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ABSTRACT

Tackling simulation optimization problems with non-convex objective functions remains a fundamental
challenge in operations research. In this paper, we propose a class of random search algorithms, called
Regular Tree Search, which integrates adaptive sampling with recursive partitioning of the search space.
The algorithm concentrates simulations on increasingly promising regions by iteratively refining a tree
structure. A tree search strategy guides sampling decisions, while partitioning is triggered when the number
of samples in a leaf node exceeds a threshold that depends on its depth. Furthermore, a specific tree search
strategy, Upper Confidence Bounds applied to Trees, is employed in the Regular Tree Search. We prove
global convergence under sub-Gaussian noise, based on assumptions involving the optimality gap, without
requiring continuity of the objective function. Numerical experiments confirm that the algorithm reliably
identifies the global optimum and provides accurate estimates of its objective value.

1 ALGORITHM

The Regular Tree Search integrates two core mechanisms: adaptive space partitioning (via a tree) and
exploration-exploitation balancing (via a tree search strategy), and operates under a two-stage workflow.

1.1 Regular Tree
The algorithm first constructs a Regular Tree to partition the feasible domain (X ⊆ Rd, canonicalized as
[0, 1]d). The tree enforces four key properties to ensure split quality: (1) Honesty: Disjoint datasets for
leaf estimation (SI) and split decisions (SJ ) avoid data leakage; (2) Random-Split: Each feature has at
least κ/d probability of being split, preventing dimension neglect; (3) α-Spatial Balance: Child nodes
retain at least α-fraction of the parent’s size; (4) f(c)-Sample Balance: Depth-c leaves have SI samples
bounded by f(c) (e.g., c log c) for reliable estimation.

1.2 Regular Tree Search
The algorithm proceeds in two sequential stages, followed by a termination step to output the solution:

Stage 1: Initialization (Warm-Up). This stage establishes an initial partition of the feasible domain
to guide subsequent adaptive sampling:

1. Allocate an initial sample budget N0 < N (total budget). Uniformly sample N0 points from X ,
and run one simulation per point to generate a dataset S.

2. SplitS into two disjoint subsets: SI (size ⌊N0/2⌋, for leaf value estimation) andSJ (sizeN0−⌊N0/2⌋,
for split decisions). Using the splitting criterion that enforces the four Regular Tree properties
above, construct the initial Regular Tree.

Stage 2: Adaptive Sampling and Tree Refinement. This iterative stage refines the tree and focuses
simulations on promising regions, balancing exploration and exploitation via the UCT strategy:

1. Leaf Selection: For each iteration, select a leaf node using UCT—this strategy balances "exploiting"
leaves with high sample means (likely promising regions) and "exploring" under-sampled leaves

(uncertain regions) via the formula: ucbl = ȲLl
+ Cp
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Table 1: Statistics of the true function value of the optimal solution estimate of four algorithms.

Quantile of value

d Algorithm Mean RMSE Best 25% 50% 75% Worst

2

Regular Tree Search 3.20 4.17 0.03 1.28 2.11 4.99 10.23
ASR 5.23 6.16 0.31 3.02 4.78 6.73 20.50

IHR-SO 36.54 36.74 22.61 34.24 37.18 39.69 43.80
AP-SO 35.77 36.16 21.06 33.52 37.06 39.77 43.83

leaf Ll (from SI), nl is the number of SI samples in Ll, np is the SI sample count of Ll’s parent
node, and Cp is a hyperparameter tuning the exploration-exploitation trade-off.

2. New Sampling: Uniformly sample a new point from the selected leaf, run a simulation, and add
the resulting (x, Y ) pair to SI .

3. Tree Refinement: If the number of SI samples in the selected leaf reaches f(c) (where c is the
leaf’s depth), supplement SJ with additional samples (until its count in the leaf also meets f(c)).
Split the leaf into two child nodes using the Regular Tree criterion, then update the set of active
leaf nodes by replacing the parent leaf with its two children.

When the total sample budget N is exhausted, identify the leaf node with the largest SI sample mean
(the most promising region). The midpoint of this leaf is the estimated optimal solution, and its sample
mean is the estimated optimal objective value.

2 THEORETICAL CONVERGENCE

Two core convergence results of Regular Tree Search are formally proven under three key theoretical
assumptions: (1) Sub-Gaussian simulation noise (i.e., noise meeting sub-Gaussian moment conditions),
(2) Local smoothness around the unique optimal point x∗, and (3) A local optimality gap (weaker than
the objective function’s global continuity). Regular Tree Search also requires additional constraints on
tree structure and sampling strategy: each leaf node’s depth is bounded between h−(N) and h+(N), with
limN→∞ h−(N) = ∞ and limN→∞

h+(N)
f(h−(N))

= 0. These results are detailed below:
1. Spatial Convergence: As total sample budget N → ∞, the distance between the selected optimal

leaf node L∗
N and true optimal point x∗ converges to 0 in probability.

2. Value Convergence: The sample mean of optimal leaf node L∗
N (from SI) converges to the true

optimal objective value µ(x∗) in probability.
Critically, these guarantees do not depend on the objective function’s global continuity—they rely solely

on x∗’s local properties. This distinction is pivotal, as it greatly broadens the algorithm’s applicability to
real-world scenarios where objective functions are often discontinuous or lack global smoothness.

3 NUMERICAL EXPERIMENTS

We compare Regular Tree Search against three comparative algorithms (ASR, IHR-SO, AP-SO) on non-
convex simulation problems. Consider the 2-dimensional Rastrigin function: µ(x) = 20 +

∑2
i=1[x

2
i −

10 cos(2πxi)] (x = (x1, x2)), with feasible domain X = [−5, 5]2. It aims to find the global minimum
at x∗ = (0, 0) (where µ(x∗) = 0) and has multiple local minima. Let ϵ(x) ∼ N(0, 1); for illustration,
we convert the original maximization problem (consistent with our algorithm design) to minimization,
equivalent to maximizing the negative Rastrigin function. All algorithms are evaluated under a fixed total
sample budget of 1000. Table 1 shows that the proposed Regular Tree Search outperforms other algorithms:
it achieves the lowest mean error and RMSE, and its results are more concentrated.
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