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ABSTRACT

Consider a two-stage stochastic multi-objective linear program (TSSMOLP) which is a natural generalization
of the well-studied two-stage stochastic linear program allowing modelers to specify multiple objectives
in each stage. The second-stage recourse decision is governed by an uncertain multi-objective linear
program (MOLP) whose solution maps to an uncertain second-stage nondominated set. The TSSMOLP
then comprises the objective, which is the Minkowski sum of a linear term plus the expected value of the
second-stage nondominated set, and the constraints, which are linear. We propose a novel formulation for
TSSMOLPs on a general probability space. Further, to aid theoretical analysis, we propose reformulations
to the original problem and study their properties to derive the main result that the global Pareto set is
cone-convex. Finally, we leverage cone-convexity to demonstrate that solving a TSSMOLP under a sample
average approximation framework is equivalent to solving a large scale MOLP.

1 INTRODUCTION

Let ξ be a real-valued random vector ξ : Ω →Rm defined on the complete probability space (Ω,A,P). For
the cost matrices C ∈ Rp×q1 and D(ξ ) ∈ Rp×q2 , we formulate the TSSMOLP for p ≥ 1 objectives as

minimize {Cx+E[VN(x,ξ )]} s.t. x ∈ X :=
{

x ∈ Rq1 : Ax = b, x ≧ 0
}
, (S1)

where the second-stage problem is a stochastic MOLP with nondominated set

VN(x,ξ ) = min D(ξ )y s.t. y ∈ Y(x,ξ ) :=
{

y ∈ Rq2 : T(ξ )x+W(ξ )y = h(ξ ), y ≧ 0
}
. (S2)

The expected value of the second-stage nondominated set in (S1) is the selection expectation (Molchanov
2017). The constraints are specified by the matrix A ∈ Rr1×q1 and vector b ∈ Rr1 in the first stage,
and by (possibly random) matrices T(ξ ) ∈ Rr2×q1 , W(ξ ) ∈ Rr2×q2 , and vector h(ξ ) ∈ Rr2 in the second
stage. The image set for the second-stage MOLP in (S2) is a random polyhedral convex set denoted
as V(x,ξ ) = {D(ξ )y : y ∈ Y(x,ξ )} ⊂ Rp and Z(x) = {Cx+E[VN(x,ξ )]} denotes the image set of (S1).
Problem (S1) is a stochastic set-valued optimization problem. The solution to the TSSMOLP is the global
efficient set, XE, and its image set is the global Pareto set, ZP,

ZP = {z∗ ∈ Z(X) : (z∗−Rp
≧)∩Z(X) = {z∗}}, XE := {x∗ ∈ X : ∃z∗ ∈ Z(x∗) such that z∗ ∈ ZP}

where Rp
≧ = {z ∈ Rp : zi ≥ 0, ∀i = 1,2, . . . p}.

2 MAIN RESULTS

Under certain regularity conditions, TSSMOLP has a nondominance equivalent reformulation, called the
image-set reformulation (P), where the nondominated set in the second-stage is replaced by the image set:

minimize {φ(x) := Cx+E[V(x,ξ )]} s.t. x ∈ X, (P)
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Figure 1: The estimated efficient set X̂E (left) and estimated global Pareto set ẐP (right) for solving a two-
stage stochastic bi-objective linear program modeling an inventory distribution problem to (i) maximize the
expected demand coverage and (ii) minimize the expected transportation cost, for n = 10 random scenarios
generated with correlation by NORTA. The estimated efficient point x̂∗c ∈ X̂E is a candidate solution for
implementation because its image set, φ̂N(x̂∗c ,n), contributes to ẐP.

where, under certain regularity conditions, the nondominated set φN(X) = ZP (Gupta and Hunter 2025,
Theorem 2). Since the second-stage image sets, V(·,ξ ), are polyhedral for all x ∈ X, we leverage the
properties of selection expectation applied to convex sets, to derive our main result which states that the
global Pareto set is compact and cone-convex, i.e., ZP+Rp is convex (Gupta and Hunter 2025, Theorem 4)

To solve a TSSMOLP we adopt a sample average approximation framework for a finite number of
samples, n. The formulation of the sample path problem is

minimize {φ̂(x,n) := Cx+n−1
∑

n
i=1V(x,ξ

(i))} s.t. x ∈ X. (Pn)

Because the empirical distribution has finite support, we show that the estimated nondominated set, ẐP, of
(Pn) can be recovered by solving the large scale MOLP,

minimize
[
C (1/n)D(ξ (1)) . . . (1/n)D(ξ (n))

]
w s.t. w ∈ Ŵn, (MOLPn)

where w = (x,y1, . . . ,yn) ∈Rq1+nq2 and Ŵn := {(x,y1, . . . ,yn) : x ∈X, yi ∈ Yi(x,ξ (i)) ∀i = 1, . . . ,n}. We use
open-source vector optimization software, bensolve tools (Löhne and Weißing 2017), to solve (MOLPn).

3 CONCLUDING REMARKS

We formally introduce and study the properties of TSSMOLPs for nonatomic probability measures. Lever-
aging the theoretical results, we solve the sample path problem by reformulating it as a large scale MOLP.
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