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ABSTRACT 

We study ranking and selection (R&S) where the simulator's input models are more precisely estimated 
from the streaming data obtained from the system. The goal is to decide when to stop updating the model 
and return the estimated optimum with a probability of good selection (PGS) guarantee. We extend the 
general-purpose R&S procedure by Lee and Nelson by integrating a metamodel that represents the input 
uncertainty effect on the simulation output performance measure. The algorithm stops when the estimated 
PGS is no less than 1 − 𝛼𝛼 accounting for both prediction error in the metamodel and input uncertainty. We 
then propose an alternative procedure that terminates significantly earlier while still providing the same 
(approximate) PGS guarantee by allowing the performance measures of inferior solutions to be estimated 
with lower precision than those of good solutions. Both algorithms can accommodate nonparametric input 
models and/or performance measures other than the means (e.g., quantiles). 

1 INTRODUCTION 

We consider an R&S problem where the goal is to identify the best system among 𝑘𝑘 alternatives and the 
performance measures are estimated from outputs generated by a stochastic simulator. Formally, the 
objective is to find 𝑖𝑖𝑐𝑐 ≜ argmax1≤𝑖𝑖≤𝑘𝑘 𝜂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐), where 𝑭𝑭𝑐𝑐 ≜ {𝐹𝐹1𝑐𝑐 , … ,𝐹𝐹𝐿𝐿𝑐𝑐}  is the collection of input 
distributions shared across all systems and 𝜂𝜂𝑖𝑖(𝑭𝑭) denotes the performance measure of system 𝑖𝑖 when the 
inputs are generated from 𝑭𝑭. We assume 𝑭𝑭𝑐𝑐 is unknown but estimated from data. Consequently, in addition 
to stochastic simulation noise, the outputs are also subject to uncertainty that comes from the estimated 
input models, known as input uncertainty.  
 Specifically, we focus on the problem when input models are periodically updated from streaming data 
collected over multiple periods. We assume that, for each 𝑝𝑝 ∈ {1, … , 𝐿𝐿}, a streaming process generates 
independent and identically distributed observations, which are collected in batches at the end of each 
period. Then, we update the estimator of 𝑭𝑭𝑐𝑐 , denoted as 𝑭𝑭� ≜ �𝐹𝐹�1, … ,𝐹𝐹�𝐿𝐿�, using all collected data. Our 
framework lets the user decide whether to stop the data collection and return the current estimated optimum 
after each period. This decision is based on the PGS exceeding 1 − 𝛼𝛼, where the PGS is defined as the 
probability that the selected system 𝚤𝚤̂ is within a user-defined 𝛿𝛿 difference from the best. 

The main contribution of this work is three-fold. First, to the best of our knowledge, our framework is 
the first to tackle R&S under input uncertainty completely nonparametrically. Second, our framework can 
accommodate general performance measures other than the mean such as quantiles. Lastly, our procedure 
provides an asymptotic PGS for an R&S problem under input uncertainty. 

2 METAMODELING 

To design an efficient procedure, we adopt a metamodel to predict 𝜂𝜂𝑖𝑖(𝑭𝑭) at arbitrary input model 𝑭𝑭 without 
having to run simulations at 𝑭𝑭. We model 𝜂𝜂𝑖𝑖(𝑭𝑭) as a function of the moments of 𝑭𝑭. We denote the moment 
vector by 𝜽𝜽 ≜ (𝜃𝜃1, … ,𝜃𝜃𝐷𝐷)⊤ and impose a linear model in 𝜽𝜽, 𝜓𝜓𝑖𝑖(𝜽𝜽) ≜ 𝜽𝜽⊤𝜷𝜷𝑖𝑖. This can be generalized by 
introducing basis functions. 
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We bootstrap the observations 𝐵𝐵  times to obtain 𝑭𝑭�∗(1), … ,𝑭𝑭�∗(𝐵𝐵)  (and so 𝜽𝜽�∗(1), … ,𝜽𝜽�∗(𝐵𝐵) ) and run 
simulations at each. Then, the least squares estimator of 𝜷𝜷𝑖𝑖 and the fitted linear model for arbitrary 𝜽𝜽 are 
𝜷𝜷�𝑖𝑖 = (𝚯𝚯⊤𝚯𝚯)−1𝚯𝚯⊤𝒚𝒚𝑖𝑖 and 𝜓𝜓�𝑖𝑖(𝜽𝜽) = 𝜽𝜽⊤𝜷𝜷�𝑖𝑖, where 𝚯𝚯 is the 𝐵𝐵 × 𝐷𝐷 matrix whose 𝑏𝑏th row is 𝜽𝜽�∗(𝑏𝑏) and 𝒚𝒚𝑖𝑖 is the 
vector of simulation outputs. Under some simplifying assumptions, we also characterize the prediction error 
of 𝜓𝜓�𝑖𝑖(𝜽𝜽) to be normally distributed with mean zero and variance 𝜎𝜎𝑖𝑖2(𝚯𝚯⊤𝚯𝚯)−1. 

Continuously refitting the model with all cumulative data can be computationally expensive. We 
introduce a parameter 𝛾𝛾 ∈ (0,1] to control the fraction of periods whose bootstrapped design points and 
simulation outputs are included in the regression. This parameter also helps balancing the bias in the 
metamodel produced by initial estimations of 𝑭𝑭𝑐𝑐 and the variance coming from the estimation error. 

3 BOOTSTRAP PROCEDURES 

We extend the general-purpose R&S procedure proposed by Lee and Nelson (2016), by integrating the 
metamodel with bootstrapping. Hsu (1996) shows that, if we have an estimator 𝜂̂𝜂𝑖𝑖(𝐹𝐹𝑐𝑐) of 𝜂𝜂𝑖𝑖(𝐹𝐹𝑐𝑐) such that 

Pr �𝜂̂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐) −  𝜂̂𝜂𝑗𝑗(𝑭𝑭𝑐𝑐) − �𝜂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐) − 𝜂𝜂𝑗𝑗(𝑭𝑭𝑐𝑐)� ≤ 𝛿𝛿,∀𝑖𝑖 ≠ 𝑗𝑗� ≥ 1 − 𝛼𝛼, (1) 

then selecting 𝚤𝚤̂ = argmax1≤𝑖𝑖≤𝑘𝑘 𝜂̂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐) as the best ensures PGS ≥ 1 − 𝛼𝛼. In our case, since 𝑭𝑭𝑐𝑐 is unknown, 
we replace 𝜂̂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐) with 𝜓𝜓�𝑖𝑖�𝜽𝜽��, where 𝜽𝜽� is the vector of moments of 𝑭𝑭�. Thus, the probability in (1) must be 
taken with respect to the sampling distribution of 𝑭𝑭� as well as the prediction error of the metamodel.  
 Since 𝜂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐) does not have any analytical form, we compute the bootstrap estimator of (1) as 

1
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where 𝟏𝟏{⋅} is the indicator function and 𝝃𝝃𝑖𝑖
(𝑏𝑏) is a random vector which characterizes the prediction error in 

the metamodel. In the full paper, we propose Algorithm 1 that computes (2) after collecting additional data 
in every period and decides if more data is needed to guarantee the desired PGS. With the introduction of 
the parameter 𝛾𝛾, the prediction error also decreases over time. 
 We formulate Algorithm 2 that improves the efficiency over Algorithm 1. Instead of (1), we guarantee 
the PGS using a less conservative probability bound (Nelson and Banerjee, 2001): 

Pr�𝜂̂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐) −  𝜂̂𝜂𝑖𝑖𝑐𝑐(𝑭𝑭𝑐𝑐) − �𝜂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐) − 𝜂𝜂𝑖𝑖𝑐𝑐(𝑭𝑭𝑐𝑐)� ≤ max{𝛿𝛿, 𝜂𝜂𝑖𝑖𝑐𝑐(𝑭𝑭𝑐𝑐) − 𝜂𝜂𝑖𝑖(𝑭𝑭𝑐𝑐)} ,∀𝑖𝑖 ≠ 𝑖𝑖𝑐𝑐� ≥ 1 − 𝛼𝛼. (3) 

The probability bound in (3) has two benefits. First, we reduce the number of comparisons from 𝑘𝑘(𝑘𝑘 − 1) 
to 𝑘𝑘 − 1  by focusing on the comparisons between each solution with (the estimated) 𝑖𝑖𝑐𝑐 . Second, the 
comparisons between 𝑖𝑖𝑐𝑐 and considerably inferior systems are allowed to be less precise. 

4 RESULTS 

We test both algorithms in two synthetic examples where we can model the performance measure as a 
function of the first moment of the input distributions. The third is a queueing system example. Empirical 
results suggest that both algorithms provide a valid PGS. In addition, Algorithm 2 reduces the input data 
requirement by up to 90% compared to Algorithm 1, resulting in earlier termination. 
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