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ABSTRACT

We propose Nested Denoising Diffusion Sampling (NDDS), a novel method for global optimization of
expensive black-box functions. NDDS leverages conditional denoising diffusion probabilistic models
to approximate the evolving solution distribution, eliminating the need for extensive additional function
evaluations. Unlike prior diffusion-based optimization methods that rely on heuristically chosen conditioning
variables, NDDS systematically generates them using a statistically principled mechanism. Furthermore, we
introduce a likelihood ratio–based data reweighting strategy to correct the mismatch between the empirical
training distribution and the current target distribution. Numerical experiments on benchmark problems
demonstrate that NDDS consistently outperforms the Extended Cross-Entropy method under the same
evaluation budget, with notable efficiency gains in high-dimensional settings.

1 INTRODUCTION

Deterministic global optimization problems with black-box, expensive-to-evaluate objectives arise in fields
such as engineering design, hyperparameter tuning, and simulation optimization. Many sampling-based
algorithms iteratively update a probability distribution over candidate solutions, but their efficiency is
hampered by the cost of function evaluations.

To address this challenge, we propose Nested Denoising Diffusion Sampling (NDDS), which integrates
generative modeling—specifically, conditional diffusion models—into the optimization process. NDDS
leverages diffusion-based sampling to improve efficiency by generating high-quality candidate solutions
without requiring a large number of additional expensive evaluations.

2 NESTED DENOISING DIFFUSION SAMPLING (NDDS)

Let pk(x) denote the estimated distribution of the optimal solution at iteration k. Classical distribution-based
methods update

pk+1(x) ∝ S
(
H(x)

)
pk(x), (1)

where S(·) is an increasing and positive transformation of the objective y = S
(
H(x)

)
.

NDDS trains a conditional denoising diffusion model qX |Y (x | y) on evaluated solution–value pairs
{(xi,yi)} with yi = S(H(xi)). At each iteration, it generates new candidates via the following two-stage
procedure:

1. Condition sampling. Draw a label y from a learned distribution with density proportional to yqY (y).
2. Conditional generation. Generate x ∼ qX |Y ( · | y) via the denoising process of the diffusion model

to obtain candidate solutions conditioned on the sampled label y.

Here, qX and qY denote the marginals for x and y, respectively, and qX |Y is the conditional distribution
of x given y. Theoretically, if q is perfectly trained, the generated samples follow

f (x) ∝ S
(
H(x)

)
qX(x) ≈ pk+1(x),

i.e., NDDS produces samples proportional to the updated target distribution.



Wang

3 ITERATIVE OPTIMIZATION FRAMEWORK

Our NDDS-based global optimization algorithm (NDDS-GO) alternates between the following steps:

1. Evaluation. Sampling and evaluating a small batch of solutions using a mixture of the current
estimate and an exploration distribution.

2. Model training. Retraining the conditional diffusion model on reweighted data, where we apply a
likelihood ratio–based reweighting of historical data to address the mismatch between the dataset
distribution and the target distribution.

3. Sampling. Generating a large batch of synthetic solutions via NDDS and fitting a parametric
distribution for the next iteration.

This framework reduces the number of expensive evaluations while maintaining a large effective sample
size for updating the distribution estimate.

4 EXPERIMENTAL RESULTS

We evaluated NDDS-GO against the Extended Cross-Entropy method on 2D and 10D Styblinski–Tang
functions. As shown in Figure 1, NDDS-GO converged more quickly to the global optimum in 2D and
avoided local maxima in 10D, achieving higher final objective values with the same evaluation budget.

(a) Styblinski–Tang 2D (b) Styblinski–Tang 10D

Figure 1: Best evaluated function value against the number of evaluations for NDDS-GO and Extended
CE over 10 macro-replications.

5 CONCLUSION

By combining conditional diffusion models with a principled conditioning mechanism and likelihood
ratio–based data reweighting, NDDS enables more sample-efficient global optimization. Experimental
results demonstrate substantial improvements over traditional distribution-based methods, particularly in
high-dimensional problems.
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