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ABSTRACT 

The adoption of data-driven Digital Twins in smart manufacturing systems necessitates robust, data-driven 
modeling techniques. Stochastic Petri nets offer a formal framework for capturing concurrency and 
synchronization in discrete-event systems, making them well-suited for modeling smart manufacturing 
systems. This tutorial provides a hands-on introduction to extracting stochastic Petri net models from 
system event logs. Using our Python-based stochastic Petri nets library (PySPN), participants will learn 
how to: (1) define ground-truth models using the Petri Net Markup Language (PNML), (2) generate event 

logs by simulating these models, and (3) apply process mining techniques to automatically reconstruct 
stochastic Petri net models from real or simulated data. Two case studies illustrate the end-to-end workflow, 
from data generation to model validation, within the context of developing Digital Twins. By the end of the 
tutorial, participants will gain practical skills in data-driven stochastic Petri nets modeling for Digital Twins 
applications in manufacturing. 

1 INTRODUCTION 

The increasing adoption of Smart Manufacturing Systems (SMSs) is driving demand for robust modeling 
and simulation methods that can accurately represent system behavior and support data-driven decision-
making. Digital Twins (DTs) are increasingly used to represent manufacturing systems virtually, enabling 
real-time monitoring, analysis, and optimization based on system data (Soori et al. 2023). Among the 
different modeling formalisms applicable to DTs, Petri Nets (PNs) are particularly well-suited due to their 
ability to capture concurrency, synchronization, and stochastic behavior in discrete-event systems (Desel 

and Reisig 2015; Peterson 1981). This combination of capabilities aligns directly with the operational 
characteristics of manufacturing systems. Real-world production environments frequently involve parallel 
processes, dependencies among tasks, and stochastic variations in processing times, arrivals, and failures. 
SPNs provide a formal and simulation-compatible language to represent such behavior by utilizing system 
data, enabling DTs to mirror the dynamics of the physical system. Furthermore, PNs have an intuitive 
graphical representation, which facilitates communication and collaboration with domain experts who may 

not have a background in computer science. This visual clarity supports model validation and co-
development in interdisciplinary teams, which is often essential in manufacturing environments. 
 A challenge in developing accurate DT models is the automated and scalable extraction of these models 
from system data. Traditional modeling approaches often rely heavily on substantial expert knowledge and 
manual construction, which limits their applicability in dynamic and data-rich environments (Jungmann 
and Lazarova-Molnar 2024). To address these limitations, Process Mining (PM) has been increasingly 

adopted as a technique to derive behavioral models from system-generated event logs (Van Der Aalst 2011). 
By analyzing sequences of recorded events, PM techniques enable the reconstruction of process models 
that reflect actual systems’ behaviors.  
 Stochastic Petri Nets (SPNs) offer a formalism capable of representing complex behaviors. They extend 
classical PNs with stochastic timing information, allowing for performance analysis under uncertainty. 
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However, integrating SPNs with PM workflows to support the extraction of DT models remains an open 
challenge. Existing PM tools are primarily focused on extracting control-flow models for business process 
management and often lack support for advanced PN constructs that are critical for simulation and 

validation in manufacturing contexts, such as inhibitor arcs and guard conditions. 
 This tutorial provides a hands-on guide for extracting simulation-ready SPN models from event logs 
and validating the models for use in DT applications. Participants are guided through each stage of the 
workflow: beginning with the definition of a ground-truth model, followed by the generation of synthetic 
event logs, the application of PM techniques for model extraction, and concluding with validation of the 
discovered model against the ground-truth. The tutorial is supported by our open-source Python library, 

PySPN (Friederich et al. 2025), which facilitates both the simulation of SPN models and the generation of 
event logs in a format suitable for PM. 
 The remainder of the tutorial paper is organized as follows: Section 2 provides background on the key 
concepts and technologies, including DTs, PM, SPNs, PNML, and relevant Python-based tools. Section 3 
introduces SPNs as a modeling formalism for DTs in manufacturing. Section 4 details the tutorial setup, 
including ground-truth model generation, SPN model extraction, and validation of extracted models. 

Section 5 demonstrates the workflow through two case studies. Section 6 concludes the tutorial. 

2 PRELIMINARIES  

In this section, we provide the key concepts and tools that form the foundation of this tutorial. We begin by 
providing an overview of DTs in manufacturing, emphasizing their relevance and potential impact. Next, 
we explore PM as an essential technique for extracting models from event data, followed by an introduction 
to SPNs, which serve as a suitable formalism for representing the relevant models. We then describe PNML, 

the standardized format used for describing PN models. Finally, we provide an overview of the Python 
libraries that we use throughout the tutorial to implement the workflow. 

2.1 Digital Twins in Manufacturing  

DTs have gained attention in both academia and industry since the concept was formally introduced by 
Grieves in 2002 (Grieves and Vickers 2017). NASA further adapted the concept and refined the term 
“Digital Twin”, focusing on the aerospace domain in 2010 (Piascik et al. 2010). In 2021, ISO 23247 was 

issued by the International Organization for Standardization as a DT manufacturing framework 
(International Organization for Standardization 2021). Despite these developments, a universally accepted 
definition of DTs remains lacking (Liu et al. 2023).  
 We define a DT as a virtual representation of a physical entity, for example, a smart factory, where 
both components are connected through bidirectional communication (VanDerHorn and Mahadevan 2021), 
as shown in Figure 1. The bidirectional communication link facilitates data collection, validation, 

knowledge extraction, and model validation, and furthermore, is the component that distinguishes a DT 
from the related concepts of Digital Models and Digital Shadows (Kritzinger et al. 2018). DTs are utilized 
in various areas such as manufacturing, smart cities, healthcare, automotive, renewable energy, and 
aeronautics (Fuller et al. 2020; Liu et al. 2023; Soori et al. 2023). 

 

Figure 1: Constituent parts of a Digital Twins setup for Smart Manufacturing Systems (Khodadadi and 
Lazarova-Molnar 2023). 
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 In the domain of manufacturing, SMSs, enabled by Industry 4.0, have become increasingly important 
as manufacturing processes have increased in their complexity, frequency of demand modifications, 
customization requirements, and interconnections (Leng et al. 2021; Tao et al. 2019). In SMSs, technologies 

such as IoT, software, artificial intelligence, automation, or big data are utilized to improve performance, 
quality, and efficiency within manufacturing processes. With this, the aim of SMSs is to enable highly 
adaptable environments that can swiftly respond to changing demands while maintaining high product 
quality and reducing production costs. To achieve this aim, both manufacturing processes and resources are 
digitally represented and managed in virtual environments (Soori et al. 2023; Leng et al. 2021).  
  DTs enhance SMSs by providing virtual replicas of physical systems that can be continuously updated 

with (near) real-time IoT data (Leng et al. 2021; Tao et al. 2019). DTs empower SMSs through capabilities 
such as monitoring, simulation, visualization, analysis, and optimization (Soori et al. 2023). Furthermore, 
DTs support more informed decision-making, reduce costs, reduce lead times, and improve efficiency and 
performance of production processes in terms of throughput and downtime (Kunath and Winkler 2018; 
Fuller et al. 2020; Soori et al. 2023; Greco et al. 2020). DTs are also utilized to track, test, and manage 
production systems as well as provide failure diagnosis (He et al. 2019). Another benefit of DTs in SMSs 

is the ability to execute virtual simulations of what-if scenarios without disrupting the system (Soori et al. 
2023). Given their broad functionality, DTs can be implemented with different focuses, such as product 
monitoring, safety enhancement, downtime optimization, time-to-market reduction, and virtual 
commissioning (Soori et al. 2023). DTs can be further applied in different manufacturing phases such as 
design, (re-)configuration, and operation (Soori et al. 2023).   

Numerous studies have explored applications of DTs in the context of SMSs. For instance, Leng et al. 

(2021), Friederich et al. (2022), Lazarova-Molnar (2024), and Mahmoud and Grace (2019) explore the 
implementation of DTs within SMSs. In our earlier work, we developed and extended a conceptual 
framework for data-driven DTs of SMSs (Friederich et al. 2022; Lazarova-Molnar 2024), shown in Figure 
2. The framework defines the required components to extract SPNs as DT models of SMSs, which we 
demonstrate in this tutorial. The framework further shows how the real-world and its digital replications 
are interconnected. In this framework, the SMS is the real-world entity connected to a corresponding data-

driven DT. The data-driven DT possesses an underlying SPN model that is automatically extracted from 
IoT data from the manufacturing system, in our case, event logs, and delivers decisions back to the real-
world entity. The data-driven DT consists of six components: data collection, data validation, knowledge 
extraction, model development, model validation, and analysis, which aim to extract an underlying SPN 
model for the data-driven DT model and provide the DT capabilities that support decisions for the SMS.  

 

 

Figure 2: Framework for data-driven Digital Twins of SMSs (Lazarova-Molnar 2024). 
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2.2 Process Mining  

PM enables the extraction of structured process models and performance insights from event logs readily 
available in modern production systems. PM aims to provide objective, data-driven insights into how 

processes are executed rather than how they are assumed to work (Van Der Aalst 2011). 
 Event logs form the foundation of PM, capturing ordered sequences of events typically annotated with 
a case ID, activity name, and timestamp. In the following, we provide a formal description of an event log 
(Friederich et al. 2025). An event log 𝐸𝐿 is defined as a set of event entries 𝐸𝐿 = {𝐸0, 𝐸𝑖 , … , 𝐸𝑚}, 𝑖 =
1, … , 𝑚.  Each event log entry is defined as a tuple 𝐸𝑖 = (𝑡, 𝑜, 𝑒), where: 
 

• Timestamp (𝑡): The exact point in time of event occurrence. 
• Case ID (𝑜): A unique identifier for the trace to which the event belongs. 
• Event Identifier(𝑒): Unique string that indicates the type of action that occurred in the beginning 

or end of an activity. 
• The ordering of events in a trace ensures that if 𝑒𝑖 and 𝑒𝑗 are two events in 𝐸𝐿 where 𝑖 < 𝑗, then 

𝑡(𝑒𝑖) ≤ 𝑡(𝑒𝑗), maintaining a non-decreasing order of timestamps in a trace.  

 
By analyzing event logs, PM techniques can reconstruct control flows of processes, evaluate processes’ 

conformance to expected behaviors, and enrich models with performance-related data. These capabilities 
have led to the application of PM in domains such as manufacturing, healthcare, logistics, and business 
process management, where understanding real operational behavior is critical (Van Der Aalst 2011; 
Augusto et al. 2019). PM techniques are typically grouped into three main categories (Van Der Aalst 2011): 

 

• Process discovery: This technique constructs a process model based on the data contained in the 
event log, without using any prior model. Algorithms such as Alpha Miner, Heuristic Miner, and 
Inductive Miner are commonly used to detect patterns and control-flow relations like sequences, 
choices, and parallelism (Augusto et al. 2019). 

• Conformance checking: This technique compares an existing process model to an event log of the 

same process to identify deviations. It is particularly useful for auditing, compliance verification, 
and detecting discrepancies between prescribed and actual process executions. 

• Enhancement: Also known as performance mining, this technique enhances a process model with 
additional information derived from the event log, such as activity durations, waiting times, and 
resource utilization. This enables a combined structural and performance-oriented analysis. 

 

 The effectiveness of PM relies on the availability of high-quality event data that accurately captures the 
underlying process behavior. Incomplete, noisy, or inconsistent data can result in incorrect or overly 
complex models. Moreover, the level of granularity must correspond to the logical structure of the process: 
insufficient detail may obscure control-flow dependencies, while excessive detail can introduce 
unnecessary complexity. Appropriate preprocessing is therefore essential to ensure the validity and 
interpretability of the extracted models (Van Der Aalst 2011). 

 We highlight three representative studies to demonstrate the adaptability and practical value of PM 
across diverse manufacturing scenarios. Friederich and Lazarova-Molnar (2021) extract reliability models 
from event data in a drone assembly lab using custom trace extraction and statistical parameterization. 
Lorenz et al. (2021) improve productivity in a make-to-stock environment by identifying inefficiencies 
through conformance checking and event log analysis with Disco and Python scripts. Birk et al. (2021) 
integrate ERP and SCADA data to analyze a multi-level valve production process, addressing challenges 

like hierarchical modeling and data heterogeneity. These studies underscore the versatility of PM in 
addressing a range of industrial challenges, including reliability, productivity, and system integration. 

1215



Khodadadi, Zare, Jungmann, Götz, and Lazarova-Molnar 
 

 

2.3 Stochastic Petri Nets  

PNs have been utilized for modeling, simulating, and assessing the performance of discrete event systems. 
The broad adoption of PNs is attributed to their features, such as visual (graphical) representation that 

closely mirrors real-world objects and their clear, formally established rules. Built on basic mathematical 
concepts (primarily basic algebra and graph theory), PNs facilitate comprehensive system analysis, 
enabling the examination of the system's entire behavior, pinpointing performance bottlenecks, and 
avoiding deadlocks (Peterson 1981). In our work, we use the stochastic variant of PNs, SPNs. SPNs extend 
classical PNs by incorporating stochastic timing information into transitions, enabling the modeling of 
temporal uncertainty and facilitating performance analysis in systems characterized by probabilistic 

behavior. The following provides the formal description of SPNs as outlined by Lazarova-Molnar (2005). 
An SPN is defined as 𝑆𝑃𝑁 = (𝑃, 𝑇, 𝐴, 𝐺, 𝑚0), where: 

 
• 𝑃 is a finite set of places, drawn as circles, 𝑃 = {𝑃1, 𝑃, … , 𝑃𝑚}; 
• 𝑇 is a finite set of transitions along with their distribution functions or weights, shown as bars, 𝑇 =

{𝑇1, 𝑇2, … , 𝑇𝑛}; 

• 𝐴 is a set of arcs 𝐴 = 𝐴𝐼 ∪ 𝐴0 ∪ 𝐴𝐻. The sets of arcs are defined as input arcs 𝐴𝐼 = {𝑎1
𝑖 , 𝑎2

𝑖 , … , 𝑎𝑗
𝑖} 

that connect places to transitions; output arcs 𝐴0 = {𝑎1
𝑜, 𝑎2

𝑜, … , 𝑎𝑘
𝑜}  that connect transitions to 

places, and inhibitor arcs 𝐴𝐻 = {𝑎1
ℎ , 𝑎2

ℎ , … , 𝑎𝑖
ℎ} that prevent a transition from firing if a certain 

number of tokens are present in its connected place. Each arc has a multiplicity assigned to it, and  

𝐴𝐼 ⊆ (𝑃 × 𝑇 × 𝑁) and 𝐴𝐻 , 𝐴𝐼 ⊆ (𝑃 × 𝑇 × 𝑁); 
• 𝐺 is the set of guard functions that are associated with different transitions, 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑟}; 
• And 𝑚0 is the initial marking of the PN. 

 
To prepare SPNs for integration with PM, we define a transition as a tuple 𝑇𝑖 = (𝑒, 𝑓, 𝑡𝑦𝑝𝑒), linked to 

an event {𝐸. 𝑒} for every trace 𝐸 ∈ 𝐸𝐿. Here, 𝑒 supplies the transition’s label, and 𝑓 stores either the 

probability distribution function (when the transition is timed) or the firing weight (when it is immediate). 
The last element, 𝑡𝑦𝑝𝑒, specifies whether the transition is timed or immediate. One of the three conditions 
for a transition in a PN to be enabled is that all input places contain at least as many tokens as their arc 
multiplicities. The other two conditions are that no guard functions or inhibitor arcs are blocking the 
transition. Inhibitor arcs are used in PNs to represent conditions where the presence of one or more tokens 
in a place prevents a transition from firing. Multiplicity of an arc defines how many tokens are destroyed 

or created by a corresponding transition, supporting batch operations or resource usage. Guard functions 
attached to a transition define logical conditions that must evaluate to true for the transition to be enabled. 
These functions serve as additional constraints, allowing transitions to fire only when specific contextual 
criteria are met. Firing an enabled transition destroys tokens from input places and creates tokens in output 
places, according to arcs multiplicities, and correspondingly updates the marking of the net (from marking 
𝑀 to 𝑀′ through the firing of a transition).  

In Figure 3, we illustrate the four basic control-flow patterns for representing workflow models. PN(a) 
captures a simple sequence (𝑎 → 𝑏), PN(b) represents an XOR-split pattern (𝑎 > 𝑏, 𝑎 > 𝑐 and 𝑏#𝑐), PN(c) 
represents an AND-split pattern (𝑎 > 𝑏, 𝑎 > 𝑐  and 𝑏||𝑐) , and PN(d) represents an AND-join pattern 
(𝑎||𝑏 → 𝑐). A detailed discussion of the algorithm is provided in the work of van der Aalst et al. (2004). 
 

Figure 3: Examples of foundational Petri net control-flow patterns. 
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2.4 Petri Net Markup Language  

In this tutorial, we formalize the extracted models using Petri net Markup Language (PNML), an XML-
based standard designed to represent PNs in a tool-independent manner. The design of PNML is focused 
on three main principles (Billington et al. 2003).  
 

• Flexibility: PNML represents any type of PN, including its features and extensions. By considering 

a PN as a labelled graph, PNML can store all additional information of a PN. 
• Unambiguity: By defining fixed PN types, the legal labels for a particular PN are determined. Petri 

net Type Definition (PNTD) ensures that each PN can be determined from its PNML 
representation, making the description unambiguous. 

• Compatibility: To enable exchange between different PN types, PNML uses a conventions 
document that defines the syntax and the meaning of labels or extensions. This enables the 

interpretation of new PNs by different tools without knowledge of their specific types. 
 
Objects of PNs (places, transitions, arcs) are translated into XML syntax using PNML keywords, also 

called PNML elements. Figure 4 shows an example of a PN model in PNML format. In the example, various 
PNML elements and their corresponding attributes are visible. 

2.5 Relevant Python Libraries  

In this tutorial, we present our research workflow for data-driven PN model extraction and simulation. We 
use several Python libraries to implement and support this workflow for simulation, event log generation, 
model extraction, data processing, and visualization. Below is a summary of the key libraries we use: 

 
• Graphviz (Ellson et al. 2002): Used to visualize the extracted PN structure and support validation. 
• Pandas (McKinney 2011): Utilized for data handling and preprocessing, including trace 

construction and filtering from raw logs. 

 

Figure 4: A simple Petri net model in PNML format. 
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• SciPy (Virtanen et al. 2020): Used for statistical analysis, including fitting probability distributions 
to observed transition durations with tests such as Kolmogorov–Smirnov (KS). 

• XML ElementTree and XML DOM (Ogbuji 2007): Employed to parse, edit, and generate PNML 

files, enabling the conversion between PNML-formalized models and simulation-ready formats. 
• PySPN (Friederich et al. 2025): PySPN is an open-source Python library designed for modeling, 

simulation, and event log generation of SPNs. PySPN is part of our previous work (Khodadadi and 
Lazarova-Molnar 2024) and is included in this tutorial as the core simulation library for modeling 
and executing SPNs. The PySPN library supports multiple probability distributions (for instance, 
exponential, normal, and Weibull), immediate and timed transitions, inhibitor arcs, and guard 

functions. PySPN provides a flexible environment for representing complex discrete-event 
systems, such as manufacturing, logistics, and healthcare, making it suitable for DT simulation 
models. A key feature of PySPN is its ability to generate synthetic event logs, which are essential 
for PM, validation, and further refinement of DT models. In scenarios where real-world data is 
limited or unavailable, such as in early system design and sensitive environments, PySPN-
generated event logs can serve as an alternative. PySPN enables the extraction of SPN models that 

can be continually updated and analyzed utilizing (near) real-time data. As a result, PySPN can be 
used to develop DTs that enable system monitoring, support what-if scenario analysis, and assist 
in decision-making in discrete event systems.  

3 STOCHASTIC PETRI NETS AS UNDERLYING MODELS OF DIGITAL TWINS FOR 

SMART MANUFACTURING SYSTEMS  

Process flows in SMSs can be modeled using PNs and simulated using Discrete-Event Simulation (DES). 

As we aim to extract DT models in a data-driven manner, we utilize PM for the automated extraction 
process of discrete-event simulation models. PN is a modeling formalism that, on the one hand, is capable 
of modeling discrete-event simulations (Long et al. 2016) and, on the other hand, is one of the few available 
modeling formalisms that can be directly extracted using PM. Besides the compatibility of PNs with PM 
and discrete-event systems, PNs are intuitive and widely used to model, simulate, and assess SMSs 
(Latorre-Biel et al. 2018; Friederich 2023). Further, PNs are capable of modeling flexible, automated 

manufacturing processes experiencing parallelism, asynchrony, bottlenecks, conflicts, and events (Latorre-
Biel et al. 2018; Zhang et al. 2015). This makes PNs especially suitable as underlying DT models for SMSs. 
  Multiple studies utilize PNs as underlying DT models for SMSs. Friederich et al. (2022) proposed a 
data-driven DT framework that extracts SPNs using PM. Seok et al. (2022) proposed an approach to check 
consistency in DTs based on timed PNs. Dai et al. (2020) proposed a DT model based on PNs that 
implements a control structure for the connection with industrial pipelines to enhance real-time simulations. 

Pei et al. (2021) proposed an application paradigm to extend DTs for monitoring quality in solar cell 
production processes implemented through a place refinement time layered PN. Tsinarakis et al. (2020) 
proposed a DT for the development process of electric vehicles based on PN models. There exist multiple 
variants of PNs, such as SPNs, fuzzy PNs, and colored PNs. We utilize SPNs for our work, as they can 
capture concurrency and synchronization of discrete-event systems, as well as complexity and uncertainty. 
In the following, we explain how we extract SPNs as DT models with the help of PM.  

To utilize SPNs as underlying models for DTs of SMSs, a structured approach is required, which we 
outline in Figure 5 and implement throughout this tutorial. The process begins with the collection of event 
logs, which are either recorded from the real-world system or synthetically generated by simulation tools 
such as PySPN, utilizing the PNML file of the real-world system. Event logs must be preprocessed to 
remove incomplete traces and ensure a consistent event structure. Once prepared, PM and data analysis 
techniques are applied to extract the structural model in the form of an SPN. For this, we identify transitions, 

places, and their relationships based on event sequences. Furthermore, we identify inhibitor arcs and guard 
conditions by analyzing outlier behavior and token dependencies. We then simulate the extracted model 
and check if it is validated against the real-world system by comparing key performance indicators (KPIs) 
such number of outputs, and structural validation. The validated model that closely replicates the behavior 
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of the original system is recognized as a DT, which can be used for supporting monitoring and analysis in 
different what-if scenarios. 

  

Figure 5: Methodology for utilizing SPNs as underlying models for Digital Twins of SMSs. 

4 TUTORIAL SETUP 

In this section, we outline the setup for the practical part of the tutorial. As illustrated in Figure 6, each case 
study begins with a ground-truth model described in PNML format. Subsequently, we run simulations using 
PySPN to generate event logs. The objective is to automatically extract the underlying SPN models from 
these event logs, capturing key features such as probability distributions of activity durations and inhibitor 

arcs. We then simulate the extracted models in PySPN to validate them and ensure their alignment with the 
ground-truth models. Once validated, the extracted models serve as the underlying models of DTs, which 
can be utilized for system analysis and decision-making support under various what-if scenarios. 

 
 

Figure 6: Steps of the tutorial setup. 

4.1 Step 1: Ground-Truth Model Development and Event Log Generation 

We begin with a ground-truth model that we use to generate event log data. The ground-truth model refers 
to a model that is accepted as an accurate representation of the real system for the purpose of comparison 
and evaluation. The ground-truth model is manually developed as an SPN, encoded using PNML. Through 
a custom parser, we import the PNML file directly into PySPN to simulate the ground-truth model and 
generate the corresponding event log. PySPN also provides the option to visualize the underlying SPN 
structure. The generated event log then serves as the input for the model extraction process. 

4.2 Step 2: Model Extraction 

The process of extracting an SPN model from event logs involves several key steps. In Algorithm 1, we 
outline the pseudocode for extracting a data-driven model from event logs, which we describe as follows: 
 
1. Trace Extraction and Data Pre-processing: First, we sort the events by their case IDs (𝑜) and 

timestamps (𝑡). Second, we drop incomplete traces for each unique case ID that could mislead PM and 

result in invalid model structures. Next, we extract the underlying process flow of the system utilizing 
PM algorithms, such as Alpha Miner or Heuristic Miner (Premchaiswadi and Porouhan 2015), from 
which we extract the total available traces in the system (𝑇𝑅). 
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2. Petri Net Structure Construction: To construct the structure of PNs from event logs, we set each 

unique event identifier (𝐸𝑖) as a transition (𝑇𝑖). Next, from 𝑇𝑅 we identify the unique consecutive 
pairs of transitions (𝑇𝑖, 𝑇𝑖+1), where for each such pair, we introduce a place 𝑃,  labeled as (𝑇𝑖_𝑡𝑜_𝑇𝑖+1). 
Finally, we define the sets of input arcs 𝐴𝐼 , and output arcs 𝐴𝑂. 

3. Detection of Inhibitor Arcs and Transitions’ Types: Inhibitor arcs in the SPN model (and structures 
in the event log that lead to their extraction) can skew the timing distributions of timed transitions, as 
the delays they impose introduce outliers into the observed activity durations. To mitigate this, we 

employ a structured methodology to detect inhibitor arcs and eliminate their effects on activity 
durations. For this, we first record, for each activity’s duration time, using: 

 𝛥𝑖 = ∑  tj,i − min (𝑡𝑗,𝑖−1, 𝑡𝑗_𝑒𝑛𝑎𝑏𝑙𝑒𝑑) 𝑚
𝑗=1 ,  

where tj,I  is the timestamp of the case 𝐼𝐷𝑗  for the event 𝐸𝑖 ,  𝑡𝑗,𝑖−1 is the timestamp of the 𝐼𝐷𝑗  for  

𝐸𝑖−1 and 𝑡𝑗_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 is the time that case 𝐼𝐷𝑗 is included in the activity (enabled corresponding transition 

𝑇𝑖). If 𝛥𝑖 for 𝐸𝑖 is zero, we classify the corresponding transition 𝑇𝑖 as an immediate transition and add 

it to 𝑇𝐼. Otherwise, we must confirm if the non-zero value for 𝛥𝑖  is not related to the effect of an 

inhibitor arc condition. For this, we remove outliers of time duration values for 𝛥𝑖 by discarding time 

durations outside the central 15–85 percentile interval (trimming the upper tail beyond the interquartile 

range) and computing the median delay 𝑡𝑚𝑒𝑑. For each entry with case 𝐼𝐷𝑗={1, 2, …, m} for event 𝐸𝑖 

we predict the expected firing time (timestamp) as: 

 𝑡𝑗_𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  𝑡𝑗𝑒𝑛𝑎𝑏𝑙𝑒𝑑
+  𝑡𝑚𝑒𝑑. 

Algorithm 1: Extraction of a Stochastic Petri net and a corresponding PNML file from event log data. 

Input: event log 𝐸   

Output: SPN model PNML file 

1. Trace Extraction and Data Pre-processing: Sort events by case ID and timestamps; remove incomplete 

traces, utilize the cleaned event log in PM, store ordered traces in the set 𝑇𝑅. 

2. Petri-net Structure Construction: For every trace 𝑡 ∈ 𝑇𝑅: for every pair of consecutive events mapped to 

transitions (𝑇𝑖 , 𝑇𝑖+1): Create a place P and add the arcs 𝑇𝑖 → 𝑃𝑖_𝑡𝑜_𝑖+1 → 𝑇𝑖+1; if a transition is an XOR-split: 

merge all of its outgoing places into a single place. Define input arcs 𝐴𝐼 and output arcs 𝐴𝑂 . 

3. Detection of Inhibitor Arcs and Transition’s Types: 

a. For every transition 𝑇𝑖  and case 𝑗: compute 𝛥𝑖 = ∑  tj,i − min (𝑡𝑗,𝑖−1, 𝑡𝑗_𝑒𝑛𝑎𝑏𝑙𝑒𝑑)𝑚
𝑗=1 ; 

b. If 𝛥𝑖 = 0: Add 𝑇𝑖  to the immediate transitions’ set 𝑇𝐼; 

Otherwise, remove outliers and set 𝑡𝑚𝑒𝑑 ; compute the expected timestamp 𝑡𝑗𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
=  𝑡𝑗𝑒𝑛𝑎𝑏𝑙𝑒𝑑

+

 𝑡𝑚𝑒𝑑 ; If 𝛥𝑖,𝑗 > 𝑡𝑗_𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  and 𝐸𝑖+1 is enabled: mark inhibitor arc from the place P(𝑇𝑖_𝑡𝑜_𝑇𝑖+1) to 𝑇𝑖  

and remove the effect of inhibitor arc on time duration for 𝐸𝑖 and return 𝛥𝑖,𝑗
′  ; if 𝛥𝑖

′  =  0  , add 𝑇𝑖  to 

𝑇𝐼; else add 𝑇𝑖  to 𝑇𝑇 . 

4. Detection of Multiplicities: In every trace 𝐸𝑖 →   𝐸𝑖+1: input arc multiplicity is the count occurrences of 𝐸𝑖 

before the first 𝐸𝑖+1; Output arc multiplicity is the count of occurrences 𝐸𝑖+1 after the first 𝐸𝑖. 

5. Control-Flow Patterns Implementation: Update SPN model by adding control-flow patterns, for instance: 

a. XOR-split: Identify any transition where all traces share the same prefix but branch at the next step; 

Integrate all of the outgoing places into one place and update the connecting arcs. 

b. AND-join: For every possible join: confirm that tokens arrive from all inputs at once and merge into 

the number of outputs; If not: merge the input places into a single place and update the arcs. 

6. Fitting of Durations Probability Distribution: For every timed transition 𝑇𝑖 ∈  𝑇𝑇: Adjust the durations {𝛥𝑖
′} 

to candidate probability distribution families (such as normal, lognormal, or exponential) via MLE and retain 

the probability distribution with the highest KS p-value. 

7. Extracting Weights of Immediate Transitions: For each immediate transition 𝑇𝑗 involved in an XOR-split, 

count the occurrences of its event 𝐸𝑗  and record this count as its weight 𝑓𝑗. 

8. PNML Generation: Combine the extracted features into a complete SPN and export it in PNML format. 
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If the 𝛥𝑖,𝑗 for a case ID for an event is more than 𝑡𝑗_𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 and at the same time the subsequent event  

𝐸𝑖+1 is enabled, we introduce inhibitor arcs from the outgoing place to corresponding transition 𝑇𝑖 for 

the event 𝐸𝑖 . Finally, we recalculate the activity duration for 𝐸𝑖  as 𝛥𝑖,𝑗
′  where we remove the delay 

caused by the inhibitor arc and return 𝛥𝑖
′ . If 𝛥𝑖

′  is zero, then 𝑇𝑖  is categorized as an immediate transition, 

and we add it to the set of immediate transitions 𝑇𝐼 , otherwise 𝑇  is assigned to the set of timed 

transitions 𝑇𝑇.   
4. Detection of Multiplicities: We examine how many tokens (case ID) each transition (mapped to an 

event) consumes upon firing. Input multiplicity for an arc 𝐸𝑖 →   𝐸𝑖+1 is inferred by counting every trace 
that reaches 𝐸𝑖 before the first occurrence of 𝐸𝑖+1, 𝐸𝑖 appears. Conversely, output multiplicity for 𝐸𝑖 →
 𝐸𝑖+1 is determined by counting, the occurrence of 𝐸𝑖+1 after 𝐸𝑖’s first occurrence in every such trace. 

5. Control-Flow Patterns Implementation: To model system behavior accurately, we express control-
flow patterns in the SPN and then update the resulting places, transitions, and arcs accordingly. For 

instance, for XOR-split to implement an XOR-split, we first identify transitions where traces share a 
common prefix but differ at the next event. In the corresponding SPN, we consolidate the multiple 
output places of such transitions (as assigned in Step 2) into a single place and draw arcs from this place 
to each possible subsequent transition. To model an AND-join, we detect points where traces with 
different prefixes meet on the same event. While the PN structure from Step 2 may already represent 
this, we verify its correctness by checking two conditions: (i) all required tokens from preceding events 

must arrive simultaneously before enabling the join transition, and (ii) firing the transition merges these 
tokens and generates new case IDs based on the output multiplicity. If these conditions are not met 
(indicating a false AND-join), we merge the transition's input places into one and update the arcs to 
reflect the corrected behavior. 

6. Fitting of Duration Probability Distribution: For each timed transition 𝑇𝑖 in the list of 𝑇𝑇, we fit 𝛥𝑖
′  

by Maximum‐Likelihood Estimation (MLE) using the SciPy library to a predefined family of 

distributions {𝑒. 𝑔. , 𝑛𝑜𝑟𝑚, 𝑙𝑜𝑔𝑛𝑜𝑟𝑚, 𝑒𝑥𝑝𝑜𝑛}, estimating each candidate’s parameters 𝜃𝑇(𝑓)̂. For this, 
we perform a one‐sample Kolmogorov–Smirnov (𝐾𝑆𝑡(𝑓)) test between the empirical cumulative 
distribution of 𝛥𝑇

′  and the theoretical Cumulative Distribution Function (CDF) 𝐹(𝑥; 𝜃𝑇(𝑓)) for each 
𝑓, and select the distribution 𝑓𝑡

∗ with the highest KS p-value as the time‐feature. 

7. Extracting Weights of Immediate Transitions: For every 𝑇𝑖 ∈ 𝑇𝐼 with an XOR-split condition, we 

calculate the number of occurrences of the corresponding event 𝐸𝑖 and set its value 𝑓𝑖 for 𝑇𝑖. 
8. PNML Generation: Once the SPN model structure and features are extracted, including duration 

probability distributions for timed distributions and weights for immediate transitions, the model is 

translated into code compatible with the PySPN simulation framework. To enable standardized 
exchange and reuse, the extracted PN model is translated to PNML. The resulting PNML file ensures 
interoperability and facilitates simulation within PySPN and other PN-compliant tools.  

4.3 Step 3: Model Validation and Simulation  

To ensure the extracted model accurately reflects the ground-truth model, we assess its validity both in 
terms of structural and operational validity. For structural validity, we compare the PNML representations 

of the ground-truth model and the extracted model. The structural validity is verified by examining that 
both models contain an equal number of places, transitions, and arcs. While this comparison could be 
performed by directly counting the elements in the PNML files, we utilize the visualization capabilities of 
PySPN to facilitate this process. Furthermore, we compare the predefined KPIs of the ground-truth model 
with the KPIs of the extracted simulation model. In output validation, we check whether the 95% confidence 
intervals of the KPIs overlap after 100 independent simulation runs.  

5 STEP-BY-STEP SIMULATION MODEL EXTRACTION FOR TWO CASE STUDIES  

To demonstrate the practical application of our data-driven model extraction and simulation approach, we 
present two case studies: a simple sequential manufacturing system and a two-server queueing system. The 
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first case study models a sequential process, where products are made in a fixed series of steps from start 
to finish. This scenario provides a clear and intuitive setting for introducing the methodology, making it 
easier to follow the mechanics of event log generation, model extraction, and simulation. In contrast, the 

second case study involves a two-server queueing system, where incoming tasks are randomly assigned to 
one of two parallel servers. This setup introduces non-determinism and concurrency, offering a more 
complex and realistic environment to evaluate the robustness and accuracy of the proposed model extraction 
framework. It highlights the method’s ability to capture stochastic behavior and structural variability, which 
are common in real-world manufacturing systems.  

5.1 First Case Study: Simple Sequential Manufacturing System 

The first case study models a simple manufacturing system structured as a sequential process flow. The 
process begins with the placement of a new order, which occurs according to a gamma distribution with an 
average duration of around 15 minutes. Subsequently, the order is transported through a conveyor system 
to the production stage, which has a fixed duration of 2 minutes. The production process involves the 
assembly of the product and takes a variable time governed by a triangular distribution, typically ranging 
between 10 and a maximum of 10.30 minutes, with the most likely duration being 10.10 minutes. A guard 

function is associated with the conveyor transition, allowing it to fire after a time duration and only when 
an order is available and the production station is not occupied. Once production is completed, the 
manufacturing task is done, and the system is ready for delivery or subsequent processes.  

5.1.1 Step 1: Ground-Truth Model Development and Event Log Generation 

The case study ground-truth model is described as a PNML file and input to PySPN. Figure 7 and Table 1 
show the SPN ground-truth model and its generated event log in CSV format, respectively. 

 
 

Figure 7: Stochastic Petri net of the simple sequential manufacturing system case study. 

Table 1: The first case study (sequential manufacturing system) event log excerpt. 

Timestamp Order ID Event 
… … … 

72.86 8 New Order 
72.9 6 Conveyor End 

74.23 4 Production Process End 
74.23 4 End of the Task 

… … … 
 

 

5.1.2 Step 2: Model Extraction  

Following the approach described in Section 4.2, we extract the underlying SPN model of the first case 
study in PNML format. The model extraction is based on the event log data generated by PySPN for 
simulating the ground-truth model, which is exported in CSV format.  

5.1.3 Step 3: Model Validation and Simulation 

Figure 8(a) presents the SPN generated from the PNML file using PySPN, which is redrawn for clarity. 
Comparing the structure of the extracted model to the ground-truth model, we observe that the extracted 
model preserves the same structure as the ground-truth model (same number of places, transitions, and 
arcs), demonstrating the structural equivalence of the model and validating the correctness of the extraction 

1222



Khodadadi, Zare, Jungmann, Götz, and Lazarova-Molnar 
 

 

process. In Figure 8(b), we present a quantitative comparison of the number of output products across 100 
independent simulation replications of the first case study, showing strong correspondence between the 
extracted model and the ground-truth model. 

 

(a) (b) 

Figure 8: (a) Visual representation of the extracted Stochastic Petri net. (b) 95% confidence intervals for 
the KPI of the first case study. 

5.2 Second Case Study: Two-Server Queueing System 

The second case study models a two-server queueing system, designed to evaluate the proposed model 

extraction approach in a more complex and stochastic environment. In this system, new tasks (orders) arrive 
at variable intervals governed by an exponential distribution with a rate parameter of 𝜆 = 1 ⁄ 7. Each new 
task is first placed in the orders queue, from which it is routed to one of the two servers with equal 
probability (50%). Each server is able to process one entity at a time. The service time at each server follows 
a triangular distribution ranging from 20 to 22 minutes, with the most likely duration at 20.5 minutes. 
Comparably, the service time at Server 2 follows a triangular distribution ranging from 15 to 17 minutes, 

also with a mode of 15.5 minutes. A guard function is applied to the immediate transitions of both servers, 
allowing a task to proceed only if there is a task waiting in the queue and the server is available. 

5.2.1 Step 1: Ground-Truth Model Development and Event Log Generation 

We use PNML to describe the case study ground-truth model in PySPN. Figure 9 and Table 2 present the 
resulting SPN model and the event log generated by the PySPN simulation, respectively. 
 

Figure 9: Stochastic Petri net of the two-server queueing system case study. 

Table 2: Two-server queueing system event log excerpt. 

Timestamp Order ID Event 
… … … 

75.12 10 New Order 
89.8 7 Service Server 2 End 
89.8 7 Order Completed 2 End 
89.8 8 Direct to Line 2 
… … … 
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5.2.2 Step 2: Model Extraction 

We extract the model of the second case study by following the approach detailed in Algorithm 1. In the 
second case study, the extracted model includes both inhibitor arcs and transitions with fork conditions, 

where a single transition leads to multiple possible subsequent paths.  

5.2.3 Step 3: Model Validation and Simulation 

Figure 10(a) presents the SPN generated using PySPN from the PNML file, redrawn for clarity. The result 
of the simulation model validation shows that both the extracted model and the ground-truth model have 
the same structure in terms of the number of places, transitions, and arcs. Therefore, the extracted model is 
deemed structurally valid. Furthermore, in Figure 10(b), we present comparisons of the output counts across 

100 independent simulation replications. The results show an overlap between the extracted and the ground-
truth models. 

 
(a) (b) 

Figure 10: (a) Visual representation of the extracted PNML. (b) 95% Confidence intervals for the KPI 
of the second case Study. 

6 SUMMARY AND OUTLOOK 

In this tutorial, we present a workflow for the data-driven extraction and simulation of Petri net models, 
designed to support the development of Digital Twins for Smart Manufacturing Systems. We use Stochastic 
Petri nets as a formalism due to their expressive capacity for modeling discrete-event system behaviors and 
their compatibility with Process Mining techniques. The tutorial outlines a step-by-step methodology 
encompassing event log preprocessing, structural model extraction, probability distribution fitting for 

activity durations, multiplicities, and inhibitor arcs detection, and model validation. To simulate and 
validate the extracted Stochastic Petri net models, we utilize PySPN, an open-source Python library 
designed for stochastic Petri net modeling and simulation. We illustrate the workflow through two case 
studies involving simplified and fragmentary representations of manufacturing systems, chosen to 
demonstrate the feasibility and core principles of the approach. These case studies, while not exhaustive, 
show how Stochastic Petri nets can be derived from data to support key performance indicator analysis and 

inform decision-making processes. With this tutorial, we aim to offer a clear and practical foundation for 
researchers aiming to integrate data-driven Petri net modeling into Digital Twin development. Future work 
may explore extending this methodology to more complex systems, real-time data integration, and broader 
classes of Petri nets. 
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