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ABSTRACT

Industry 4.0 forces a significant transition in the field of manufacturing and production planning and control.
A corner stone of Industry 4.0 scenarios is the ability of control systems to adapt autonomously to changes
on the shop floor. Reinforcement Learning is considered as an approach to achieve this target. Consequently,
the control strategies of the agents trained by Reinforcement Learning need to generalize in a manner
that the agents are able to control modified production systems they are not directly trained for. This
paper presents an evaluation of the generalization properties of a decentralized multi-agent Reinforcement
Learning algorithm for controlling flow shops using complex gantry robot systems for automated material
handling. It is shown that the corresponding agents are able to cope with variations of the production and
gantry robot system, as long as these variations are within realistic boundaries, and thus are suitable for
Industry 4.0 scenarios.

1 INTRODUCTION

Industry 4.0 forces a considerable transition in the field of manufacturing. On the one hand, this opens up
potentials for improving efficiency, but on the other hand, it requires a substantial adaptation of processes
in planning and operation. A key requirement of Industry 4.0 is that production control algorithms should
be able to adapt autonomously to changing conditions on the shop floor. This is e.g. reflected in acatech’s
Industrie 4.0 Maturity Index (?). As a consequence, traditional planning processes need to be accelerated and
optimized and planning systems need to be adjusted (?). In those traditional environments the industrial
engineering team had a reasonable lead time to adjust scheduling or dispatching rules to the changed
settings of machines or material handling processes. In an ideal Industry 4.0 scenario, this should happen
automatically, without any time delay and, of course, without any loss of manufacturing efficiency. Artificial
Intelligence (AI) and Machine Learning (ML) are changing the manufacturing landscape fundamentally
(?) and are considered as an approach to meet these requirements. In particular, Reinforcement Learning
(RL) combined with simulation is becoming more attractive in the area of production planning and control
(?). As consequence, there is a large body of literature on the application of RL to production scheduling
and control. Good surveys of the most recent work can be found e.g. in ? and ?.

In RL, an agent is trained to control a system by interacting with its environment. During training,
the agent learns a policy that enables it to make autonomous decisions based on its observations. For
further details about RL refer to ?. The advantage of RL agents is that they can usually handle stochastic
interference better than heuristics or fixed dispatching rules.

The purpose of this paper is to study such an Industry 4.0 scenario based on a flow shop utilizing
gantry robots as an automated material handling system controlled by RL agents. Although there is a
vast body of literature regarding on the use of RL in production control, it mainly concerns the job shop
scheduling. In contrast, only a few papers present RL approaches for flow shop scheduling, particularly in
combination with controlling the corresponding material handling system, such as a gantry robot system.
The literature review by ? references only a few papers concerning RL approaches for flow shops, one of
which includes robot control. For example, ? and ? describe tabular Q-learning approaches. However,
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these only consider one robot and are not efficient enough to control complex, real-world gantry systems
because tabular Q-learning does not scale. In ?, a DQN-based single-agent approach is presented that can
efficiently control a single gantry.

To analyze the Industry 4.0 scenario, we first briefly present a decentralized multi-agent Reinforcement
Learning (MARL) algorithm for controlling complex gantry robot systems with multiple gantries. As
shown in ?, the MARL approach is much faster than the comparable single-agent approach given in 2.
Secondly, we analyze whether the agents satisfy the Industry 4.0 requirements in terms of flexibility and
autonomous adaptation to changes in the production environment, since it is insufficient for RL agents to
efficiently control systems only under the exact conditions on which they were trained. Rather, it is crucial
that their control strategies are flexible enough to generalize (?). In the gantry robot context, generalization
can be viewed from two different perspectives.

1. Process generalization The agents are trained with a specific set of parameters related to work
stations, gantry robot speed, processing times, and so on. Generalization can be interpreted as the
ability of the agents to control the gantry robot system even in cases where the "real parameters”
are different from those the agents were trained with. This means that the agents are able to operate
in a more general environment that is broader than the specific training environment. As a result,
the RL agents are able to respond autonomously to changes on the shop floor without having to be
retrained.

2. Training generalization The agents themselves are characterized by several hyperparameters,
which influence both their behavior and performance. From this perspective, a relevant question
arises: do the selected hyperparameters generalize sufficiently well? In particular, if the agents
need to be retrained, due to significant changes in the gantry robots system - such as the number
of work stations or the number of gantry robots - can the same set of hyperparameters still ensure
a training that is equally efficient and robust as with the initial configuration?

In this paper, we analyze the characteristics of MARL agents with regard to the their process generalization
ability. The analysis is based on intensive simulation studies partly presented in this paper. Accordingly,
the paper is organized as follows. In Section 2 an overview of the MARL algorithm for gantry robot
systems is provided. The experimental setup for the performed analysis of the generalization properties is
presented in Section 3. The evaluation results are delineated in Section 4. Finally, in Section 5 a critical
summary and an outlook for future research needs are given.

2 MARL FOR GANTRY ROBOTS

This section is composed of two parts. The first part is an overview of the structure of the used gantry
robot systems. The second part depicts the utilized MARL approach for training the agents.

2.1 Gantry Robot System

Gantry robot systems represent a conventional method for automating material handling in high-volume
manufacturing lines organized as flow shops. In this context, the machines or work stations are arranged in
a series according to the process flow. These work stations are enumerated in alphabetical order A,B,C, ...,
whereby A is the station next to the input conveyor. A work centers compromises of one or more work
stations performing the same operation. For example, the production cell illustrated in Figure 1 features
three work centers composed of the stations {A,B},{C,D} and {E,F}.

Above the machines and both conveyors a rail is mounted. The gantry robots move along this rail to
handle the transport of the workpieces downstream through the production cell according to the designated
process flow. The gantry robots g;,i = 1,2,...,m are enumerated in numerical order, whereby the gantry
next to the input conveyor is g; and the gantry next to the output conveyor is g,,. Typically, there are two
distinct types of gantries: I-style and H-style gantries. An I-style gantry is characterized by its singular
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Figure 1: Simulation model of a production cell with two H-style gantries, one input conveyor, three
work centers comprising of two work stations each and one output conveyor. The model is visualized in
PlantSimulation.

gripper, which only allows the transport of one work piece at the time. In contrast, H-style gantries have
two grippers, allowing the gantry to transport two work pieces simultaneously and performing a fast work
piece swap at a work station. A fast swap is the situation, when a gantry picks up a finished workpiece
from a work station and then directly unloads an unprocessed workpiece form its other gripper into the
now empty work station.

The production line under consideration does not include buffers at the work stations. New unprocessed
workpieces are supplied to the input conveyor. Upon arrival, the parts are queued on the input conveyor
and the gantry robot g; can pick them up. Analogously, finished workpieces have to be moved and placed
on the output conveyor by the last gantry robot g,,. The output conveyor transports them to a stock or
another production stage.

2.2 MARL Algorithm

When complex production cells with multiple gantry robots are modeled as an RL problem, the state-
action space and the necessary training duration increases rapidly. In order to address this challenge, the
decentralized MARL approach introduced in ? is employed. The MARL approach assigns for each gantry
robot its individual RL agent, which are all trained separately. In consideration of the underlying structure
of the associated flow shop, the implementation of an overarching mechanism to synchronize the individual
agents is not necessary. The maximization of the throughput by each agent within the section controlled by
the agent is ensuring the maximization of the throughput of the entire production line. This methodology
enables the a very efficient training of multiple agents, with each agent representing a distinct gantry robot.

The concept of operational areas is introduced in ? in order to reinforce the aforementioned concept.
This concept is motivated by the physical constraints of the gantry’s cruising range, which are a result of
the drag chain that connects the robot to the power supply. The operational areas constitute a subset of the
work stations that a gantry robot is capable of approaching. It is necessary to define these areas in advance,
as they influence the internal architecture of the RL agents. Consequently, the state space of each agent
is required to contain solely the status of each work station within its operational area. This work station
status is comprised of the three features: whether the machine is occupied, the processing has finished, and
whether a failure has occurred. With regard to the controlled gantry robot itself, the state space includes
the position of the gantry and the state of each gripper, thereby delineating the subsequent process step of
the loaded workpiece. As last part of the RL agent state space the current position and executed action of
the neighboring gantries is included. The neighboring gantries of gantry g; are defined as {g;;;} fori=1,
{gi-1,8i41} fori=2,....m—1, and {g;,_1} for i =m.
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At each decision point ¢ the simulation requests a new action for only one RL agent, as gantry robots
act in a asynchronous manner. The corresponding RL agent then selects one of the following actions
depending on its current policy:

* move the robot to a designated target work station or conveyor

* picking up a workpiece from either the input conveyor or a work station

* dropping a currently loaded workpiece into a work station or at the output conveyor
* waiting until a system change triggers a subsequent decision point

In order to prevent needless actions or even those that would result in collisions of gantries, it is feasible
to restrict the action space or to penalize those actions through a appropriate designed reward function.
The corresponding reward function is given by

5 finished workpiece delivered at the output conveyor
2 workpiece unloaded correctly into a work station
_ 1 workpiece picked up by a gripper correctly
Rt(:zl =< -1 unneeded stopover
-3 waiting while blocking another gantry robot
-5 collision-causing action
0 other

To guarantee the appropriate credit assignment, the rewards get only assigned to the agent i associated with

the gantry the action A,(l) is requested for.

The agents choose their actions according to a policy 7. The action-value function gz (a,s) for a given
policy 7 is defined as the expected sum of discounted future rewards the agent gains when starting at time
t in state s (i.e. S; =s), choosing action a at time ¢ (i.e. A; = a) and following from there policy 7, i.e.
gz = E(X20Y*Risx11|S: = s,A, = a), Y€ (0,1). The goal is to determine the optimal policy 7* which
maximizes gr(s,a) for every state-action pair (s,a). However, this becomes analytically intractable for
large state-action spaces, so one must approximate gr+. Q-learning (?) is an approximation approach that
iteratively approximates g+ with a step-by-step simulation and the update procedure

0(S1,A;) < O(S1,A) + [Rl+1 + Ym;lx O(S;,a) — Q(S1,A1) |

with the learn rate @ € (0,1]. The MARL algorithm, that is used to control the gantry robots, employs
basically the Q-learning update procedure, however the action-value function gz (a,s) is approximated by
a neural network. This approach is called Deep Q-Network (DQN) (?). Each RL agent in the MARL
algorithm is set up as a DQN agent, that is trained individually using the update formula as follows

0(S1,A1;0) < O(S:,A;0) + (X[Rt-s-l + }’Hd’“ mglx O(Si11,a;0™) — Q(ShAt;G)]-

Thereby refers 0 to the prediction network, i.e. the neural network used as function approximation of the
Q-function responsible for choosing the actions during training (also called behavior network). 6~ denotes
the target network, i.e. the neural network used as approximation of the target value to determine the error
of the updating step. In contrast to the plain discount factor 7y the update formula employs y'T4+!, in which
d;+1 represents the duration of the selected action A;. The exponent 1+d,;; > 1 makes shorter actions
more preferable. Eventually, at each decision point 7, the related DQN agent chooses the action A, that
provides the highest action-value Q(A,,S;;0) for the current state S;.

3 EXPERIMENTAL SETUP

This section presents the experimental setup for analyzing the generalization properties of the RL agents
described in Section 2. The starting point of the analysis is a base model. The RL agents that are trained
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to control that specific base model, are referred to as Base Model Agents. Subsequently, the settings of
the production system or the gantry robots are varied, and the RL agents are validated concerning their
performance with these modified models. Ideally, the RL agents are capable of controlling the gantries in
the modified systems in a stable manner. In other words, it is expected that they are able to make reasonable
but not necessarily optimal decisions in each situation.

3.1 Base Model

For the presented analysis two different base models are used. The first base model [/ is illustrated in
Figure 1 and depicts a production cell with two H-style gantries and three different process steps p1, p2, p3
performed by a work center each, that each compromises two identical work stations. In other words,
process step p; is performed at work center A or B, p, at C or D and p3 at E or F. The second base
model /I is a more complex production cell with three H-style gantries and five different process steps
Pi,--.,ps performed at the five work centers {A,B},{C,D},...,{I,J}. In both models the supply of new
workpieces at the input conveyor is stochastically distributed. The processing time at each work station is
deterministic and the machine break downs take place at random and for a stochastically distributed period
of time (Table 1). The gantry robots have a cruising speed of 2m /s, whereby acceleration and deceleration
are neglected. The distances between the work stations are presented in Table 2.

Table 1: Parameters describing the dynamic behavior of the simulation model for the reference models.

Parameter Value
Interarrival Interval at Input Conveyor U5, 15]s
Station Processing Duration 20s

MTBF 270s
MTBF Distribution exp(MTBF!)
MTTR 30s

MTTR Distribution ~Erlang((2 +*MTTR)™!,2)

Table 2: Station position along the rail in meters for the base models and their variation.

Model In A B C D E F G H 1 J Out

I: Base 0 3 55 9 11.5 15 17.5 - - - - 21.5
I: Variation 0 5 13 17 20 225 28 - - - - 31
II: Base 0 3 55 9 115 15 17.5 21 23.5 27 29.5 33
II: Variation 0 7.5 15 22 25 305 34 40.5 435 46.5 49 55

For the base model I the agents were trained over N; = 2500 distinct seeded episodes simulating the
entire production system for duration of 7; = 1800s each. For the base model /I the training duration was
increased to N; = 4000 and 7 = 3600s to address the more complex setup. All validations for both models
are performed with &, = 100 runs simulating the production system for 7, = 7200s each. The simulated
time is increased for the validation runs, on one hand, to confront the agents with new situations that
may not have occurred during the shorter training simulations. On the other hand, each run initiates with
an empty production cell, resulting in a warm-up phase with reduced throughput. The duration of these
warm-up phases varies depending on the individual model settings. To reduce the impact of the warm-up
phase, the two-hour duration was chosen as a compromise for our validation setup. The remaining training
hyperparameters are set as described in ?.
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3.2 Model Variations

In order to identify the limitations of the generalization capabilities of the agent, mostly extreme variations
are made to the base models, even if these are very unlikely in practice. The performed model variations
are grouped into the two categories: gantry variations and process variations.

Gantry variations

* Reducing the gantry cruising speed by 25% to 1.5m/s
* Reducing the gantry cruising speed by 50% to 1.0m/s
* Modified distances between the work stations (Table 2)

Process variations

* Doubling the process times to const(40) seconds

* Mixing process times per work center, i.e. the work center take on average 20s per work piece but
the process times of the work stations in the work center are not the same (e.g. 10s at A and 30s
at B)

*  Process times vary +25% around the mean according to a symmetric Triangle (15,20, 25) distribution

*  Process times vary —25%/ + 100% around the mean according to a right skewed Triangle (15,20, 40)
distribution

4 RESULTS

In the following the results based on the validation runs are presented and discussed. Figure 2 presents
an overview of the validation runs performed for the first base model I and the gantry variations. The
validation run number is shown on the x-axis, while the y-axis shows the throughput per hour achieved in
the corresponding validation run. It is evident that the throughput varies from the base model’s throughput
in each scenario, due to the altered settings of the gantry robots. Nevertheless, the validation of the three
variations show that the RL agents are capable of controlling the modified systems in a stable manner.

130 — e - e, e~
oA S I A\ AR
VWYY VV/\]V \/ VTV v
g
< 110 AN
2.
B
£100 -
g
E g /\VN/\/\/\/ V"AV/‘V VA\/A”VI\VA \lr\vf\"vﬂv\/\/f\w‘v/\\«
80
i
0 20 40 60 80 100
Validation Run
—— Base Gantry Speed 75% Gantry Speed 50% —— Modified Distances

Figure 2: Results of validation runs for the base model 7 (2 H-style gantries; 3 process steps) with gantry
variations.
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In order to verify that the controls are not just stable but also perform well with regard to the throughput,
the agents were also trained directly on the modified model, i.e. with the changed gantry speeds and distances.
As expected, these agents yield a higher throughput. The corresponding throughput values are shown in
Table 3. But it can be seen, that when the variations are not too extreme, the throughput achieved in the
variation is close to the throughput achieved in the case the agent is trained directly with the modified
parameters. When reducing the gantry speed down to 75% the throughput per hour of the variation is in
average 105.4. This is approximately 95% of the average throughput per hour achieved by the directly
trained agents. This is fairly reasonable, since the reduction by 25% is not a small matter. Even in the edge
case of reducing the gantry speed by half, the agents achieve about 89% of the average throughput per hour
that the directly trained agents are able to reach. This is still remarkable in view of the extreme variation of
the base model. Further, it has to be mentioned, that the direct training of the variation with 50% reduced
gantry speed results in an even lower throughput and more unstable policy, when the same hyperparameters
are used. In order to achieve a stable policy with higher throughput of an average of 96.1 parts per hour, it
turned out that it is necessary to extend the number of training episodes up to N; =4000. This is caused
by the reduced number of events (i.e. actions carried out) during the simulated training period due to the
slower gantry speed. This must be compensated for by a higher number of training episodes in order to
provide the agents a sufficient learning experience. Also in case of an extremely changed topology of the
production line, in terms of the distances between work stations, the agents still achieve remarkable 86%
of the mean throughput per hour the directly trained agents delivers.

Table 3: Mean throughput per hour with CI-95% for the validation runs of the gantry variations of the
base model I and the directly trained modified model.

Variation Base Model Agents Directly Trained Agents Extended Trained Agents
Gantry Speed 75% 105.4 [104.75,106.06] 110.4 [109.78,111.05] -
Gantry Speed 50% 85.1 [84.58,85.62] 65.8 [57.43,74.18] 96.1 [94.69,97.51]
Modified Distances 89.7 [89.24,90.15] 103.7 [103.09, 104.37] -

A similar behavior is observed for the base model I/ (Figure 3). Only in the edge case of a reduction
of the gantry speed by 50% the RL agents are in about a third of the validation runs not able to achieve
a reasonable throughput. This is mainly due to deadlocks, in which the agents repeatedly select wrong
actions, thereby preventing any further progress. One potential root cause of this phenomenon is that
the extreme reduction in the gantry speed, and therefore prolonged travel durations. This leads to state
combinations that were infrequent or nonexistent during the base training with the standard gantry speed.
Thus, the DQN could not be accurately trained for these cases. Training the three agents directly with the
modified model yield a stable policy as well.

The validation results for the process variations on base model I (Figure 4) show that the RL agents
can adapt to those variations in a reasonable manner as well. However, the variations of the more complex
base model /I presents more challenges to the RL agents. Only the variation with doubled process times
yields a stable result across all 100 validation runs (Figure 5), while the remaining three variations yield
outcomes that are less stable, in particular in the case with extremely mixed process times. In most
cases deadlocks are observed, which are likely caused by multiple simultaneous machine outages. In the
"Mixed Const" variation, the impact of these simultaneous outages tends to be greater than in variations
with equally balanced process times. With balanced process times, the throughput reduction caused by
an outage is unaffected by which machine of a work center has an outage, as the machines are identical.
However, in the "Mixed Const" variation it does matter because with unequal process times more distinct
state combinations may occur which increases the state-action spaces of the agents. Since the training
was performed with balanced process times, the DQN agents were not sufficiently adapted to these rare
state-action combinations. This phenomenon becomes more apparent in more complex systems, where the
chance of simultaneous outages increases with the number of machines and work steps.
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Figure 3: Results of validation runs for the base model /I (3 H-style gantries; 5 process steps) with gantry
variations.
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Figure 4: Results of validation runs for the base model / (2 H-style gantries; 3 process steps) with process
variations.

However, despite their diminished stability, the average throughput of the variations Triangle (15,20,25)
and Triangle (15,20,40) remains reasonable. As Table 4 shows, the agents are able to achieve an average
throughput of 96.4 parts per hour for the Triangle (15,20,25) variation. This is about 96% of the average
throughput per hour achieved in the directly trained case. And even with an extremely skewed process
time distribution, like Triangle (15,20,40), the throughput achieved in the variation is still about 91% of
the mean throughput per hour of the agent trained with the Triangle (15,20,40) distribution directly.
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Table 4: Mean throughput per hour with CI-95% for the validation runs of the process variations of the
base model /I and the directly trained modified model.

Variation Base Model Agents Directly Trained Agents
Mixed Const 58.9 [50.59,67.21]  113.9[113.18,114.59]
Triangle (15,20,25) 96.4[92.98,99.79]  100.6 [99.82,101.40]
Triangle (15,20,40) 72.9 [68.74,77.02]  80.4 [78.64,82.20]
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Figure 5: Results of validation runs for the base model /I (3 H-style gantries; 5 process steps) with process
variations.

5 CONCLUSION

This paper presents a MARL approach for the control of flow shops with gantry robots as automated
material handling system. Contrary to the usual analysis of whether the agents are able to control the
production system efficiently, the focus in this paper is on the analysis of their generalization capabilities.
Generalization is an important aspect in Industry 4.0 scenarios, which require a certain degree of autonomous
adaptability of the control systems to changing conditions on the shop floor. For the analysis, agents were
trained for base models and then the models were modified with regard to the parameters concerning
the gantry robots and the production process. Some extreme modifications were made in order to better
demonstrate the limits of the agent’s generalization characteristics. It can be shown, that in general the
presented MARL agent is able to cope with most variations. For the base model /, the agent achieves stable
controls with very few exceptions. Even in the edge cases, the efficiency of the agents in the variations is
only about 10% below the efficiency of the agents that were trained directly on the modifications. For the
more complex base model 7/, the results are similar, but not quite as good as in the first case. Here, the
agent can also handle variations of the gantry robot system well, even in extreme cases. But especially for
the variations of the process times, the results of the agent are not quite as stable as in the base model /,
but still the throughput in the extreme variations do not fall below 90% of the throughput achieved in the
direct training. In view of the sometimes very extreme and unrealistic variations, this is still considered to
be a remarkable result.

In summary, the agents presented show good generalization properties within realistic limits. The authors
consider it a possible approach for the control of flow shops with gantry robots in an Industry 4.0 scenario.
Nevertheless, further research should be carried out to determine which training approaches can in principle
be used to increase the generalization capabilities of the agents. On the other hand, agents that are trained
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directly with the modifications will obviously show better efficiency in most cases. Therefore, it should be
investigated how transfer learning approaches can help to retrain the agents quickly and efficiently, if there
are major changes on the shop floor, which might exceed the limits of the agent’s generalization capability.
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