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ABSTRACT

We study ranking and selection (R&S) where the simulator's input models are more precisely estimated
from the streaming data obtained from the system. The goal is to decide when to stop updating the model
and return the estimated optimum with a probability of good selection (PGS) guarantee. We extend the
general-purpose R&S procedure by Lee and Nelson by integrating a metamodel that represents the input
uncertainty effect on the simulation output performance measure. The algorithm stops when the estimated
PGS is no less than 1 — a accounting for both prediction error in the metamodel and input uncertainty. We
then propose an alternative procedure that terminates significantly earlier while still providing the same
(approximate) PGS guarantee by allowing the performance measures of inferior solutions to be estimated
with lower precision than those of good solutions. Both algorithms can accommodate nonparametric input
models and/or performance measures other than the means (e.g., quantiles).

1 INTRODUCTION

We consider an R&S problem where the goal is to identify the best system among k alternatives and the
performance measures are estimated from outputs generated by a stochastic simulator. Formally, the
objective is to find i€ £ argmax,<;<i n;(F¢), where F¢ £ {Ff,...,Ff} is the collection of input
distributions shared across all systems and 7; (F) denotes the performance measure of system i when the
inputs are generated from F. We assume F€ is unknown but estimated from data. Consequently, in addition
to stochastic simulation noise, the outputs are also subject to uncertainty that comes from the estimated
input models, known as input uncertainty.

Specifically, we focus on the problem when input models are periodically updated from streaming data
collected over multiple periods. We assume that, for each p € {1, ..., L}, a streaming process generates
independent and identically distributed observations, which are collected in batches at the end of each
period. Then, we update the estimator of F¢, denoted as F 2 {F}, ..., F,}, using all collected data. Our
framework lets the user decide whether to stop the data collection and return the current estimated optimum
after each period. This decision is based on the PGS exceeding 1 — a, where the PGS is defined as the
probability that the selected system  is within a user-defined § difference from the best.

The main contribution of this work is three-fold. First, to the best of our knowledge, our framework is
the first to tackle R&S under input uncertainty completely nonparametrically. Second, our framework can
accommodate general performance measures other than the mean such as quantiles. Lastly, our procedure
provides an asymptotic PGS for an R&S problem under input uncertainty.

2 METAMODELING

To design an efficient procedure, we adopt a metamodel to predict ; (F) at arbitrary input model F without
having to run simulations at F. We model n; (F) as a function of the moments of F. We denote the moment
vector by @ 2 (64, ...,0p)T and impose a linear model in @, 1;(8) 2 @7 B'. This can be generalized by
introducing basis functions.
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We bootstrap the observations B times to obtain QO F® (and so oD, ...,@*(B)) and run
simulations at each. Then, the least squares estimator of B¢ and the fitted linear model for arbitrary @ are
Bi=(070)"10"y; and P;(8) = 0T B!, where @ is the B X D matrix whose bth row is 8*(?) and y; is the
vector of simulation outputs. Under some simplifying assumptions, we also characterize the prediction error
of 1;(@) to be normally distributed with mean zero and variance o7 (07 ©) 1.

Continuously refitting the model with all cumulative data can be computationally expensive. We
introduce a parameter y € (0,1] to control the fraction of periods whose bootstrapped design points and
simulation outputs are included in the regression. This parameter also helps balancing the bias in the
metamodel produced by initial estimations of F¢ and the variance coming from the estimation error.

3 BOOTSTRAP PROCEDURES

We extend the general-purpose R&S procedure proposed by Lee and Nelson (2016), by integrating the
metamodel with bootstrapping. Hsu (1996) shows that, if we have an estimator #; (F¢) of n; (F€) such that

Pr {7 (F) — ;(F) — (n(F) = m;(F)) < 6,vi # j} 2 1 - «, ™

then selecting = argmax;<;j< 1; (F C) as the best ensures PGS > 1 — a. In our case, since F¢ is unknown,
we replace 7j; (F€) with 1,[)1(0) where 8 is the vector of moments of F. Thus, the probability in (1) must be
taken with respect to the sampling distribution of F as well as the prediction error of the metamodel.

Since n; (F C) does not have any analytical form, we compute the bootstrap estimator of (1) as

1 Z (@ -8)' (B -B)+ (8 -0) (52 - §?) < 5,vi#}, )

where 1{-} is the 1ndlcator function and §; () is a random vector which characterizes the prediction error in
the metamodel. In the full paper, we propose Algorithm 1 that computes (2) after collecting additional data
in every period and decides if more data is needed to guarantee the desired PGS. With the introduction of
the parameter y, the prediction error also decreases over time.

We formulate Algorithm 2 that improves the efficiency over Algorithm 1. Instead of (1), we guarantee
the PGS using a less conservative probability bound (Nelson and Banerjee, 2001):

Pr{f;(FS) — fi;c(F¢) — (1;(F¢) — 1;c(F€)) < max{8,n;c(F) —n;(FO)},Vi# i} =1—-a.  (3)

The probability bound in (3) has two benefits. First, we reduce the number of comparisons from k(k — 1)
to k — 1 by focusing on the comparisons between each solution with (the estimated) i¢. Second, the
comparisons between i€ and considerably inferior systems are allowed to be less precise.

4 RESULTS

We test both algorithms in two synthetic examples where we can model the performance measure as a
function of the first moment of the input distributions. The third is a queueing system example. Empirical
results suggest that both algorithms provide a valid PGS. In addition, Algorithm 2 reduces the input data
requirement by up to 90% compared to Algorithm 1, resulting in earlier termination.
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