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ABSTRACT

Business enterprises have grappled in the last one and half decade with unavoidable risks of (major) cyber
incidents on critical infrastructure (e.g., power grid, cloud systems). The market to manage such risks using
cyber insurance (CI) has been growing steadily (but not fast enough) as it is still skeptical of the extent
of economic and societal impact of systemic cyber risk across networked supply chains in interdependent
IT-driven enterprises. To demystify this skepticism, we study in this paper the role of (a) the statistical
nature of multiple enterprise cyber risks contributing to aggregate supply chain risk and (b) the graph
structure of the underlying enterprise supply chain network, in the statistical estimation and spread of
aggregate cyber risk. More specifically, we provide statistical tail bounds on the aggregate cyber-risk that
a cyber risk management firm such as a cyber insurer is exposed to in a supply chain.

1 INTRODUCTION

Digitally driven enterprise supply chains are becoming increasingly pervasive. Popular examples include
the enterprise supply chains supported by critical infrastructure such as the power grid and cloud systems
(see Figure 1). While the modern power grid built upon a cyber-physical system supports virtually all
societal enterprise sectors, the cloud systems supporting SaaS, PaaS, and the IaaS service paradigms are
the backbone of nearly every business today. Consequently a service disrupting cyber attack (or system
configuration induced reliability faults) on such critical infrastructures will simultaneously cripple/disrupt
the services offered by enterprises on a supply chain in a systemic fashion and increase business risk. The
business risk arising due to such a cyber attack is often termed as systemic cyber risk.

To give examples of systemic cyber risk, on 16th November 2021, Google’s cloud platform faced a global
outage sourcing from a network configuration bug that lasted for two hours and cascadingly (systemically)
bought down major services like Spotify and Facebook that themselves have millions of (business) clients
who use their services. The NotPetya cyber attack of 2017 is an example of a malware-based supply
chain attack that crippled the services of major organizations such as Maersk, FedEx, Mondelez, Reckett
Benkeiser (all of them commonly using a tax-filing software affected by malware) for multiple weeks
systemically affecting hundreds and thousands of their clients business services. Similar incidents, specific
to the energy and utility service sectors, include the Colonial Pipeline cyber attack of 2021, and the Ukraine
power grid cyber attack of 2015, where the services of multiple businesses reliant on energy and power
were disrupted for hours/days. All of such business disruption incidents cost national economies hundreds
of millions (if not billions) of dollars, and most of these costs till date are absorbed by affected enterprises
on the digital supply chain.

1.1 Cyber Insurance Markets to Manage Risk

One could argue here that it is quite natural that enterprises around the globe should resort to cyber insurance
(CI) to cover their business losses (be it first-party, or multi-party as usual in digital supply chain settings),
similar to that in traditional sectors like health, property, life, and automobile.
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Figure 1: Showcasing the chart of complex service dependencies among networked enterprise sectors with
critical cyber infrastructure. [Source: Netherlands Organization for Applied Scientific Research (TNO)].

1.1.1 Slow Growth in the CI Market

Though the concept of insurance for cyber-risk management was introduced in the late 90s, the market for
such insurance had a sub-steady growth until early 2010s (Wolff 2022). The commercial cyber insurance
(CI) market to manage enterprise cyber risk has seen a significant growth rate in the last five years in the
USA (greater than 50% annually since 2020 according to Conning, an investment management firm for
the insurance industry) and in many other countries around the globe. Most of it is due to the spike in
ransomware claims (and business email compromise) since 2019 (based on a survey by insurance analytics
firm NetDiligence in 2023) that has allowed cyber insurers to write higher premiums on a narrow exposure
base with tightened exclusionary policies. The benefit of such policies apart from their obvious role in
business loss coverage is that they have usually enforced that enterprises adhere to strictly recommended
security controls (e.g., MFA, strong passwords) for attractive premiums and/or the necessary condition to
get or renew insurance coverage (Wolff 2022). A recent survey by Forrester in 2023 provided statistics
showing that such security controls necessitated on enterprises by (standalone) cyber insurance policies
reduced the number of cyber incidents involving data breaches and also improved cyber resilience by
reducing the mean time to incident detection, response, and recovery. Despite the promising statistics state
above in favor of the growth of the CI industry, most cyber risk is absorbed by the insured client. In other
words, there is big and growing annual supply-demand gap (of insurance premiums versus total cyber-crime
costs) in the current cyber insurance industry running in atleast hundreds of billions of USD (see Figure
2). It is evident from Figure 2 that cyber insurers are skeptical to bear the bulk of global cyber-crime costs.
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Figure 2: A large supply-demand gap exists in the global CI market. [Source: MunichRe and CyberCube]

1.1.2 The Core Challenge to CI Market Growth

The phenomenon of multi-sided information asymmetry (IA) is the core challenge to scaling CI market
growth with respect to closing the wide supply-demand gap. The primary catalyzing factor behind the
limited growth rate in CI markets is that the cyber risk terrain is extremely dynamic and expansive over
time, and quite varying in space among enterprises. This factor makes it quite difficult for risk-averse
cyber insurers to accurately assess business cyber-risk in both, non-systemic and systemic settings. This is
characteristic of the multi-sided information asymmetry problem unique to cyber insurance environments
(when compared to the single-sided information problem in traditional insurance) where both (and hence
the term ‘multi-sided’), the enterprise client and the insurance companies not have perfect knowledge of all
the vulnerabilities in the hardware, software, and firmware stacks of computer systems (the vulnerability
stacks combined forming the cyber terrain) in the enterprises, to be able to accurately assess business cyber
risk (Pal et al. 2023; Pal et al. 2021; Pal et al. 2024). The vulnerability space in this cyber terrain will get
much larger with the integration of AI in the computer systems space. In short, it often is too costly for
both the (potentially) insured and the insurer to get and share the necessary cyber risk terrain information to
price loss coverage contracts that are a ‘win-win’ for both the supply and demand sides of the CI business.
Eventually, this leads to insurers either rejecting enterprise client demands to purchase cyber insurance, or
designing contracts with high deductibles and premiums that attract relatively a low number of clients.

1.2 Information Asymmetry Challenge Amplifies in Systemic Settings

IT and the operational technology (e.g., IoT and CPS) driven enterprise sectors (mostly comprising of small
and medium businesses) are becoming increasingly part of enterprise digital supply chains (see Figure 1),
and in the near future will be the backbone of the daily needs of every society around the globe.

1.2.1 Multi-Sided IA in Systemic Settings

The net adverse economic impact from an adversary exploiting vulnerabilities (in multi-sided IA terms,
the ‘(un)known-unknowns’ of an enterprise) in a single enterprise on the digital supply chain is much
amplified in this IT/OT-driven networked and interdependent enterprise setting that is quite susceptible
to the relatively newer family of domino-style cascading/systemic cyber loss impact. This impact is an
outcome of highly non-linear amplifier effects in any complex (supply chain) network. It is not only the IA
impact, but the aforementioned multi-sided IA problem is also amplified in systemic supply chain settings
due to networked dependency effects. In other words, the individual enterprise multi-sided IA problem is
scaled on the order of the size of the underlying supply chain network. At the same time, risk information
sharing among service interdependent supply chain enterprises has always been a challenge till date. Given
that the CI market thus far has exhibited limited growth rates (with respect to closing the supply-demand
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gap) in a fairly non-systemic risk environment, it is unlikely that this market trend would change (probably
even worsen) in the evolving and potentially pervasive systemic cyber risk environments. We next state
real-world examples where insurers due to lack of low historical incident data about systemic cyber attacks
did not have enough cyber risk estimation model confidence to absorb a significant amount of economic
and societal impact from such attacks.

1.2.2 Examples of IA Making CI Markets Conservative

Ransomware-as-a-service that started around 2014 hardly used to exceed multiple thousands of USD until
2019, when suddenly nation state actors demanded multi-million dollars on a single ransomware incident
or from a systemic impact of a single cyber incident. Such impact spikes are extremely difficult to predict
using limited availability of historical data and cyber-posture information fueled by multi-sided IA, and
dampened cyber insurance market interest to cover business losses from such incidents post 2020. Add to
this that systemic catastrophe loss events (including those larger than any we have seen till date) affecting
multiple enterprises at once could very likely and unpredictably reverse the trend of CI markets growing on
narrow exposure bases in the aftermath. As an example, the 2017 NotPetya supply chain cyber attack impact
of nearly USD 10 billion initially pushed leading cyber insurers to opt out of providing demanded coverage
amount. The insurers simply never planned to cover such scales of systemic risk due to a multi-sided IA
driven lack of historical data and a subsequent risk analysis based on stress testing, alongside and policy
shortcomings. As another very recent example, the global CrowdStrike IT outage of 2024 is likely cost the
Fortune 500 companies, excluding Microsoft, at least USD 5.4 billion in direct financial losses, whereby
cyber insurance will only cover 10% to 20% of the losses. Such scales of under coverage is a direct
outcome of (a) the multi-sided information asymmetry problem and (b) lack of a stress tested risk analysis,
that together does not help generate sufficient risk statistics for insurers to improve coverage percentages.
According to Parametric and CyberCube - leading cyber insurance analytics firms, the cyber insurance
market will likely face preliminary insured losses of between USD 400 million and USD 1.5 billion from
the CrowdStrike incident - evidently a wide variation lacking statistical tightness of projections.

1.3 Research Motivation and Contributions

We state our research motivation and follow it up with our research contributions.

1.3.1 Research Motivation

The multi-sided information asymmetry problem is here to stay, and the opportunity cost for insurers to
not tap into the multi-trillion dollar cyber risk coverage market is too high. With existing (a) cyber-posture
estimating tools by firms such as Bitsight, and (b) third party cyber risk mitigation tools like RiskRecon by
Mastercard, there is scope for getting more leverage from cyber risk data science in favor of systemic cyber
risk management. In other words, a worst case stress tested analysis on systemic cyber risk statistics done
apriori (using statistics estimated by industry standard cyber-posture tools like Bitsight and RiskRecon) can
go a long way in mitigating the adverse effects of multi-sided IA and better systemic cyber risk management
by the CI industry and reduce (re)insurer opportunity costs. Our research motivation in this paper is to
quantitatively estimate and study tight (worst case) bounds on the systemic cyber risk faced by an enterprise
on a supply chain and their impact on systemic cyber risk management by the CI industry.

1.3.2 Research Contributions

A particular cyber insurer will likely be exposed to an aggregate cyber risk stemming from first and
multi-party claims in a digital supply chain. We provide a statistical theory to study the spread of the tail
of an aggregate number of general enterprise cyber risks (reflecting both, light-tailed and heavy-tailed risk
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statistics, and for both, i.i.d. and non i.i.d. settings) when the underlying network degree distribution of
the enterprise supply chain network is both, light-tailed and heavy-tailed in nature (see Sections 2 to 4).

The first part (see Section 2) studies the spread and bound of the aggregate tail when individual and
i.i.d. cyber risk distributions are light-tailed, but the number of such risks to be aggregated is sampled
from a heavy-tailed distribution in the worst case. Alternatively, the sample of the number of cyber risks
is from an any-tailed distribution (heavy or light). The second part (see Section 3) studies the spread and
bound of the aggregate tail when individual i.i.d., cyber risk distributions are heavy-tailed, but the number
of such risks to be aggregated is sampled from an any-tailed (heavy or light) distribution. The third part
(see Section 4) studies the spread and bound of the aggregate tail when individual non i.i.d., cyber risk
distributions are any-tailed (heavy or light), but the number of such risks to be aggregated is sampled
from a light-tailed distribution. In practice, individual enterprise risk exposure distributions post any cyber
attack could be dependent, i.e., non i.i.d. between enterprises. While this is true, it is also the case that
individual enterprise IT infrastructures mutually differ. Hence, systemic enterprise impacts post a cyber
attack are likely i.i.d. also. Our analyses in this paper accounts for both these settings. A summary of
various (systemic) cyber risk settings for Sections 2-4 in showcased in Figure 4.

Our proposed statistical theory is based upon real-world enterprise cyber risk distribution types and supply
chain network topology data obtained from Bitsight; Mastercard’s Cyber Quant cyber risk quantification
(CRQ) product; and Mastercard’s RiskRecon multi-party risk evaluation product. Our proposed theory to
study aggregate/sytemic cyber risk is the first (to the best of knowledge) to account for general cyber risk
distributions individual enterprises in a supply chain is exposed to along with the underlying supply chain
network structure impacting aggregate cyber risk.

2 RELATED WORK

In this section, we briefly review research related to residual cyber risk management markets.
Cyber Insurance to Improve Cybersecurity - It is only because of the inherent potential of cyber

insurance to improve enterprise security governance that we have a market for third-party (systemic) risk
transfer. This proven potential of cyber-insurance to improve cybersecurity has been mathematically shown
in seminal papers (Lelarge and Bolot 2009; Shetty et al. 2010; Hofmann 2007; Pal and Golubchik 2010;
Pal et al. 2014; Naghizadeh and Liu 2014; Pal et al. 2018; Pal et al. 2011; Pal et al. 2017; Yang and Lui
2014). In practice, cyber insurance markets have steadily seen an increase over the years (specifically, since
the last decade and a half) with cyber insurance solutions demanding sufficient cybersecurity controls on
part of enterprise clients to be contract-eligible, or receive significant coverage. This consequently supports
these enterprises to effectively adapt, absorb, and respond to cyber incidents. The readers are referred to
(Dambra et al. 2020; Marotta et al. 2017) for a review of the role of cyber insurance.

Methodologies to Manage Systemic Cyber-Risk - Systemic cyber risk management is one of the
major applications feeding into CI markets. The authors in (Pal et al. 2023; Pal et al. 2021; Pal et al.
2024) have shown that optimally estimating and diversifying systemic cyber risk (an integral insurance
operation to manage a portfolio of cyber risks) is NP-hard. However, the hardness of optimally estimating
and diversifying (systemic) cyber-risk does not deter the existence of non-optimal but diversification
sustainable portfolios of (systemic) cyber risk for cyber re-insurers. Recent theoretical efforts investigated
the diversification sustainability problem for i.i.d. cyber risk portfolios. In a series of efforts (Pal et al.
2020; Pal et al. 2020; Pal et al. 2020; Pal et al. 2023; Pal et al. 2021), the authors have proved that
diversifying a portfolio of catastrophic heavy-tailed cyber risks (each having infinite mean and potentially
sourced from individual risks from multiple enterprises) that are identical and independently distributed
(i.i.d.), i.e., not tail-dependent, is not an effective economically sustainable practice for reinsurers with
respect to the industry-popular Value-at-Risk (VaR) tail risk measure. On the other hand, diversifying a
portfolio of i.i.d. heavy-tailed cyber risks that are not catastrophic (risks with finite mean and sourced from
individual risks from multiple enterprises) is economically sustainable for reinsurers. However, (systemic)
cyber risks are often generated from non i.i.d. individual enterprise cyber risk sources. In (Pal et al.
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2024; Pal et al. 2025), the authors derive the conditions for economic sustainability of systemic cyber risk
portfolio diversification when such portfolios that cyber re-insurers are exposed to, consist of non i.i.d.
risks with arbitrary tail nature. The authors in (Pal et al. 2023; Pal and Nag 2023) propose models on
market efficiency of ILS-driven CI markets and their pricing, respectively - however, they do not propose
a decision science as to when it is suitable for CI companies to (a) only invest in retaining cyber risk of
their enterprise clients, (b) transfer their risk to reinsurance companies, and (c) transfer their risk using a
combination of reinsurance and CAT bonds. This is the main decision problem for the CI industry.

Estimating and Bounding Systemic Cyber Risk - A fundamental principle from the field of management
sciences is that if we cannot estimate something, we cannot manage that thing. This principle could not
hold more true for (systemic/aggregate) cyber risk management. There have been works in the broad
and historically rich field of risk analysis to estimate aggregate risk, that consequently envelop estimating
systemic risk including cyber risk. Aggregate risk distributions are usually evaluated as a function of
the distribution of the number of risks to be aggregated and the statistical nature of each such risk to
be aggregated, and this evaluation approach directly extends to cyber risks. The authors in (Beard 2013;
DasGupta and DasGupta 2008; Embrechts et al. 2013; Denisov et al. 2010; Stam 1973) assume (a) each of
the risk distributions to be aggregated are i.i.d. and (b) both, the claims number distribution and individual
risk distributions are light-tailed or at most sub-exponential. However, in reality and in the specific context
of cyber risk, individual cyber risk distributions sourcing from enterprises are likely to be non i.i.d. in
nature (due to correlated nature of cyber risk) alongside being statistically heavy-tailed (e.g., reflecting risk
outcomes pertaining to the NotPetya cyber attack). In addition, the claim number distribution is likely to be
heavy-tailed in certain situations of catastrophic systemic cyber risk (such as a power grid failure or a large
public cloud provider outage). In relation to obtaining tight bounds of systemic cyber risk, the authors in
(Wang and Wang 2007; Loukissas 2012; Ng et al. 2004; Lu 2012) design methodologies to estimate lower
bounds of aggregated risk sourced from i.i.d. distributions, where each risk distribution to be aggregated
is statistically light-tailed in nature. However, in the specific context of cyber risk, such distributions can
be heavy-tailed as aforementioned alongside being non i.i.d. In this paper, we extend the aforementioned
works to fit the cyber context and alleviate existing modeling drawbacks related to the statistics of systemic
cyber risk and the number of such risks (re)insurers are exposed to. A review of (non-formal) methods to
estimate cyber risk in non-systemic settings is surveyed in (Woods and Böhme 2021).

3 SCENARIO 1 - ANY-TAILED # OF IID LIGHT-TAILED RISKS

Such a cyber risk aggregation scenario is faced by a cyber reinsurer when, as examples, a non-catastrophic
data breach cyber attack or DDoS service unavailability cyber attack affects multiple organizations in a
systemic manner. Here, the tangible multi-party loss impact faced by individual enterprises under the
coverage span of a cyber insurance (CI) firm is usually low/medium in size and hence a sample from a
light-tailed risk distribution. Since individual enterprise IT infrastructures differ, individual enterprise loss
claims are assumed to be i.i.d. post a systemic cyber attack incident. However, the number of enterprises
affected by such incidents (i.e., # of claimants) is in the worst case likely very large and could be a sample
from (the tail of) a heavy-tailed distribution. In the context of an enterprise supply chain setting, this is
the degree distribution of the supply chain network.

Assume that N is the number of cyber risks a cyber insurer is exposed to post a cyber attack event, and
each of these N risks are sourced from enterprises who are clients of the insurer. Each of these risks are
reflective of multi-party claims an enterprise is exposed to, post a cyber attack incident, from its downstream
supply chain of clients. The insurer transfers the aggregate of these N individual cyber risks to a re-insurer
as the latter has significantly more capital to manage the tail of aggregate risk. Let Ri be the cyber risk
distribution sourced from enterprise i. An illustrative figure of such an aggregate cyber risk transfer setting
is shown in Figure 3. We have the following result estimating the tail of the aggregate AN = ∑

N
i Ri, a cyber

reinsurer is exposed to from a cyber insurer.

693



Pal, Duan, Zeijlemaker, and Siegel

Figure 3: An logical structure of aggregate cyber risk transfer between enterprises and cyber (re)insurers.

Theorem 1 Consider N sources (from being small to very large) of enterprise cyber risks {Ri}N
i=1 that a

cyber insurer is exposed to post a cyber attack event, whose aggregate is of interest to a cyber reinsurer (to
whom the insurer often transfers significant portions of aggregate risk management liability). Let {Ri}N

i=1
be statistically i.i.d. and each having a finite mean and variance (i.e., E[Rt

i] < ∞, ∀i, for some t > 1,
E[Ri] = µ,∀i), and let N be sampled from an any-tailed (worst case heavy-tailed) distribution with finite
mean, whose tail is of consistent variation. Then,

P[AN > r]≈ P[N >
r
µ
], asr → ∞, ifP[Ri > r] = o(P[N > r]), r → ∞, ∀i.

Any distribution F for N is said to be of consistently varying tail (Cline 1994) if limy→1 limx→∞ sup F̄(xy)
F̄(x) =

1, where F̄ = 1−F.
Proof Sketch - Given the tail of N has consistent variation, we have the following relation:

lim
ε→0

lim
r→∞

P[N > (1+ ε)r]
P[N > (1− ε)r]

= 1.

Hence, the upper Matuszewska index (Bingham et al. 1989) αN < ∞, where αN = limy→∞
− log{F̄∗(y)}

log(y) , and

F̄∗(y) = limr→∞ inf F̄(ry)
F̄(r) ; y > 0. If we pick a ρ > αN , then r−ρ = o(P[N > r]; r → ∞. Here, ρF for any

distribution F is defined as: ρF = limr→∞ sup − log{F̄(r)}
log(r) . We also have the following relation from (Liu

2009)
P[A⌊(1−ε(r)⌋ > r)]≤ ⌊(1− ε)r⌋P[Ri > vεr]+C(εr)−ρ , ∀i.

Hence, P[A⌊(1−ε(r)⌋ > r)] = o(P[N > r], r → ∞, and using Chernoff bounds (Hagerup and Rüb 1990), we
get P[A⌈(1+ε(r)⌉ ≤ r)] = o(P[N > r], r → ∞. This proves the theorem.

Cyber Insurance Industry Implications - This result showcases that if cyber (re)insurers simply have
(historical) knowledge about (a) the distribution of # of claimants post a systemic cyber attack incident,
and (b) a rough average estimate of the mean loss impact value of individual light-tailed loss distribution
post a cyber incident, they can estimate the tail of aggregate cyber risk, i.e., systemic cyber risk, sourcing
from these individual claimants.
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4 SCENARIO 2 - ANY-TAILED # OF IID HEAVY-TAILED RISKS

Such a cyber risk aggregation scenario is faced by a cyber reinsurer when, as examples, catastrophic
(CAT) cyber attacks of the service unavailability type such as NotPetya or a public cloud outage for many
hours/days affects multiple organizations in a systemic manner. Here, the tangible worst-case multi-party
loss (from enterprise downstream supply chains) impact faced by individual enterprises under the coverage
span of a cyber insurance (CI) firm is usually a sample from a heavy-tailed risk distribution and hence
could be very large. Since individual enterprise IT infrastructures differ, individual enterprise loss claims
are assumed to be i.i.d. post a systemic cyber attack incident. However, the number of enterprises affected
by such incidents (i.e., # of claimants) could range from being medium in size to likely being very large and
often a sample from any any-tailed distribution, i.e., a light-tailed distribution or a heavy-tailed distribution.
From an enterprise supply chain viewpoint, this is the degree distribution of the supply chain network.

Assume that N is the number of cyber risks a cyber insurer is exposed to post a cyber attack event,
and each of these N risks are sourced from enterprises who are clients of the insurer. The insurer transfers
the aggregate of these (worst case heavy-tailed) N individual cyber risks to a reinsurer as the latter has
significantly more capital to manage the tail of aggregate risk. Let Ri be the cyber risk distribution sourced
from enterprise i. We have the following result estimating and bounding the tail of the aggregate AN =∑

N
i Ri,

a cyber reinsurer is exposed to from a cyber insurer.
Theorem 2 Consider N sources of enterprise cyber risks {Ri}N

i=1 that a cyber insurer is exposed to post a
cyber attack event, whose aggregate is of interest to a cyber reinsurer (to whom the insurer often transfers
significant portions of aggregate risk management liability). Let {Ri}N

i=1 be statistically i.i.d and each
having a finite mean (i.e., E[Ri] = µ,∀i) but possibly infinite variance, and let N be sampled from an
any-tailed (either heavy or light-tailed) distribution with finite mean λ , whose tail is of consistent variation.
Then,

P[AN −λ µ > r]⪆ λ F̄ ′ (r+λ µ) ∀γ ≥ 0,

always holds uniformly for r > γλ and

P[AN > r]⪆ λ F̄ ′∀γ ≥ 0,

always holds uniformly for r > γλ .
Here, (a) any distribution F for N is of consistently varying tail (Cline 1994) if limy→1 limx→∞ sup F̄(xy)

F̄(x) =

1, where F̄ = 1−F, and (b) F̄ ′ = 1−F ′; F̄ ′ is the distribution of individual {Ri}N
i=1.

Proof Sketch - Using the law of large numbers, the convergence in probability result is AN
λ

=
N
λ

1
N ∑

N
j=1 Ri →p µ. We then have

P[AN −λ µ > r]≥ (1−2δ )P′; P′ = P[AN −µλ > r],

where δ ∈ (0,0.5). This leads us to

P[AN −µλ > r]≥ (1−2δ )(1−δ )λ F̄ ′(r+µλ ), δ ∈ (0,0.5).

Allowing δ to converge towards 0, we get P[AN−µλ>r]
λ F̄ ′(r+λ µ)

⪆ 1. This proves the theorem.
Cyber Insurance Industry Implications - This result implies that if cyber (re)insurers have knowledge

about (a) mean of the # of claimants post a systemic cyber attack incident, and (b) a rough average estimate
of the mean loss impact value of individual heavy-tailed loss distributions post a cyber incident, they can
estimate and bound the tail of aggregate cyber risk, i.e., systemic risk, sourced from individual claimants.

5 SCENARIO 3 - LIGHT-TAILED # OF NON-IID ANY-TAILED RISKS

Such a cyber risk aggregation scenario is faced by a cyber reinsurer when, as examples, non-catastrophic
and catastrophic cyber attacks of the service unavailability type such as a public cloud outage for many
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Figure 4: A summary of systemic (aggregate) cyber risk settings (and related cyber attack scenarios).

hours/days, national power grid outages, or data breach impact affects multiple organizations in a systemic
manner. The core property of such aggregate risk, especially post catastrophic cyber attack, is that individual
risks are correlated (i.e., non i.i.d.) with one another post a cyber attack event. Here, the tangible multi-
party loss impact faced by individual enterprises under the coverage span of a cyber insurance (CI) firm is
usually a sample from a general light-tailed or a heavy-tailed risk distribution and hence could vary from
being small to being very large. Similarly, the number of enterprises affected by such incidents (i.e., # of
claimants) could range from being small/medium in size to likely being very large and often a sample from
either from a light-tailed distribution or a heavy-tailed distribution. In the context of an enterprise supply
chain setting, this is the degree distribution of the supply chain network. For the purpose of analytical
tractability, we only work with the case when this number is sampled from a light-tailed distribution. The
case of a sample from a heavy-tailed distribution is left for future work.

Assume that N is the number of cyber risks a cyber insurer is exposed to post a cyber attack event,
and each of these N risks are sourced from enterprises who are clients of the insurer. The insurer transfers
the aggregate of these (worst case heavy-tailed) N individual cyber risks to a re-insurer as the latter has
significantly more capital to manage the tail of aggregate risk. Let Ri be the cyber risk distribution sourced
from enterprise i. We have the following result estimating and bounding the tail of the aggregate AN =∑

N
i Ri,

a cyber reinsurer is exposed to from a cyber insurer.
Theorem 3 Consider N sources of enterprise cyber risks {Ri}N

i=1 that a cyber insurer is exposed to post a
cyber attack event, whose aggregate is of interest to a cyber reinsurer (to whom the insurer often transfers
significant portions of aggregate risk management liability). Assume each Ri to have a distribution function
Fi. Let {Ri}N

i=1 be non i.i.d and each having a finite mean (i.e., E[Ri] = µ,∀i) but possibly infinite variance.
Let N come from a light-tailed distribution with finite mean λ < ∞, and a tail of consistent variation. Then,

• Case A: When N = 2, aggregate cyber risk AN is bounded by

Fmin(r)⪅ P[AN ≤ r]⪅ Fmax(r), ∀r ∈ R,

where
Fmin(r) = sup

r⃗|r1+r2=r
max

{
F−

1 (r1)+F−
2 (r− r1)−1,0

}
and

Fmax(r) = inf
r⃗|r1+r2=r

min{F1(r1)+F2(r− r1),1} ,

with {F−
i }N

i=1 being the left limit of distribution {Fi}N
i=1.
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• Case B: When N ≥ 3, aggregate cyber risk AN is bounded by

Fmin(r)⪅ P[AN ≤ r]⪅ Fmax(r), ∀r ∈ R,

where

Fmin(r) = sup
r⃗|∑N ri=r

max

{
N

∑
i=1

F−
i (ri)− (N −1),0

}
and

Fmax(r) = inf
r⃗|∑N ri=r

min

{
N

∑
i=1

Fi(ri),1

}
,

with {F−
i }N

i=1 being the left limit of distribution {Fi}N
i=1.

Here, (a) any distribution F for N is said to be of consistently varying tail (Cline 1994) if limy→1 limx→∞ sup F̄(xy)
F̄(x) =

1, where F̄ = 1−F, and (b) F̄ ′ = 1−F ′; F̄ ′ is the distribution of individual {Ri}N
i=1.

Proof Sketch - In the Case A setting, we have for arbitrary r and r1 that

P[AN ≤ r]≤ F1(r1)+F2(r2).

Hence, P[AN ≤ r]≤ Fmax(r). Now, P[R1 < r1]+P[R2 < r2]−P[R1 < r1, R2 < r2]≤ 1. Therefore, the result:

max{F−1
1 (r1)+F−

2 (r− r1)−1,0} ≤ P[R1 < r1, R2 < r2]≤ P[AN ≤ r].

The analysis for the result on Fmin follows similarly. In cases when N ≥ 3, i.e., the Case B setting, we
will use the principle of mathematical induction. Fmin and Fmax are non-increasing functions, and hence
based on principles of mathematical analysis (Rudin et al. 1964), Fmin(r) is left-continuous while Fmax is
right-continuous. Now choose an ε > 0, an u0 such that F1(u0 <

ε

2 , and an r0 such that F2(r0 −u0)<
ε

2 .
Hence, we have Fmax(r)< ε for all r ≤ r0 when r →−∞. In situations when r → ∞, choose an ε > 0, an
u1 such that F1(u1 > 1− ε , and an r1 such that F2(r1 −u1)> 1− ε . Now, given that

inf
u≤u1

min{F1(u)+F2(r1−u),1} ≥ F2(r1−u1)> 1−ε, and inf
u>u1

min{F1(u)+F2(r1−u),1} ≥ F1(u1)> 1−ε,

we have Fmax(r)> 1− ε . The analysis for the result on Fmin follows similarly. Applying the principle of
mathematical induction, we can generalize the result for N ≥ 3. This proves the theorem.

Cyber Insurance Industry Implications - This result implies that if cyber (re)insurers simply have
knowledge about the individual enterprise cyber risk distributions, then invariant of the degree of dependencies
between these distributions, a cyber (re-)insurer can estimate and bound the tail of aggregate cyber-risk
only by an iterative computation procedure (as mentioned in (Frank et al. 1987)) that outputs the min/max
of a set of a linear function performed on samples of aggregate cyber-risk. Alternatively, computing tail
risk bounds of aggregate correlated cyber-risk is easy, i.e., not NP-hard.

6 SUMMARY

Systemic cyber risk management is steadily becoming a reality for the cyber insurance market. In this
paper, we studied the role of (a) the statistical nature of multiple enterprise cyber risks contributing to
aggregate/systemic supply chain risk and (b) the statistical nature of claim sizes in the underlying enterprise
supply chain network, in the tail spread of aggregate cyber risk.
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