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ABSTRACT

The challenge of optimizing a smooth convex functional over probability spaces is highly relevant in
experimental design, emergency response, variations of the problem of moments, etc. A viable and
provably efficient solver is the fully-corrective Frank-Wolfe (FCFW) algorithm. We propose an FCFW
recursion that rigorously handles the zero-order setting, where the derivative of the objective is known
to exist, but only the objective is observable. Central to our proposal is an estimator for the objective’s
influence function, which gives, roughly speaking, the directional derivative of the objective function in
the direction of point mass probability distributions, constructed via a combination of Monte Carlo, and a
projection onto the orthonormal expansion of an L2 function on a compact set. A bias-variance analysis of
the influence function estimator guides step size and Monte Carlo sample size choice, and helps characterize
the recursive rate behavior on smooth non-convex problems.

1 INTRODUCTION

The challenge of optimizing a smooth functional on the space of compactly supported probability measures
is stated as follows:

min. J(µ)

s.t. µ ∈ P(X ), (P)

where X ⊂Rd is compact, P(X ) is the space of probability measures supported on X , and J : P(X )→R
is a smooth functional. The problem (P) has received considerable attention due to its applicability in
many contexts. Of particular interest in this paper is the frequently encountered zero-order (derivative-free)
setting. While J(µ) is observable at any µ , its derivative analogue—understood here as the von Mises
derivative J′µ with influence function hµ—is typically unavailable.

Problem (P) arises in many contexts. For instance, the P-means problem (Molchanov and Zuyev 2002),
often described as a randomized version of the k-means clustering problem, can be formulated in this
framework. In the field of experimental design, regression models provide another example: one seeks a
randomized design (sampling distribution) µ that minimizes criteria such as the trace (A-optimality) or
determinant (D-optimality) of the covariance of least-squares estimators. When derivatives J′µ are accessible,
first-order methods such as the fully corrective Frank–Wolfe (FCFW) algorithm (Yu et al. 2024) can be
applied. In contrast, when derivatives are unavailable or expensive to approximate, a zeroth-order analogue
is required. This paper develops such a method based on estimating the influence function hµ .

Our main contribution is a derivative-free variant of FCFW for optimization over probability measures.
The approach replaces the unavailable von Mises derivative with an estimated influence function ĥµ ,
obtained via a truncated L2 expansion with Monte Carlo sampling and finite differencing. We provide a
bias–variance decomposition (truncation bias, finite-difference bias, sampling variance) and establish an
almost-sufficient decrease inequality together with a consistency result. This framework enables practical
derivative-free optimization over measures without requiring prior discretization of the domain.
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2 METHOD AND RESULTS

Frank-Wolfe in measure space. In Euclidean space Rd , the Frank–Wolfe (FW) method (Bubeck 2015)
minimizes a smooth convex function f over a compact convex set Z via updates

yk+1 = (1−ηk)yk +ηksk, sk := argmin
s∈Z

∇ f (yk)
⊤s.

To extend FW to probability measures, we use the influence function of J at µ ∈ P(X ),

hµ(x) := lim
t→0+

1
t

(
J((1− t)µ + tδx)− J(µ)

)
, x ∈ X . (1)

and the linear functional von Mises derivative can be written as J′µ(ν −µ) =
∫

hµ(x)d(ν −µ)(x). The FW
update in measure space (Yu et al. 2024) then becomes

µk+1 = (1−ηk)µk +ηkδx∗(µk), x∗(µk) ∈ arg min
x∈X

hµk(x), (2)

which iteratively adds atoms to form a sparse discrete measure. The FCFW variant then re-optimizes the
weights over all previously selected atoms, yielding improved practical performance.

Derivative-free variant. Since hµ is unobservable, we approximate it using a truncated orthonormal
expansion. Assuming hµ ∈ L2(X ), write hµ(x)≈ ∑

d
j=1 a ju j(x), where {u j} is an orthonormal basis and the

coefficients a j = ⟨hµ ,u j⟩ are estimated by Monte Carlo. Because hµ(X) cannot be directly observed, we use
a finite-difference approximation FDs,µ(X) = 1

s {J((1− s)µ + sδX)−J(µ)} for X ∼ Unif(X ). Combining
these yields the practical estimator

ĥµ(x) =
d

∑
j=1

â j(m,s)u j(x), â j(m,s) = v
m

m

∑
t=1

FDs,µ(Xt)u j(Xt), Xt ∼ Unif(X ), (3)

with parameters p = (m,s,d) controlling sample size, step size, and truncation dimension. Substituting ĥµ

for hµ in the FCFW update gives a derivative-free variant (DF-FCFW).
The proposed estimator ĥµ admits an explicit bias–variance decomposition: truncation bias from d,

finite-difference bias from s, and sampling variance from m. Under mild smoothness and decay assumptions,
we obtain finite-sample bounds on E[∥ĥµ −hµ∥∞] and E[∥ĥµ −hµ∥2

∞], which guarantee that the estimator
converges to hµ in expectation as m → ∞, s → 0, and d → ∞.

Substituting ĥµ into FCFW yields a derivative-free algorithm. We establish an “almost sufficient
decrease” inequality that links progress in objective value to the quality of the estimator, and prove a
consistency theorem: as long as parameters (mk,sk,dk) are chosen appropriately across iterations, the
influence values at selected atoms converge to zero almost surely, aligning with the optimality condition.

Numerical Validation. We validated the DF-FCFW on the Gaussian deconvolution problem Yi =
Wi+εi with εi ∼N (0,σ2I) and Wi ∼ µ . For the discrete case µa =

1
3 δ−1+

1
3 δ1+

1
3 δ10, where the theoretical

optimum and optimality conditions are known, DF-FCFW recovered the distribution and satisfied the
optimality test via the influence function (minx hµ̂(x) ≥ 0). For the continuous case µb = N (0, Id) with
d = 10, DF-FCFW showed steady decrease in objective value, moderate atom growth, and convergence of
influence values toward zero, demonstrating both performance and scalability. These results confirm that
the proposed estimator enables practical optimization over measures without requiring explicit derivatives.
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