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ABSTRACT

Accurately forecasting the demand trajectories of newly launched products is a fundamental challenge due to
sparse or nonexistent historical data. This paper introduces the Conditional Diffusion Life-cycle Forecaster
(CDLF), a generative modeling framework designed for cold-start scenarios. CDLF integrates product
attributes, reference trajectories of comparable products, and early post-launch sales signals into a unified
conditional representation that guides a denoising diffusion process. By doing so, the framework produces
realistic and uncertainty-aware forecasts even when sales data are absent or extremely limited. Empirical
studies on the Intel microprocessor dataset show that CDLF outperforms classical diffusion models, Bayesian
updating approaches, and state-of-the-art machine learning baselines. The results demonstrate that CDLF
provides more accurate forecasts and calibrated uncertainty, highlighting its potential to support inventory
planning and decision-making for new product launches.

1 INTRODUCTION

Forecasting the life-cycle demand trajectories of newly launched products is vital yet highly uncertain, as
managers must plan inventory and production without historical data, while early forecasts also inform
marketing decisions—such as pricing, promotion, and channel strategy—that shape long-term product
adoption. The product life cycle typically evolves through five stages, but forecasting challenges are
concentrated in the pre-launch and early post-launch phases. In the pre-launch phase, no sales data are
available, forcing reliance on static product features and reference trajectories. In the early post-launch phase,
limited and volatile signals emerge, but they remain insufficient for stable forecasts. Poor performance at these
stages often leads to overstocks, stockouts, and high product failure rates (Lei et al. 2023; Ban et al. 2019; Hu
etal. 2019). Traditional methods such as the Bass diffusion model (Bass 1969) impose rigid functional forms,
while analogy-based methods or machine learning pipelines still struggle to capture multimodal uncertainty.
To formalize the forecasting task, let s € R? denote static product attributes and x;.7 = {Xi,...,Xr } represent
the life-cycle trajectory over T periods. The objective is to model the conditional distribution of future
outcomes given evolving information sets .%: q(Xq:r | Fiy—1) = [1—, a(X¢ | Fi—1), where Fo = 6(Z,s)
combines static attributes and complete trajectories from comparable products 2 = {ng)T}szl When
to = 1, no history exists and forecasts depend entirely on context. As observations X;.,—; accumulate, .%;
expands to incorporate them, enabling adaptive refinement. The key challenge lies in constructing a robust
prior for xi, as early misspecification propagates errors across the entire trajectory.

2 METHOD

We formulate cold-start life-cycle forecasting as conditional generative modeling. Given static attributes
s € R?, a set of reference trajectories 2 = {ng)T}kK: 1> and an observed prefix X1, the task is to learn
the conditional distribution pg (X7 | S, 2 ,X1:4,—1). This formulation simultaneously covers pre-launch
(to = 1) when no sales data are observed, and early post-launch when only sparse prefixes are available.
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Our proposed Conditional Diffusion Life-cycle Forecaster (CDLF) integrates heterogeneous information
into a unified embedding and then generates trajectories via a denoising diffusion process. Static features are
encoded as a fixed-length vector h;. Reference trajectories are weighted according to a softmax similarity
and aggregated into hy through a recurrent encoder. Early sales are autoregressively encoded to hidden
states h, = RNNg(concat(x;_1,hg,hx),h,_;), ensuring that static and reference information is preserved
across time.

On top of the context encoder, CDLF applies a conditional denoising diffusion model. In the forward
process, each clean variable x? is gradually perturbed by Gaussian noise according to a variance schedule
{B.}Y_,, where B, € (0,1) controls the noise magnitude at step 7. The cumulative product ¢, = 1 — 3, and
@, = [T, o; summarize the noise schedule. This yields the closed-form marginal distribution g(x! | xV) =
N (V8 x2, (1 —a,)I). The reverse process then reconstructs clean data from noise, conditioned on the hid-

den state ;, ;. At each step it samples from pg (x7 ! |x!,h,_1) = JV(\/%(X;’ - \/lﬁjianse (x",h,_1,n)), 621),
where the score network sg predicts the injected noise. Training reduces to minimizing the expected squared
error between predicted and true noise, while inference proceeds autoregressively: the model starts from
pure noise, samples X? given context (s,X), updates its hidden state, and continues step by step. When
early sales are available, they are injected directly into the hidden state, enabling refined forecasts without

retraining.

3 EMPIRICAL STUDY AND DISCUSSION

We evaluate CDLF on the Intel microprocessor dataset (Manary and Willems 2022) and benchmark it against
several representative forecasting approaches from both classical and modern paradigms. Forecasting is
tested under pre-launch, where predictions rely solely on product attributes and reference trajectories, and
early post-launch, where limited observed sales are incorporated. Using mean absolute error (MAE) and
continuous ranked probability score (CRPS), we find that CDLF consistently achieves the best performance
across both horizons. In the pre-launch setting, CDLF reduces MAE by more than 15% relative to the
strongest benchmark and improves CRPS by nearly 20%, highlighting its ability to generate reliable priors
without sales data. In the early post-launch setting, as a few weeks of observations become available,
CDLF further improves accuracy, lowering MAE by over 20% and delivering sharper and better-calibrated
predictive intervals than competing models.

Our findings suggest that conditional diffusion models provide a promising direction for cold-start
forecasting. By combining available contextual information, CDLF generates life-cycle forecasts that are
both accurate and uncertainty-aware, even under extreme data scarcity. The model’s ability to seamlessly
transition from pre-launch to post-launch settings indicates practical value for managers facing high-stakes
decisions with limited information. Beyond product demand, this approach highlights broader opportunities
for applying diffusion-based generative models to other domains where cold-start and uncertainty dominate.
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