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ABSTRACT

Nested simulation is a powerful tool for estimating widely-used risk measures, such as Value-at-Risk (VaR).
While point estimation of VaR has been extensively studied in the literature, the topic of interval estimation
remains comparatively underexplored. In this paper, we present a novel nested simulation procedure for
constructing confidence intervals (CIs) for VaR with statistical guarantees. The proposed procedure begins
by generating a set of outer scenarios, followed by a screening process that retains only a small subset
of scenarios likely to result in significant portfolio losses. For each of these retained scenarios, inner
samples are drawn, and the minimum and maximum means from these scenarios are used to construct
the CI. Theoretical analysis confirms the asymptotic coverage probability of the resulting CI, ensuring its
reliability. Numerical experiments validate the method, demonstrating its high effectiveness in practice.

1 A PROCEDURE FOR VAR CONFIDENCE INTERVALS

VaR interval estimation remains relatively underexplored. A notable work in this area is Zhang et al. (2022),
who established a central limit theorem for VaR point estimators and designed a budget allocation rule for
constructing CIs. In this paper, we propose a new procedure to construct CIs for VaR. Let the risk scenario
Z = (Z1, . . . ,Zd)

⊤ ∈ Rd be generated independently from the distribution of Z. Further, the portfolio loss
X ∈R is generated independently from conditional distribution of X | Z. Define the conditional expectation
as V (Z) =E[X | Z], which represents the portfolio loss function given a risk scenario Z with the expectation
taken under the risk-neutral pricing measure. Our objective is to construct a CI for VaR at 1− p level
of V (Z) with p ∈ (0,1), defined as VaR1−p(V (Z)) = inf{x ∈ R : P(V (Z) ≤ x) ≥ 1− p}. Our procedure
takes as input the total simulation budget Γ, the VaR confidence level 1− p, and the CI significance level
1−α , where α ∈ (0,1), and returns the confidence interval estimation. Let α = αout +αscreen +αest, and
the proposed procedure is outlined as follows.

1. Outer Scenario Generation. Generate n scenarios Z1,Z2, . . . ,Zn.
2. First-Stage Inner Sampling. For each scenario Zi, i = 1, · · · ,n, simulate m′ loss samples

Xi,1,Xi,2, . . . ,Xi,m′ using Common Random Number techniques, and calculate the sample mean
X i,m′ = ∑

m′
j=1 Xi, j/m′ and the sample variance S2

i,m′ = ∑
m′
j=1

(
Xi, j −X i,m′

)2
/(m′−1).

3. Scenario Screening.
(1) For each scenario pair (Zi,Z j), i, j = 1, · · · ,n, the pair difference is defined as Di, j =V (Zi)−
V (Z j). Samples of the paired differences are computed as Di, j,l = Xi,l −X j,l, l = 1, · · · ,m′. Calculate
the sample mean Di, j = ∑

m′

l=1 Di, j,l/m′ and the sample variance S2
Di, j

= ∑
m′

l=1
(
Di, j,l −Di, j

)2
/(m′−1).

(2) Let kmin and kmax be the minimum and maximum elements of the set
{

k : nn ((1− p)/k)k

(p/(n− k))n−k ≥ exp
(
−χ2

(1),1−αout
/2
)}

. For i, j = 1, · · · ,n, define the test statistic as Ti, j =√
m′ Di, j/SDi, j , Bi = ∑

n
j=1, j ̸=i 1

{
Ti, j > d1

}
and B′

i = ∑
n
j=1, j ̸=i 1

{
Ti, j <−d2

}
, where 1{·} is an in-

dicator function. Define l1 = (kmax +1)(n− kmax −1), l2 = (kmin −1)(n− kmin +1), αscreen1 =
αscreen l1/(l1 + l2), and αscreen2 =αscreen l2/(l1 + l2), then d1 = tm′−1,1−αscreen1/l1 and d2 = tm′−1,1−αscreen2/l2 ,
where tm′−1,1−β is the 1−β quantile of the t-distribution with m′−1 degrees of freedom.
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(3) For i = 1, · · · ,n, if Bi < kmax+1 and B′
i < n−kmin+1, then include index i in the set of surviving

scenario indices, denoted by I. We denote c = card(I), where card(·) is the cardinality of a set.
4. Restarting and Second-Stage Inner Sampling. Define m = (mi)

⊤ ∈Rc, i ∈ I, where mi denotes
the number of second-stage inner samples for scenario i as mi =

⌊
(Γ−nm′)S2

i,m′/∑ j∈I S2
j,m′

⌋
. For

each surviving scenario Zi, i ∈ I, simulate mi new loss samples Xi,1, . . . ,Xi,mi , and calculate the
sample mean X i,mi and the sample variance S2

i,mi
= ∑

mi
j=1

(
Xi, j −X i,mi

)2
/(mi −1).

5. Constructing VaR Confidence Interval. We introduce a permutation π1 mapping {1, · · · ,c} to
I, which orders indices according to ascending values of their sample means. Specifically, the
permutation satisfies Xπ1(1),mπ1(1)

≤ ·· · ≤ Xπ1(c),mπ1(c)
. Calculate

L̂n,m = Xπ1(1),mπ1(1)
− z1−αest/2Sπ1(1),mπ1(1)

/
√

mπ1(1), Ûn,m = Xπ1(c),mπ1(c)
+ z1−αest/2Sπ1(c),mπ1(c)

/
√

mπ1(c),

where z1−αest/2 is the 1−αest/2 quantile of the standard normal distribution, and return
[
L̂n,m,Ûn,m

]
.

2 THEORETICAL GUARANTEES AND NUMERICAL EXPERIMENTS

We denote V (Z) as V , V (Zi) as Vi, VaR1−p(V (Z)) as VaR1−p. Let FV be the distribution of V . The
following theorem shows the proposed CI procedure achieves the asymptotic confidence level.
Theorem 1 Assume FV is continuous and strictly increasing at VaR1−p, and for any scenario Zi, i= 1, · · · ,n,
loss samples Xi, j, j = 1, · · · ,m′, are normally distributed, suppose V is continuous,

P(VaR1−p ∈
[
L̂n,m,Ûn,m

]
)≥ 1−α, as n → ∞, m → ∞.Proof. Introduce permutation π2 which maps indices {1, · · · ,n} to a permuted order where scenarios

are sorted by their true means in ascending order. Assume FV is continuous and strictly increasing at
VaR1−p, by empirical theorem for quantile, as n → ∞, P

(
VaR1−p ∈ [Vπ2(kmin),Vπ2(kmax+1)]

)
→ 1−αout. Let

γ = {π2(kmin), · · · ,π2(kmax +1)}. Since Xi, j, j = 1, · · · ,m′, are normally distributed for each Zi, i = 1, · · · ,n,
then, by ranking and selection theories, P(γ ⊆ I)≥ 1−αscreen. Suppose V is a continuous random variable,
P
(
Vi ∈

[
L̂n,m,Ûn,m

]
,∀i ∈ I

)
≥ 1−αest, as m → ∞. By Bonferroni’s inequality, the proof comletes.

We consider a portfolio risk measurement example similar in Zhang et al. (2022), and set α = 0.1. We
compare our performance metrics to those from the bootstrap method introduced by Zhang et al. (2022),
where a user-specified parameter ε ∈ (0,2/3) is required. From Table 1, our procedure achieves high
coverage probability, which mainly arises from the use of Bonferroni’s inequality in our analysis. But our
procedure produces narrower and more stable CIs, which results from large values of mπ1(1) and mπ1(c),
because a sufficient computational budget remains available for the inner-level estimation after screening.

Table 1: Performance comparison of our method and bootstrap method.

Budget Method Cov.Prob. Ave.Wid.Ratio (Std.Dev.) Ave.Low. (Std.Dev.) Ave.Upp. (Std.Dev.)

5×105

Ours 1.000 0.093 (0.010) 19.668 (0.258) 21.594 (0.256)
Bootstrap (ε = 1/24) 0.872 0.089 (0.032) 19.726 (0.873) 21.561 (0.696)
Bootstrap (ε = 1/12) 0.894 0.123 (0.046) 19.425 (0.911) 21.951 (1.026)
Bootstrap (ε = 1/6) 0.853 0.197 (0.085) 18.622 (1.348) 22.680 (1.784)

5×106

Ours 1.000 0.040 (0.003) 20.209 (0.114) 21.032 (0.122)
Bootstrap (ε = 1/24) 0.856 0.045 (0.013) 20.225 (0.309) 21.156 (0.365)
Bootstrap (ε = 1/12) 0.884 0.063 (0.019) 20.012 (0.439) 21.303 (0.461)
Bootstrap (ε = 1/6) 0.862 0.117 (0.037) 19.515 (0.818) 21.920 (0.817)
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