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ABSTRACT

Gradient-based methods are well-suited for derivative-free optimization (DFO), where finite-difference (FD)
estimates are commonly used as gradient surrogates. Traditional stochastic approximation methods, such as
Kiefer-Wolfowitz (KW) and simultaneous perturbation stochastic approximation (SPSA), typically utilize
only two samples per iteration, resulting in imprecise gradient estimates and necessitating diminishing step
sizes for convergence. In this paper, we combine a batch-based FD estimate and an adaptive sampling
strategy, developing an algorithm designed to enhance DFO in terms of both gradient estimation efficiency
and sample efficiency. Furthermore, we establish the consistency of our proposed algorithm and demonstrate
that, despite using a batch of samples per iteration, it achieves the same sample complexity as the KW
and SPSA methods. Additionally, we propose a novel stochastic line search technique to adaptively tune
the step size in practice. Finally, comprehensive numerical experiments confirm the superior empirical
performance of the proposed algorithm.

1 ALGORITHM

Gradient-based optimization algorithms are suitable for solving the unconstrained stochastic optimization
problem minx∈X f(x) = E[F (x)], where gradient estimation and step size selection are two fundamental
ingredients. In a noisy black-box setting, this paper integrates the adaptive sampling strategy (Bollapragada
et al. 2024) and a novel gradient estimation method to determine the current descent direction, and proposes
a stochastic line search to determine an appropriate step size in practical applications.

1.1 Correlation-Induced Central Finite Difference Estimation

In this section, we assume X ∈ R and denote xk by the point of interest. Our objective is to use nk sample
pairs (i.e., 2nk function evaluations) to estimate the gradient. The procedure of our correlation-induced
central FD (Cor-CFD) method is as follows:

• Step 1. Generates R perturbations hk,1, ..., hk,R randomly from a pilot distribution P0.
• Step 2. Generate bk (nk = bkR) sample pairs (Fi(xk+hk,r), Fi(xk−hk,r))(i = 1, ..., bk) for each

perturbation hk,r(r = 1, ..., R) and construct CFD estimates gbk,hk,r
:=

∑bk
i=1(Fi(xk + hk,r) −

Fi(xk − hk,r))/(2bk) at each perturbation.
• Step 3. Use bootstrap and linear regression to estimate the optimal perturbation ĥk and transform

gbk,hk,r
to gcor

bk,r,ĥk
, (r = 1, ..., R).

• Step 4. Average gcor
bk,r,ĥk

and get the Cor-CFD estimate gk(xk).

1.2 Adaptive Sampling

If nk is too small, the error of gk(xk) is substantial; if nk is too large, many samples may be wasted. The
idea of adaptive sampling is to select an nk that ensures the angle between gk(xk) and the true gradient
is acute, which can, to some extent, be derived from E[|ϵk|2|Fk] ≤ θ2|∇f(xk)|2 (norm condition).
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Table 1: Optimality gap of different methods for the Rosenbrock function with noise.

Function Evaluations 2× 103 2× 104 2× 105

Method Mean SD SR Mean SD SR Mean SD SR

AdaDFO 2.85 2.69 100% 0.51 0.99 100% 0.32 0.34 100%
NM 6.59 0.25 100% 6.58 0.22 100% 6.59 0.22 100%
STRONG 16.74 0.02 100% 4.99 0.55 100% 4.91 0.71 100%
SPSA 3.55 – 99.2% 1.08 – 98.4% 0.13 – 98.7%

Note that E[|ϵk|2|Fk] represents the sum of variances across all coordinates. We can employ sample
variance to estimate the variance of each component of gk(xk) and subsequently E[|ϵk|2|Fk]. For |∇f(xk)|,
|gk(xk)| can be chosen as an appropriate surrogate. Specifically, the estimated version of the norm condition
is

∑d
i=1 σ̂

2
i /nk ≤ θ2|gk(xk)|2, where σ̂2

i is the sample variance of gk(xk) at i-th coordinate in the k-th
iteration, which is an estimated upper bound of the true variance.

1.3 Stochastic Line Search

• Step 1. Begin with an initial step size ak = ã at k-th iteration and shrink ak → l2ak when

F (xk − akgk(xk)) > F (xk)− l1ak|gk(xk)|2 + 2σF (1)

holds, where l1 < l2 < 1. Step 1 will stop until (1) does not hold.
• Step 2. While ak > a, shrink ak → l2ak if for any N ≤ N0,

1

N

N∑
i=1

Fi(xk − akgk(xk)) >
1

N

N∑
i=1

Fi(xk)− l1ak|gk(xk)|2 − 2
σF√
N

. (2)

In the end, we will obtain a step size either does not satisfy (1) and (2) or lies in (l2a, a] (small enough).

2 THEORETICAL RESULTS

• Iteration Complexity. Letx0 be the initial point and atk-th iteration, letmax{E[|bk|2|Fk],E[|ϵk|2|Fk]} ≤
θ2|∇f(xk)|2, where 0 < θ < m/(2M) is a threshold. If 0 < ak = a ≤ 1/((2θ2 + 2θ + 1)M) for
any k ≥ 0, then we have E

[
|xk − x∗|2

]
≤ (1− (m− 2θM)a)k |x0 − x∗|2.

• Sample Complexity. Let d = O(1). Denote S(ϵ) by the total stochastic function evaluations to get
an ϵ-accurate solution. Under some mild conditions, we have E[S(ϵ)] ≥ C1ϵ−3/2 + C2, where C1
and C2 are constants that depends on the threshold θ, step size a, problem dimension d, unknown
function and the simulation error.

It follows the theoretical results that achieving an ϵ-accurate solution requires at least O
(
ϵ−3/2

)
function

evaluations, matching the optimal performance of the KW algorithm.

3 NUMERICAL EXPERIMENTS
Table 1 demonstrates the effectiveness of AdaDFO under noise. Compared with NM and STRONG methods,
the optimality gap of AdaDFO method is smaller. In addition, AdaDFO consistently achieves 100% success
rate (SR) across all budgets compared with SPSA method.
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