, while the TTB policy remains intermediate in performance. This observation suggests the
presence of a dual policy structure when the focus is solely on the fermentation environment, particularly
in the absence of planning constraints. Figure 8 further substantiates the existence of such a dual policy
framework, providing an overview of which action achieves the highest throughput for a given cB

cA
ratio and

backpass fraction b.
When broadening the scope from the fermentation environment to encompass the entire production

process (i.e., including USP and DSP), it becomes important to assess the performance loss attributable
to adherence to planning constraints. Figure 9 illustrates the profit differential, accompanied by a 99%
confidence interval, between the ABB policy, identified as the most profitable option alongside NAB in the
base case scenario and the TTB policy, as the bandwidth ∆ is varied for three simulated backpass fractions
b ∈ {0.25,0.50,0.75}. From this figure, two key observations emerge. First, as ∆ increases to 24 hours, the
profit difference converges to zero, suggesting that the TTB policy increasingly aligns with the NB policy,
which exhibits performance characteristics similar to those of the ABB policy in the base case scenario.
Second, for lower bandwidth values of ∆, the profit difference relative to the best-performing policy is
minimized at higher backpass fractions b. This phenomenon can be attributed to the advantageous nature
of backpassing in the base case scenario. Whenever the opportunity arises, albeit infrequently with low ∆,
it is beneficial to maximize backpassing efforts. In this context, the advantages gained from backpassing
outweigh the risks associated with higher bleeding fractions, as demonstrated in the preceding subsection.
Practitioners can utilize this information to make informed decisions regarding the allocation of investments
in USP and DSP capacity, thereby facilitating an increase in ∆ and enhancing overall profitability.
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Figure 8: Dual policy structure for base case
scenario.

Figure 9: Profit gap between ABB and TTB
policy as a function of ∆ for base case scenario.

5 CONCLUDING REMARKS AND FUTURE RESEARCH

In this paper, we study the backpass production method, which is a relatively unexplored production
setting consisting of two bioreactors operating in parallel. We simulate three distinct backpass policies
that necessitate a trade-off between the production of a high-value product A and a lower-value product B.
We study the performance of this system by evaluating the performance metrics profit and throughput for
product A and B for a range of practical settings.

Overall, there exists a specific (cB/cA) ratio prior to which the risk-reward trade-off indicates that the
implementation of backpass actions enhances profit relative to the NB benchmark policy. Furthermore, it is
observed that higher backpass fractions and elevated risk scenarios are associated with reduced profitability.
This decline in profit can be attributed to the increased biomass loss that occurs when a backpass action
fails, particularly at higher backpass fractions. In the case of the TTB policy, which operates under the
constraints of USP and DSP, a profit gap exists when compared to the more profitable NAB and ABB
policies. As the bandwidth ∆ increases, the profit differential diminishes, suggesting that the TTB policy
increasingly aligns with the NAB policy, which exhibits performance characteristics similar to those of the
ABB policy for the base case scenario. Additionally, at lower bandwidths, the profit difference is minimized
at higher backpass fractions, indicating that the benefits of backpassing outweigh the risks associated with
higher bleeding fractions. This insight provides valuable guidance for practitioners seeking to optimize
investments in USP and DSP capacity to enhance overall profitability.

Future research could focus on several key areas. First, it is possible to assume a variable backpass fraction
instead of a predetermined parameter. However, this approach may introduce complexities in simulations
due to the large number of options this results in. Therefore, employing a Markov Decision Process
(MDP) may be necessary to determine the optimal backpass fraction for any given state. Subsequently, the
performance gap between the simulation results and the MDP outcomes can be assessed to gain insights
into the effectiveness of the current simulation policies. Second, the simulation could be expanded to
incorporate additional bioreactors, production lines, and coordination options. In addition, future research
can analyze the utilization of bioreactors, seeking alternative strategies to maximize resource efficiency.
Third, by integrating customer demand information for the various products into the model, we can
provide managerial insights regarding market impact and identify the most effective approach for fulfilling
contractual obligations based on throughput metrics. Finally, the simulation model developed in this study
facilitates a comprehensive risk analysis that evaluates investments in USP and DSP process capacities
against the potential increase in profit. By quantifying the additional profit gained from an expanded time
window bandwidth ∆ and offsetting this against the associated investments, practitioners are provided with
a framework to generate strategic insights regarding the optimal balance between investments, profit and
throughput.
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