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ABSTRACT

We develop a Bayesian framework for subset selection in ranking-and-selection problems that goes beyond
the classical focus on identifying a single best alternative. The framework accommodates broad notions
of acceptability, including delta-optimality, stochastically constrained optimality, and Pareto optimality.
The central challenge is that evaluating posterior quantities involves integrating over high-dimensional and
potentially non-convex acceptance regions and must be repeatedly computed for many candidate subsets.
We circumvent this challenge by employing sample-average approximation to reformulate optimization
problems that involve these integrals into mixed-integer programs. We also propose new myopic sequential
sample allocation policies.

1 INTRODUCTION

Ranking-and-selection (R&S) concerns the problem of identifying acceptable alternatives from a finite
set of alternatives, denoted by K = {1, . . . ,k}, where the multi-valued performance of each alternative
i ∈K is represented by a d-dimensional vector Wi ∈Rd and all alternatives’ performances collectively are
represented by a matrix W = (W1, . . . ,Wk) ∈ Rk×d . We assume W is unknown but can be inferred based
on independent and identically distributed (i.i.d.) simulation outputs Xi1,Xi2, . . . drawn from alternative i
for all i ∈ K .

Classical R&S research has largely focused on the case where the decision maker aims to identify the
single best alternative, often the one with the smallest expected performance. In practice, however, the
definition of what constitutes an acceptable alternative is more varied. We let A : Rk×d → 2K denote an
acceptability rule that maps a performance matrix W to the set of acceptable alternatives A (W). Common
notions of acceptability include feasibility and Pareto optimality. Unlike the single-best setting, the number
of acceptable alternatives is unknown. This naturally motivates a subset-selection approach in which the
goal is to return a subset S ⊆K that, with high probability, contains at least one, all, or at least a specified
proportion of the acceptable alternatives.

We adopt a Bayesian perspective, treating W as random with a posterior distribution conditional on the
evidence E , which combines prior beliefs with observed simulation outputs. Posterior quantities derived
from this distribution can be used to evaluate the quality of a candidate subset S and, importantly, remain
statistically valid as additional samples are collected based on previous observations. Posterior quantities
of interest can be expressed as integrals of the posterior distribution over combinations of the acceptable
regions of the alternatives, defined as Ai = {W ∈Rk×d : i ∈ A (W)} for i ∈ K . In particular, we focus on
three metrics for evaluating the quality of a subset S that capture different desiderata of subset selection:

• Probability of acceptable inclusion: PAI(S ) =P(|A (W)∩S | ≥ 1 | E ) =P
(
W ∈

⋃
j∈S A j | E

)
.

• Probability of acceptable subset selection: PASS(S )=P(A (W)⊆ S | E )=P
(
W ∈

⋂
j∈S A j | E

)
.

• Expected acceptable inclusion rate: EAIR(S ) = E
[
|A (W)∩S |
|A (W)|

∣∣∣E ]
, where 0/0 is defined to be 1

when A (W) = /0.

Each of these subset-quality measures can be written as Q(S ;E ) = E[q(A (W),S ) |E ] for some
mapping q : 2K × 2K → [0,1] that evaluates the quality of a fixed subset S ⊆ K with respect to the
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(random) acceptable set A (W). Proposition 1 shows how these three measures are related; a frequentist
analog is presented in Zhao et al. (2023).
Proposition 1 When P(A (W) = /0 | E ) = 0, the following chain of inequalities holds for all S ⊆ 2K :

PASS(S ) ≤ EAIR(S ) ≤ PAI(S ).

2 SAMPLE-AVERAGE APPROXIMATION

To avoid evaluating integrals for all candidate subsets, we employ a sample-average approximation (SAA)
framework. The framework operates under minimal assumptions: we do not restrict the form of the
acceptability rule A (·) or the posterior distribution of W, but assume only that posterior samples can
be generated. More specifically, we propose drawing posterior samples W1, . . . ,WN i.i.d.∼ p(W | E ) and
approximating Q(S ;E ) by

Q̂N(S ;E ) =
1
N

N

∑
n=1

q(A (Wn),S ) for all S ∈ 2K .

Let m be a user-specified upper bound on the subset size, representing the maximum number of alternatives
the decision maker is willing to consider. Consider the SAA subproblem of identifying the subset of size
at most m with the largest subset quality:

max
S⊆K

Q̂N(S ;E ) s.t. |S | ≤ m. (FS-SAA)

(FS-SAA) can be formulated as a mixed-integer program. If the resulting estimated optimal quality is
lower than some user-specified threshold 1−α , then this suggests that the current evidence is insufficient
and additional simulation replications are needed.

We develop a general-purpose myopic sample allocation policy that, like the SAA formulation, requires
only the ability to generate posterior samples. At iteration t, let Et denote the evidence collected so far
and p(W | Et) denote the posterior distribution. Solving (FS-SAA) yields a candidate subset Ŝ ∗

t and
its estimated quality Q̂N(Ŝ ∗

t ;Et). To choose the next alternative, we consider the hypothetical effect of
obtaining one additional simulation output from one alternative. Let X̃i represent a prospective observation
of alternative i, and let Et ∪ X̃i represent the augmented evidence if X̃i were observed. We define the one-step
myopic gain as

∆i(Et) = Q(Ŝ ∗
t ; Et ∪ X̃i)−Q(Ŝ ∗

t ; Et),

and consider i∗t ∈ argmaxi∈K ∆i(Et) as the next alternative to simulate.
To avoid intractable integration, we approximate this selection rule by Monte Carlo:

î∗t = argmax
i∈K

∆̂i(Et) = argmax
i∈K

Q̂N′

(
Ŝ ∗

t ; Et ∪ X̃i

)
,

where

Q̂N′

(
Ŝ ∗

t ; Et ∪ X̃i

)
=

1
N′

N′

∑
n=1

q
(
A (Wn,i), Ŝ ∗

t

)
and Wn,i i.i.d.∼ p(W | Et ∪ X̃i) for all i ∈K and n = 1, . . . ,N′.

Alternative î∗t is then sampled, the posterior distribution updated, and the procedure repeated until a stopping
rule is satisfied, such as when the optimal value of (FS-SAA) exceeds 1−α .

We are currently investigating methods for generating prospective simulation outputs X̃i and studying
how Ŝ ∗

t performs in terms of the aforementioned quality metrics. Numerical experiments indicate that
sampling X̃i from the empirical CDF can perform poorly with respect to these Bayesian metrics, sometimes
even underperforming equal allocation, yet still performs adequately under frequentist criteria.
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