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ABSTRACT 

Computational Fluid Dynamics (CFD) is a widely used method for wind modeling in autonomous drone 

training, yet its computational expense limits real-time applications. This study explores the reliability of 
a convolutional autoencoder-based approach as a replacement for CFD in wind field generation. A 
convolutional autoencoder (CAE)is trained on CFD-generated wind data to learn its spatial and dynamic 
distribution patterns, enabling the generation of realistic wind fields with significantly lower 
computational costs. The generated wind fields are then used to train reinforcement learning (RL)-based 
drones, with their policies evaluated in real CFD environments. Results demonstrate that the CAE 

accurately replicates CFD wind patterns, supports stable drone navigation, and facilitates seamless 
transferability of RL-trained policies from autoencoder-generated wind environments to CFD-based 
environments. These findings highlight the convolutional autoencoder’s potential as a computationally 
efficient and reliable alternative to traditional CFD in autonomous drone simulations. 
 

1 INTRODUCTION 

Autonomous drones have gained widespread adoption across various applications, including search and 
rescue, environmental monitoring, infrastructure inspection, and logistics (Capolupo et al. 2015; Jacobsen 
et al. 2023; Mayer et al. 2019). Their ability to operate in complex and dynamic environments makes 
them particularly useful for urban navigation, where obstacles such as tall buildings and unpredictable 
wind conditions pose significant challenges. One critical aspect of drone operation in urban settings is 
their ability to adapt to aerodynamic disturbances, including wind currents that vary in intensity and 

direction due to interactions with the built environment (Blocken et al. 2008). This problem is particularly 
pronounced in dense urban areas, where local wind variations can lead to unexpected turbulence and 
instability, affecting flight safety and control accuracy (Biao et al. 2019). 

To address these challenges, RL-based approaches have been increasingly explored for training 
autonomous drones. RL enables drones to learn complex navigation strategies by interacting with 
simulated environments and optimizing their control policies based on predefined objectives such as 

stability, energy efficiency, and obstacle avoidance (Kaelbling et al. 1996). However, a key limitation in 
training RL-based drones in a simulated windy environment is accurately modeling the aerodynamic 
forces they will encounter in real-world conditions. Acquiring actual wind field data is often challenging 
due to its limited availability and the complexity of real-world measurements. Consequently, traditional 
approaches rely on CFD to simulate wind environments, offering high-fidelity aerodynamic data but at a 
significant computational cost (Calzolari and Liu 2021). The high computational cost of CFD-based 

training makes it impractical for large-scale simulations or real-time adaptation, limiting the scalability 
and efficiency of RL-based drone training. 
 To overcome this issue, data-driven approaches have emerged as a viable alternative to CFD. Deep 
learning models, particularly convolutional autoencoders, have demonstrated strong capabilities in 
learning complex fluid dynamics and compressing high-dimensional aerodynamic data into a latent 
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representation (Ribeiro et al. 2020). Autoencoders are a class of neural networks designed to encode input 
data into a compressed feature space and subsequently reconstruct the original data from this 
representation, preserving essential spatial and temporal structures (Ng 2011). In wind modeling, 

convolutional autoencoders can learn the underlying patterns of wind distribution and generate synthetic 
wind fields with significantly lower computational requirements than traditional CFD solvers (Milla-Val 
et al. 2023). This approach enables faster wind field inference while maintaining sufficient accuracy for 
drone navigation tasks. 

A major concern in replacing CFD with autoencoder-generated wind data is the reliability and 
generalization of the learned representations. If a CAE can accurately reconstruct wind distributions and 

generate realistic wind fields, it should also enable RL-trained drones to generalize their learned policies 
to real-world wind conditions. Thus, an essential aspect of evaluating autoencoder-based wind modeling 
is assessing the transferability of RL policies trained in autoencoder-generated environments to real CFD-
generated environments. Ensuring that policies remain robust across different wind models is critical for 
validating the effectiveness of deep learning-based wind simulation as a reliable alternative to CFD. 

In this study, we introduced an innovative approach to assess the feasibility of autoencoder-based 

wind modeling as a reliable substitute for CFD in drone training. The research objectives focus on three 
key aspects: (1) Validate whether the CAE can generate wind distributions that closely resemble CFD-
derived wind fields using quantitative metrics, (2) Investigate how reinforcement learning agents trained 
in autoencoder-generated wind environments perform in comparison to those trained with CFD-based 
wind fields and (3) Examine whether RL policies trained on autoencoder-generated wind fields can be 
successfully deployed in CFD-based environments without significant performance degradation. To 

achieve these goals, we trained a CAE on CFD wind field data and leveraged its outputs to create a 
simulated training environment for RL-based drone navigation. Once trained, the drone policies are tested 
in a real CFD-generated wind environment to determine the viability of the autoencoder-based model as 
an alternative to CFD. The evaluation considers three core aspects: computational efficiency, fidelity of 
the wind field reconstruction, and drone performance in navigation tasks. 
 

2 RELATED WORK 

Autonomous drones are increasingly deployed in environments where wind disturbances significantly 
affect their stability and navigational performance. The ability to simulate wind conditions accurately is 
crucial for training reinforcement learning-based drone control systems, enabling them to adapt to real-
world aerodynamic effects. Various approaches have been explored to model wind interactions with 
drones, ranging from high-fidelity CFD simulations to data-driven learning-based methods that aim to 

reduce computational costs while maintaining accuracy. 
Traditional CFD-based simulations have been widely used to analyze and replicate wind patterns 

influencing drone performance. Paz et al. (2021) applied CFD techniques to model the airflow generated 
by quadcopter propellers, evaluating how aerodynamic interactions impact flight stability when operating 
near obstacles. Similarly, Qu et al. (2023) utilized CFD-generated local wind data to improve 
reinforcement learning-based multi-drone coordination strategies for disaster response. Gianfelice et al. 

(2022) used CFD to analyze the effects of urban building geometry on wind fields in downtown Toronto. 
They integrated CFD data with historical meteorological records to generate real-time, historical, forecast, 
and statistical wind visualizations for enhancing drone flight safety and efficiency. Besides, Large Eddy 
Simulation (LES) is another CFD technique used to model turbulent airflow by directly resolving large-
scale turbulent structures while approximating smaller-scale turbulence through subgrid-scale modeling. 
LES provides a more accurate representation of unsteady, three-dimensional wind patterns than 

traditional Reynolds-Averaged Navier-Stokes (RANS) models, making it particularly useful for 
simulating complex aerodynamic interactions in urban environments. Giersch et al. (2022) developed a  
LES model to capture turbulent airflow in urban settings, demonstrating its effectiveness in predicting 
drone behavior under complex wind conditions. Additionally, Jeong et al. (2021) integrated the Weather 
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Research and Forecasting (WRF) model with LES to simulate wind patterns influenced by urban terrain, 
providing high-resolution wind fields for drone training. Despite their accuracy, CFD and LES methods 
impose a significant computational burden, limiting their applicability in reinforcement learning tasks that 

require extensive simulation data. The increasing demand for efficient and scalable wind data simulation 
has led to adopting deep learning techniques, which offer the potential to generate synthetic aerodynamic 
data with significantly reduced computational costs. This shift has prompted research into machine 
learning models capable of learning and generating realistic wind distributions for drone training 
environments. 

Among these techniques, autoencoders have emerged as a highly effective tool for compressing and 

reconstructing high-dimensional aerodynamic data. Autoencoders learn compact representations of wind 
fields and generate reconstructions that closely resemble high-fidelity CFD outputs while requiring a 
fraction of the computational cost. Milla-Val et al. (2023) demonstrated that supervised learning 
techniques could produce wind predictions similar to CFD-based results, balancing accuracy and 
computational efficiency. Ma et al. (2021) further explored the potential of physics-driven convolutional 
neural networks (CNNs) to predict complex, high-resolution flow fields, achieving first-order accuracy 

while significantly reducing the computational cost of training multiple CFD cases. Zhang et al. (2021) 
applied a CAE to generate 3D realizations of time-averaged velocity in wind turbine wakes at the SWiFT 
facility, training the model on LES data. The trained model demonstrated strong predictive capabilities for 
unseen flow conditions while being significantly more computationally efficient than LES, making it a 
promising tool for wind turbine flow field and power production analysis.  
 This study builds upon these advancements by training a CAE on high-resolution CFD wind fields 

and then using the CAE to generate wind data for RL-based drone training. We evaluate the reliability of 
autoencoder-generated wind fields as a direct replacement for CFD by comparing the performance of RL 
policies trained on CAE outputs to those trained in traditional CFD environments, assessing 
transferability, computational efficiency, and robustness. Section 3.1 describes our CFD data generation 
procedure, Section 3.2 details the CAE architecture, and Section 3.3 validates the CAE’s reconstructions 
against CFD using MAE and SSIM metrics. In Section 4, we present the experimental setup, including 

the RL pipeline that consumes CAE-generated wind data, and in Section 5, we report quantitative 
comparisons between CAE and CFD reconstructions as well as the resulting drone navigation 
performance under both wind models. 

3 METHODOLOGY 

3.1 Computational Fluid Dynamics Data Generation 

In this study, we use OpenFOAM to generate high-fidelity CFD data, which serves as the training dataset 

for the convolutional autoencoder (Jasak 2009). The wind field is simulated by solving the incompressible 
transient two-dimensional Navier-Stokes equations governing mass and momentum conservation. The 
governing equations are given as follows: 

 
𝛻 ·  𝑢 =  0 (1) 

𝜌 (
𝜕𝑢

𝜕𝑡
 +  𝑢 ·  𝛻𝑢) =  −𝛻𝑝 +  𝛻 ·  𝜏 +  𝑓 (2) 

 where 𝑢 represents the velocity field with components in the 𝑥 and 𝑦 directions, 𝜌 is the fluid density, 

𝑝 is the pressure field, 𝜏 is the stress tensor, and 𝑓 accounts for external body forces such as gravity. 
To simulate steady-state flow conditions, the time-dependent term is neglected, and the momentum 

equation is rewritten for the velocity components as: 
 

𝑢𝑥 (
𝜕𝑢𝑥

𝜕𝑥
) +  𝑢𝑦 (

𝜕𝑢𝑥

𝜕𝑦
) =  − (

1

𝜌
) (

𝜕𝑝

𝜕𝑥
) +  𝜈 𝛻2𝑢𝑥 +  𝑔𝑥 (3) 
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𝜕𝑢𝑦

𝜕𝑥
) +  𝑢𝑦 (

𝜕𝑢𝑦

𝜕𝑦
) =  − (

1

𝜌
) (

𝜕𝑝

𝜕𝑦
) +  𝜈 𝛻2𝑢𝑦 +  𝑔𝑦 (4) 

 

where 𝑔 represents gravitational acceleration and 𝜈 denotes the dynamic viscosity of the fluid. The 
terms on the left side describe convective transport, while the right side accounts for pressure gradients 
and diffusive transport effects. 

The numerical solution of these equations is performed using OpenFOAM, an open-source CFD 
solver widely used for aerodynamic simulations. Specifically, we employ the simpleFoam solver, which 
implements the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. This 
algorithm iteratively refines the velocity and pressure fields by solving discretized equations in two steps. 
First, an explicit velocity field solution is computed based on the current pressure field. Second, an 
implicit pressure correction step refines the pressure values using information from the previous iteration. 

3.2 Convolutional Autoencoder Data Generation 

A convolutional autoencoder (CAE) is a type of neural network architecture that combines the feature 
extraction capabilities of convolutional neural networks (CNNs) with the dimensionality reduction ability 
of autoencoders (AEs). This architecture leverages convolutional layers to exploit the local, 
translationally invariant patterns in wind fields, ensuring that key aerodynamic features are encoded into a 
compact latent space. By constraining the bottleneck, we force the network to focus on the most salient 

structures rather than noise, balancing representational power with computational efficiency. While 
deeper encoders, skip connections, or multi-scale filters could yield finer reconstructions, especially in 
highly turbulent regions, these variants often increase sensitivity to small-scale fluctuations or incur 
higher inference costs. Our design thus prioritizes a lean yet expressive CAE, with future work able to 
explore these alternative configurations for targeted fidelity improvements. 
 As shown in Figure 1, the CAE consists of two main components: an encoder, which processes data 

into a lower-dimensional latent space, and a decoder, which reconstructs the original data from this 
representation. By learning to capture key aerodynamic patterns, the CAE can generate synthetic wind 
field data that closely approximates high-fidelity CFD simulations while significantly reducing 
computational costs. 

Figure 1: The structure of the convolutional autoencoder. 

We develop a comprehensive methodology to generate and simulate the aerodynamic characteristics 
of wind flow around tall buildings. While CFD has traditionally been used for this purpose, it is 
computationally expensive and impractical for Deep Reinforcement Learning (DRL) applications, which 
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require running thousands of simulations under dynamically changing conditions. One of the major 
challenges in traditional CFD data generation lies in handling the Navier-Stokes equations. As mentioned, 
these equations describe fluid motion based on the conservation of momentum, defining how velocity 

changes over time under external forces. In CFD applications, boundary conditions and obstacle 
placements significantly affect simulation results. Therefore, the CAE model must incorporate geometric 
and boundary condition data to ensure accurate input representation. We introduce a parameterization 
technique to represent these conditions numerically, defining five distinct regions within the 
computational domain. As shown in Figure 2, the flow region has a length of 200 and a width of 200. In 
the flow region, 0 represents obstacles, 1 denotes free-flow areas, 2 corresponds to the upper and lower 

no-slip wall conditions, 3 signifies the constant velocity inlet, and 4 indicates the zero-gradient velocity 
outlet. By encoding these conditions directly, the CAE model can process the geometric characteristics of 
the simulated environment as part of its input, ensuring that aerodynamic features are accurately learned 
and reproduced in the synthetic CFD data. 

 

Figure 2: The flow region and boundary conditions for wind simulation. 

To further enhance spatial representation, we incorporate the Signed Distance Function (SDF) to 
describe geometric relationships within the flow domain. The Signed Distance Function (SDF) is a 
mathematical tool widely used in computer graphics, computational geometry, and physics simulations to 

measure the distance between a point and a surface. It provides additional spatial context by encoding the 
distance and direction to the nearest obstacle, assigning a negative sign to points inside an object and a 
positive sign to points outside. 

In our case, for a point 𝑥 in the computational domain 𝑋 and a geometric shape 𝑆, the first signed 
distance function 𝑆𝐷𝐹1(𝑥) is defined as: 

 

𝑆𝐷𝐹1(𝑥) = {
−𝑑(𝑥, 𝜕𝑆)               𝑖𝑓 𝑥 ∈ 𝑆

𝑑(𝑥, 𝜕𝑆)                    𝑒𝑙𝑠𝑒
(5) 

 
where 𝜕𝑆 represents the boundary of a single obstacle and 𝑑(𝑥, 𝜕𝑆) calculates the minimum spatial 

distance from the point 𝑥 to the obstacle boundary. When multiple obstacles exist within the flow domain, 
this function will determine the minimum distance to any obstacle boundary in the environment. This 
representation enables the CAE model to interpret spatial relationships between fluid flow and obstacles. 

The second signed distance function 𝑆𝐷𝐹2(𝑥) is defined as: 
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𝑆𝐷𝐹2(𝑥) = {
−𝐿(𝑥, 𝜃)               𝑖𝑓 𝑥 ∈ 𝑆

𝐿(𝑥, 𝜃)                    𝑒𝑙𝑠𝑒
(6) 

 
where 𝜃 denotes the center of the obstacle and 𝐿(𝑥, 𝜃) represents the horizontal distance from a given 

point to the obstacle’s center. Similarly, the second SDF can be adapted to consider multiple obstacle 
centers. When multiple obstacles are in the flow domain, this function will be modified to reference the 
nearest obstacle center. This additional distance metric enhances the network’s ability to distinguish 
variations in flow regions. 

3.3 Validation of Autoencoder-Generated Wind Fields 

To validate the autoencoder-generated wind fields, we use two complementary metrics. First, we report 

the Mean Absolute Error (MAE) to quantify pointwise deviations in velocity magnitude, an important 
factor because accurate velocity predictions directly influence RL policy performance. Second, we 
include the Structural Similarity Index (SSIM) to evaluate whether key spatial flow structures (e.g., 
vortices, wakes) are preserved, since MAE alone cannot capture these higher-order features. 

The MAE quantifies the average absolute difference between the CAE-predicted wind field and the 
CFD reference data. A lower MAE value indicates higher accuracy in reconstructing the aerodynamic 

properties. The MAE is calculated as follows: 
 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑋𝑖 − 𝑌𝑖|

𝑁

𝑖=1

(7) 

 
where 𝑁 represents the total number of data points, 𝑋𝑖 denotes the CAE-generated wind field values, 

and 𝑌𝑖 refers to the corresponding CFD-generated values. 
To further assess the quality of the reconstructed wind fields, we employ the SSIM, which evaluates 

the perceptual similarity between the predicted and ground-truth fields. Unlike MAE, SSIM considers 
structural information, luminance, and contrast to assess the generated wind distributions 
comprehensively. The SSIM is computed as: 
 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑋𝜇𝑌 +  𝐶1)(2𝜎𝑋𝑌 + 𝐶2)

(𝜇𝑋
2 + 𝜇𝑌

2 +  𝐶1)(𝜎𝑋
2 + 𝜎𝑌

2 +  𝐶2)
(8) 

 
where 𝜇𝑋 and 𝜇𝑌 are the means of the CAE-generated and CFD-generated wind fields, respectively; 

𝜎𝑋
2 and 𝜎𝑌

2 are their variances and 𝜎𝑋𝑌 is the covariance between them. The constants 𝐶1 and 𝐶2 ensure 
numerical stability. 

4 EXPERIMENT 

This study evaluates the reliability of using a CAE for wind modeling by comparing its results with high-
fidelity CFD simulations. The objective is to determine whether CAE-generated wind fields can be a 
computationally efficient alternative to traditional CFD methods used for autonomous drone simulation 

while maintaining aerodynamic accuracy. The experiment involves designing a simulated environment, 
training reinforcement learning-based drones under different wind conditions, and validating the accuracy, 
generalization, and transferability of CAE-generated wind fields. 
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4.1 Simulation Environment and Drone Parameters 

To evaluate the impact of CAE-generated wind fields on drone navigation, we developed a simulation 
environment in Unity 3D, leveraging its scalability and interactive capabilities to model aerodynamic 

effects and integrate RL training seamlessly. The simulated environment represents an urban district 
populated with several randomly placed tall buildings, with widths and lengths ranging from 130 to 260 
feet and heights varying between 200 and 400 feet. Wind conditions within the urban landscape are 
modeled without physical boundaries, allowing natural airflow to develop freely throughout the 
simulation. 

For realistic drone behavior, we configured the simulation to reflect the specifications of a DJI Mavic 

2 Pro, a widely used commercial UAV. The drone is modeled with a weight of 2 lbs., a maximum speed 
of 30 mph, and a maximum altitude of 200 feet, ensuring that it adheres to real-world flight constraints 
and responds accurately to wind disturbances. The primary objective of the drone is to navigate through 
the urban environment while optimizing flight efficiency and stability under various wind conditions. 

To achieve adaptive navigation, we implemented a DRL algorithm based on Proximal Policy 
Optimization (PPO) to train the drone’s control policy (Wu et al. 2024). The model follows a multi-

objective learning framework, balancing shortest-path efficiency, flight stability, and time optimization. 
To enhance adaptability, Long Short-Term Memory (LSTM) networks are integrated within the RL 
framework, allowing the agent to retain temporal dependencies and adjust its control actions dynamically 
in response to changing wind conditions (Hochreiter and Schmidhuber 1997). The agent receives state 
information, including position, velocity, and wind field data, which it processes to generate optimal 
navigation decisions. 

During training, wind conditions are randomized in each episode to introduce variability, with wind 
speeds ranging from 3 to 45 mph and wind directions varying from 0° to 360°. This setup ensures that the 
RL agent generalizes across diverse aerodynamic conditions rather than memorizing specific wind 
patterns, enabling robust navigation strategies in unpredictable environments. 

4.2 Computational Fluid Dynamics Data Generation 

We generated high-resolution CFD wind fields using OpenFOAM to provide ground-truth aerodynamic 

data for CAE training. The simulation domain replicates urban wind interactions with obstacles, applying 
boundary conditions that define inflow, outflow, and surface interactions. Table 1 illustrates the CFD 
settings, including boundary conditions, material properties, and solver details. 

Table 1: Computational fluid dynamics details. 

Aspect/Parameter Details/Choice 

Material in Flow Air 

Air Density 1.196 kg/m³ 

Wind Speed (Inlet) 5 m/s 

Air Pressure (Outlet) 0.015 kPa 

OpenFOAM Solver simpleFoam 

Meshing Generation snappyHexMes 

Grid Convergence Study Yes 

Turbulence Model k-ε turbulence model 

Boundary Conditions No-slip wall, velocity inlet, pressure outlet 

Simulation Time Step 0.001 s 

Number of Iterations 100,000 

Computational Resources Used Intel i9-14900K, 32GB RAM, RTX 4090 
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The wind simulations solve the incompressible Navier-Stokes equations, modeling air with a 1.196 
kg/m³ density. The inlet wind speeds were set at 5 m/s, while the outlet pressure conditions were 
maintained at 0.015 kPa. These CFD-generated wind fields serve as training data for the CAE model.  

To train and validate the CAE, we generated a diverse set of steady-state CFD simulations by 
randomly placing 1-10 buildings in each urban scene and varying wind direction among four angles (0°, 
90°, 180°, 270°). Each steady-state run produces one full 2D wind-velocity field. In total, approximately 
1,000 simulations were performed, which we split into 800 training and 200 validation samples. The CAE 
was trained in the 800 training fields (batch size = 16, learning rate = 1 × 10⁻⁴, Adam optimizer) for 200 
epochs using MAE as the loss function, terminating once both training and validation losses converged. 

4.3 Convolutional Autoencoder Architecture 

The convolutional autoencoder is trained to learn aerodynamic patterns from CFD-generated data and 
predict wind distributions based on input geometry. Table 2 presents the details of each layer in this 
architecture. 

Table 2: Convolutional autoencoder architecture details. 

No Layer Operation Activation Function 
Input 

Dimensions 

Output 

Dimensions 

1 Input Geometry Encoding  3 8 

2 Conv2D Feature Extraction ReLU 8 8 

3 Conv2D+ MaxPool Feature Extraction ReLU 8 16 

4 Conv2D Feature Extraction ReLU 16 16 

5 Conv2D+ MaxPool Feature Extraction ReLU 16 32 

6 Conv2D Feature Extraction ReLU 32 32 

7 Conv2D+ MaxPool Feature Extraction ReLU 32 32 

8 Copy and Concatenate Feature Merging  32 32+32 

9 ConvTranspose2D Upsampling ReLU 32+32 32 

10 ConvTranspose2D Upsampling ReLU 32 32 

11 ConvTranspose2D Upsampling ReLU 32 32 

12 ConvTranspose2D Upsampling ReLU 32 16+16 

13 ConvTranspose2D Upsampling ReLU 16+16 16 

14 ConvTranspose2D Upsampling ReLU 16 8+8 

15 ConvTranspose2D Upsampling ReLU 8+8 8 

16 ConvTranspose2D Final Output ReLU 8 1 

 
 
 

5 RESULTS 

To evaluate the accuracy of the CAE in generating wind fields, we compare its predictions against the 
ground truth CFD results. Figures 3(a) and 3(d) display the ground truth wind fields for two distinct test 
cases, while Figures 3(b) and 3(e) show the corresponding CAE-generated predictions, and Figures 3(c) 
and 3(f) present the absolute-error maps. Figures 3(a)-3(c) show a complex wake downstream of multiple 
obstacles. Although the CAE captures the large-scale velocity gradients in Figure 3(b), it produces 

noticeable discrepancies in highly turbulent patches, resulting in a relatively high MAE of 1.5699 (SSIM 
0.9073). The error distribution in Figure 3(c) is concentrated around sharp shear regions and small 
vortices. In contrast, Figures 3(d)-3(f) correspond to a milder turbulence scenario: the CAE prediction in 
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Figure 3(e) closely matches the ground truth in Figure 3(d), yielding a much lower MAE of 0.4170 (SSIM 
0.8576). The error map in Figure 3(f) shows only minor, localized differences in fine-scale eddies. 
Together, these results demonstrate that while the CAE reliably reconstructs primary aerodynamic 

structures, its accuracy improves substantially under moderate turbulence and diminishes in highly 
turbulent regions. 
 

(a) (b) (c) 

(d) (e) (f) 

Figure 3: Comparison of ground truth CFD wind fields and CAE predictions. 

The CAE model shows strong potential for accelerating aerodynamic simulations while maintaining 
reasonable accuracy. The errors observed suggest that further refinements, such as incorporating physics-
informed loss functions or additional training data, may enhance predictive performance in complex flow 
scenarios. 

 

(a) (b) (c) (d) 

Figure 4: Drone trajectories under strong wind influence. 
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Figure 4 illustrates the trajectory of a drone navigating an urban environment under varying wind 
conditions generated by the CAE model. The target location is marked by a blue sphere, while the purple 
lines represent the drone’s trajectory as it moves through the environment. The presence of strong wind 

zones significantly affects the drone’s path, leading to detours, which are highlighted using red dashed 
rectangles. The subfigures show that the drone attempts to reach its target while adapting to the 
aerodynamic disturbances caused by localized strong wind regions. In these areas, the wind forces create 
instability, pushing the drone off its optimal path and forcing it to perform corrective maneuvers. The 
severity of these deviations varies across different wind scenarios, as seen in the differences between the 
trajectories in each subfigure. The observed detours demonstrate how the wind-aware navigation policy 

adjusts the flight path to avoid unstable zones and minimize drift, prioritizing safety over the shortest 
possible route. These results validate the importance of incorporating wind field modeling in the training 
process to enhance the drone’s adaptability in real-world conditions. 

Figure 5: RL convergence comparison between CFD and CAE-generated wind data. 

Figure 5 presents a comparison of RL convergence speed when training with CFD-generated wind 
data (blue curve) and CAE-generated wind data (orange curve). The y-axis represents the smoothed 
average reward over the time steps, while the x-axis denotes cumulative environment time steps (up to 10⁷ 

steps), aggregated across multiple episodes. Each episode samples a new wind speed and direction and 
terminates when the drone reaches the target or exceeds 2,000 steps. Because episode lengths vary, the 
total number of episodes in 10⁷ steps is roughly 5,000-6,000. As shown, the agent trained on CFD data 
initially achieves higher rewards, owing to more precise aerodynamic feedback. The CAE-based agent 
starts with lower rewards because minor reconstruction errors in the CAE fields slow early learning. 
However, by around 8×10⁶ steps, the CAE curve catches up, and by 10⁷ steps, both agents converge to 

comparable reward levels (around 90). This demonstrates that, despite a longer adaptation phase, CAE-
generated wind fields can ultimately train an RL policy that performs on par with the CFD-based baseline. 
 

6 CONCLUSION 

This study explores the feasibility of using a CAE to replace CFD for wind modeling in 
reinforcement learning-based autonomous drone training. By training a CAE on high-fidelity CFD-

generated wind data, we successfully demonstrated that CAE-generated wind fields can approximate CFD 
results while significantly reducing computational costs. The generated wind distributions were validated 
using quantitative metrics such as MAE and SSIM, confirming the CAE’s ability to reconstruct crucial 
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aerodynamic features, including velocity gradients and wake structures around obstacles. The 
experimental results indicate that drones trained with CAE-generated wind fields can achieve comparable 
navigation performance to those trained with CFD data. Initially, RL agents trained using CFD data 

exhibit faster convergence due to more precise aerodynamic information. However, after extended 
training, the CAE-based agents reach a similar level of performance, demonstrating the potential of CAE-
generated wind fields as a computationally efficient alternative to CFD. Furthermore, our policy 
transferability tests show that RL policies trained on CAE-generated wind fields can generalize well when 
deployed in real CFD environments, ensuring the robustness and reliability of the learned control 
strategies. 

Despite these promising results, several limitations remain. While the CAE reconstructs wind fields 
well under low to moderate turbulence, its performance degrades in highly turbulent regions, over-
smoothing eddies and increasing reconstruction error, and it struggles with complex urban wake 
interactions; its performance in multi-building scenarios with varying building densities also remains 
untested. Notably, future work will explore multi-scale convolutional branches (3×3, 5×5, 7×7 kernels), 
lightweight attention modules, and turbulence-aware losses to better capture small-scale features. 

Accelerating generalization will involve expanding the training set to include high-intensity turbulence 
and dynamic obstacles. Additionally, future studies should assess the CAE under varying atmospheric 
pressures, precipitation, and dynamic obstacles to validate its robustness in diverse environments. 
Rigorous, long-term real-world field tests are also recommended to confirm applicability. 
 In summary, this study demonstrates that CAE-based wind modeling is a viable, efficient, and 
scalable alternative to traditional CFD simulations for training autonomous drones. The ability to generate 

reliable aerodynamic data with minimal computational costs makes this approach highly valuable for 
large-scale reinforcement learning applications, ultimately advancing the field of data-driven 
aerodynamic modeling and autonomous flight navigation. 
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