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ABSTRACT

High responsiveness and economic efficiency are critical objectives in supply chain transportation, both
of which are influenced by strategic decisions on shipping mode. An integrated framework combining
an efficient simulator with an intelligent decision-making algorithm can provide an observable, low-risk
environment for transportation strategy design. An ideal simulation-decision framework must (1) generalize
effectively across various settings, (2) reflect fine-grained transportation dynamics, (3) integrate historical
experience with predictive insights, and (4) maintain tight integration between simulation feedback and policy
refinement. We propose Sim-to-Dec framework to satisfy these requirements. Specifically, Sim-to-Dec
consists of a generative simulation module, which leverages autoregressive modeling to simulate continuous
state changes, reducing dependence on handcrafted domain-specific rules and enhancing robustness against
data fluctuations; and a history–future dual-aware decision model, refined iteratively through end-to-end
optimization with simulator interactions. Extensive experiments conducted on three real-world datasets
demonstrate that Sim-to-Dec significantly improves timely delivery rates and profit.

1 INTRODUCTION

Efficient transportation plays a central role in supply chains across commerce, finance, and agriculture
industries, directly supporting logistics execution, demand fulfillment, and resource coordination (Yu et al.
2017; Kristofik et al. 2012; Routroy and Behera 2017). A well-functioning supply chain transportation
system must strike a balance between high responsiveness and economic efficiency, where achieving this
balance largely depends on strategic transportation decisions (Saisridhar et al. 2024; Bi et al. 2022).
Transportation decisions, such as selecting for each order between air, rail, or maritime shipping, involve
inherent trade-offs between delivery speed and cost. Faster modes improve responsiveness but incur higher
expenses, while slower options reduce costs at the risk of delay. Optimizing such decisions is essential for
improving responsiveness and efficiency under dynamic supply chain conditions.

Simulation has long served as a powerful tool for evaluating supply chain transportation strategies
before real-world deployment (Daroń 2022; Chen et al. 2024). A promising direction is to couple simulation
with intelligent decision-making, enabling continuous optimization in a low-risk and adaptive environment.
Several research directions are intrinsically relevant to the development of integrated simulation–decision
frameworks. Traditional simulation techniques, such as discrete event simulation (Law et al. 2007) and
Monte Carlo methods (Dimov 2008), provide detailed modeling of logistics processes but often require
extensive expert knowledge and manual parameter tuning, which can limit their scalability across diverse
operational settings. Reinforcement learning (RL) approaches (Sutton and Barto 1998) enable adaptive
policy optimization through interaction with the environment. However, when applied to complex supply
chain systems, RL methods may face practical challenges such as high computational costs and sensitivity
to objective changes (Huang et al. 2022). They often treat the environment as a black box or assume
fixed, coarse-grained dynamics, which limits their ability to model fine-grained state transitions or adapt to
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real-world disruptions such as demand fluctuations, policy shifts, and capacity constraints (Du et al. 2020).
In addition, many existing methods loosely couple simulation and decision-making: traditional simulators
are typically used as post-hoc evaluators (Zhou et al. 2018; Daroń 2022) without actively guiding the
decision process.

To effectively support transportation strategy design, we argue that an ideal simulation–decision frame-
work should satisfy four key criteria. (1) Generalizability — the framework should be data-driven and
easily adaptable to various supply chain settings without relying on handcrafted, domain-specific modeling.
(2) Dynamic fidelity — it should capture fine-grained transportation dynamics, including continuous and
interdependent state transitions that evolve over time. (3) Experience-forecast integration — the decision
model should leverage both historical operational data and future-oriented predictions to formulate informed
strategies. (4) Tight simulation–decision coupling — the simulator and the decision model should interact
iteratively, enabling the simulation to guide the decision-making rather than operating in isolation.
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Figure 1: Proposed Framework

To meet these criteria and support adaptive, efficient transportation strategy design, we propose
Simulation-to-Decision (Sim-to-Dec), a novel framework that unifies generative simulation with end-
to-end decision optimization. As illustrated in Figure 1, the framework operates in three stages. First,
the decision model selects an appropriate shipping mode for each order based on its attributes. Then, the
simulator predicts the order’s status evolution conditioned on the order details and the chosen mode. Finally,
the system evaluates the strategy using key metrics such as profit and on-time delivery rate based on the
simulated states. Sim-to-Dec consists of two tightly integrated components: (1) Generative simulation for
scalable and data-driven modeling. The simulator learns transportation dynamics directly from historical
data, eliminating the need for manual rule engineering. It is implemented as an autoregressive model that
sequentially predicts order states across transportation stages, capturing both short-term fluctuations and
long-term trends. This enables fine-grained simulation of continuous and interdependent logistics behav-
iors, supporting generalization across diverse supply chain settings. (2) End-to-end decision-making with
independent yet coupled learning. The decision model is parameterized independently from the simulator,
allowing it to flexibly adapt to evolving objectives and constraints. It interacts iteratively with the simulator
in a low-risk virtual environment, continuously refining transportation strategies through simulated feed-
back. To support experience-forecast integration, the model combines two complementary perspectives:
historical execution data is used to estimate expected outcomes of shipping modes, while a value network
predicts future rewards. These sources jointly guide policy optimization, enabling decisions that are both
historically grounded and forward-looking. By integrating these components, Sim-to-Dec forms a closed
feedback loop: the generative simulator infers dynamic logistics conditions, while the decision model
actively learns and adapts strategies. This architecture directly addresses the four key design goals outlined
earlier—generalizability, dynamic fidelity, experience-forecast integration, and tight simulation–decision
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coupling—making Sim-to-Dec well-suited for the complexity and uncertainty of real-world supply chain
transportation.

Key Contributions: This work makes the following contributions to supply chain transportation opti-
mization: (1) Framework: We propose a novel simulation-decision framework that integrates generative
simulation with iterative decision-making, providing a flexible and adaptive approach for optimizing trans-
portation strategies in the supply chain. (2) Decision Optimization: Our method combines insights from
historical data with future reward estimation to guide decision-making, achieving a balance between lever-
aging experience and adapting to evolving conditions. (3) Empirical Validation: We validate the proposed
framework through extensive experiments on three real-world supply chain datasets and a live transporta-
tion system, demonstrating significant improvements in transportation performance, responsiveness, and
decision robustness. The code is available at https://github.com/HaoyueBai98/Sim-to-Decision.

This paper is organized as follows. Section 2 reviews related work on simulation and decision-making
in supply chain optimization. Section 3 provides background on shipping mode management in supply
chains and formally defines the problem. Section 4 introduces our Sim-to-Dec framework, detailing its two
core components: a generative simulator and a decision-making model. Section 5 presents our experimental
setup and results, including comparisons with baselines and ablation studies. We conclude with a discussion
of future directions.

2 RELATED WORK

Simulation-based methods are widely used to evaluate supply chain transportation strategies under uncer-
tainty. Traditional techniques include discrete event simulation (DES) (Law et al. 2007), system dynamics
(SD) (Forrester 1997), and agent-based modeling (ABM), each capturing different aspects of system
characteristics and behaviors. DES is particularly suitable for modeling operational-level disruptions, SD
provides insights into system-wide feedback-driven behaviors, and ABM effectively models decentralized
agent interactions. Hybrid approaches that combine these paradigms have also been explored to leverage
their complementary modeling strengths (Brailsford et al. 2019). Probabilistic methods such as Monte Carlo
simulation (Dimov 2008) and Markov-based modeling (Hosseini et al. 2019) are also commonly employed,
particularly for quantifying variability and modeling stochastic transitions or cascading failures (Dixit et al.
2020). These traditional simulations offer strong interpretability and transparency, but typically require
extensive expert knowledge and rule-based parameterization, which significantly limits their adaptability
to dynamic and evolving operational conditions.

On the decision-making side, classical optimization methods (e.g., linear programming (Dantzig 2002;
Churchman et al. 1957)) have long been used to derive cost-effective policies. More recently, rein-
forcement learning (RL) has emerged as a promising alternative (Rolf et al. 2023), allowing agents to
learn adaptive strategies through environmental interaction. However, RL approaches are often sample
inefficient, computationally expensive, and assume black-box environments with coarse dynamics (Adobor
2020; Huang et al. 2022; Du et al. 2020), which significantly undermines their applicability in complex,
fine-grained supply chains. To address these limitations, recent research has explored integrating simulation
and decision-making into unified frameworks. For example, Correa-Martinez and Seck (Correa-Martinez
and Seck 2023; Bai et al. 2025) and others have proposed simulation-driven policy optimization or digital
twin architectures (Barykin et al. 2020), enabling continuous improvement of decision strategies under
uncertainty. However, many of these frameworks still treat simulation as a passive evaluator rather than an
active participant in iterative decision refinement. The coupling between simulation and policy learning
remains loose (Zhou et al. 2018; Daroń 2022), and simulation fidelity is often limited to simplified dynamics
or offline scenario replay, which reduces generalizability. Our work contributes to this growing literature
by proposing a tightly integrated simulation–decision framework that directly overcomes these limitations.
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3 BACKGROUND AND PROBLEM STATEMENT

Challenges of Shipping Mode Management & Order Representation. In supply chain transportation,
selecting an appropriate shipping mode is a fundamental decision that directly affects both responsiveness
and cost efficiency. Expedited modes such as air freight improve delivery speed but incur higher costs, while
slower options like maritime or rail transport are more economical but risk significant delays. Thus, one of
the key challenges in shipping mode management is to strategically balance timely delivery rates and profits
through mode selection. To support this decision process, each order in the supply chain is represented
by three distinct groups of attributes: (1) Order information related attributes, denoted by F I , are a set of
attributes observed and collected at the time of order placement. The order information is inherent attributes
that are not affected by decisions and will not change over time, denoted by F I = { f I

1, f I
2, . . . , f I

|F I |}, where
|F I| is the number of order information related attributes, for instance, the origin, destination, product
type, quantity, and required delivery time of an order. (2) Shipping modes, denoted by (FD), are a set
of candidate shipping modes (in our experiments, we has four shipping modes) for an order, denoted by
FD = { f D

1 , f D
2 , . . . , f D

|FD|} . Each f D
d ∈ FD is a specific shipping mode chosen from a predefined set of

options, such as air, maritime, or ground transport. (3) Order states related attributes, denoted by FE , are
a set of attributes describing the changes or evolutions of an order after a shipping mode is selected since
an order has dynamics and its state changes. We define three order state attributes: i) a binary variable
indicating whether the order has a risk of delay, denoted by f E

risk, for instance, high risk or low risk. ii) a
categorical variable indicating the number of days required for delivery, f E

time, for instance, 1, 2, 3, or 4
days. iii) a binary variable indicating whether the order is ultimately delivered on time, denoted by f E

status.
Simulation–Decision Integration for Shipping Strategy Optimization. The goal of shipping mode
management is to jointly optimize two key metrics: the timely delivery rate (T Timely) and profit (T Profit), which
are often in conflict. Direct deployment of optimization strategies in real-world systems is infeasible due to
operational risks and constraints. To address this, we propose Sim-to-Dec, a closed-loop simulation–decision
framework that enables risk-free evaluation and refinement of transportation strategies using historical data.

Sim-to-Dec consists of two tightly coupled components: a generative simulator and a policy-based
decision maker. The simulator, denoted as S , learns fine-grained transportation dynamics from historical
data and simulates the impact of shipping decisions. The decision maker, M , learns a policy to select
optimal shipping modes for individual orders, based on their information features F I

n . Specifically, for the
n-th order:

f̂ D
d,n = M (F I

n ;Φ), (1)

where Φ is the parameter set of the decision model. The selected shipping mode f̂ D
d,n is then passed into

the simulator to generate the predicted order state F̂E
n :

F̂E
n = S (F I

n , f̂ D
d,n;Θ), (2)

where Θ denotes the simulator’s parameters. The simulation provides feedback on expected outcomes,
which is used to iteratively refine the decision policy. The objective is to maximize both T Timely and T Profit

over a batch of N orders. After preprocessing, all necessary attributes—including order details, candidate
modes, and outcomes—are available from real datasets to support both training and evaluation.

4 THE SIM-TO-DEC APPROACH

Sim-to-Dec consists of two integrated components: a generative simulator and a decision-maker. The
generative simulator models the dynamics of a supply chain system by learning from historical order data
and generating how the supply chain system changes when the shipping modes of orders are chosen. The
decision-maker interacts with the generative simulator to iteratively optimize shipping mode selection,
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ensuring a balance between timely delivery and cost efficiency. Through continuous simulation feedback,
the decision-maker dynamically refines decision policies to adapt to changing supply chain conditions.

4.1 Generative Simulator via Deep Generative AI
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Figure 2: Simulator

Traditional simulation approaches in supply chain shipping mode management heavily rely on expert-
driven models with predefined heuristics, making them rigid and difficult to adapt to evolving market
conditions. To address these limitations, we propose a generative simulator that models simulation as a
generative AI task by learning directly from offline historical data. This approach eliminates the need for
extensive expert knowledge while allowing for adaptive, high-fidelity simulations.
Processing Order Information. To simulate order dynamics, we categorize order information (F I) into
multiple groups, each representing distinct aspects of an order’s attributes: (1) Product-Related Attributes
F I,p: characteristics of a shipped item, such as weight and product category. (2) Customer-Related Attributes
F I,c: characteristics of an order recipient, including location, priority status, and historical purchase behavior.
(3) Shipping-Related Attributes F I,s: order-specific constraints, such as scheduled delivery time, shipping
restrictions, and previous shipping history. (4) Order-Related Attributes F I,o: statistical order attributes,
including order type, order placement time, and payment method.

Since individual shipping events are interconnected, we introduce a global order group F I,global as an
additional attribute group that captures dependencies among multiple orders processed within the same
time frame. This global representation is constructed by pooling information from all orders in a given
batch, ensuring that system-wide effects:

F I,global = Pool({F I
n}N

n=1), (3)

where Pool(·) aggregates the attribute representations of all N orders in a batch, capturing an overall
system-wide summary. This provides a holistic context that informs the decision-making process. To
ensure a unified attribute processing pipeline, we treat the global representation as an additional attribute
group, alongside other groups. Each attribute group, including the global representation, is processed using
a separate linear transformation layer:

zk
n = WkF I,k

n +bk, ∀k ∈ {p,c,s,o,global}, (4)

where k denotes different attribute groups, Wk and bk the learnable vector and zk
n is the representation

of group k. This transformation ensures that all attribute groups, including the global representation, are
mapped into a consistent latent space before being fed into the downstream model. The processed attribute
embeddings are then treated as input tokens for the encoder, allowing it to simultaneously capture both
individual shipment details and system-wide patterns.
Processing Shipping Mode. To simulate system dynamics conditioned on shipping decisions, we embed
the selected shipping mode f D

n into a latent representation zD
n . We implement this via an embedding lookup:

zD
n = Embedding( f D

n ), f D
n ∈ FD, (5)
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where the embedding table is initialized using samples from a normal distribution.
Fusing and Encoding. We utilize the Long Short-Term Memory (LSTM) model as an encoder to encode
the transformed representations of both order information and shipping mode into a fused embedding.
Formally, the encoding process is given by:

zn = LSTM(zp
n ,z

c
n,z

s
n,z

o
n,z

global
n ,zD

n ). (6)

Generating Order Status Changes. Order status changes describe how orders in the system change
when the decision maker chooses different shipping modes. Understanding what will happen after taking
a decision can enable us to measure the utility of a decision and adjust the policies of the decision maker.
We see the simulation as a task of generating evolutionary attributes given the necessary information,
i.e., order information and shipping mode. In particular, we utilize the LSTM decoder to autoregressively
generate evolutionary attributes. Using the fused embedding zn, the decoder sequentially generates the
latent representations of changes in order status. Formally, we generate the embedding zE

e,n of the eth order
status attribute of the order n by:

zE
e,n = LSTM(zn,zE

<e,n), (7)

where zE
<e,n denotes the embedding of the order status attribute from 1st to (e−1)th. Finally, a dedicated

predictor is used to predict the value of a specific order status attribute. Formally, given the embedding
zE

e,n of the eth evolutionary attribute, let Pe be the dedicated predictor of eth order status attribute, the
generated/simulated value f̂ E

e,n of the eth order status attribute is given by:

f̂ E
e,n = Pe(zE

e,n). (8)

Final Optimization Objective of Simulator. The simulator’s ability to accurately reflect real-world
dynamics is essential for reliable analysis and informed decision-making. To ensure fidelity, we leverage
real-world historical data as ground truth to train the model. Each order status is optimized by minimizing
the following objective function:

LS =
T

∑
e=1

N

∑
n=1

(
f̂ E
e,n − f E

e,n
)2
, (9)

where f E
e,n is the true value of the eth order status attribute of order n, and f̂ E

e,n is the predicted value.
By minimizing this loss function, the simulator learns to accurately reflect the dynamics of the system,
providing valuable insights and guidance for decision-makers.

4.2 Decision Maker via Policy Neural Networks
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Figure 3: Decision-Maker

The simulator captures system patterns from real data and can flexibly reflect the state changes of
the system under decision-making. However, simple observation is not enough to support the need to
reduce decision risks in a traceable way in the supply chain, so we propose a decision-maker model in
this section, which elevates the observation of the data set to the level of intervention. By modifying the
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strategy in a targeted manner and observing the counterfactual scenarios generated by the simulator, we
can finally obtain a highly capable decision-maker model. Specifically, as shown in the Figure 3, our
decision-makers combine the experience of historical decisions and the estimation of future benefits to give
the final optimal decision. With the linkage to the simulator, the decision-makers have more experience and
a clearer estimation of the benefits of the decision, and gradually iterate to learn better decision strategies.
Decision Network. We construct a learnable decision-making network M to generate the probability of
each potential shipping mode for each order n:

R̂n = M (F I
n ;Φ) = (R1

n, . . . ,R
|FD|
n ), (10)

where Rd
n denotes the probability to choose the dth shipping mode.

Historical Experience. History contains rich experience, and we give decision networks the ability to
learn from history. We encourage the selection of the shipping mode with the highest expected utility based
on historical data. For each order event n, the decision-maker observes the system state F I

n and outputs a
probability distribution R̂n. A decision f̂ D

n is then sampled from this distribution using the Gumbel-Softmax
reparameterization method (Jang et al. 2017) to ensure the entire process is differentiable.

To evaluate each possible decision, we compute the expected values of T Timely and T Pro f it for that
decision based on historical data. The reward Ed

n ( f D
d ) for taking decision f D

d is defined as:

Ed( f D
d ) = E[T Timely| f D

d ]+E[T Pro f it | f D
d ]. (11)

where E[T Timely| f D
d ] and E[T Pro f it | f D

d ] are the expectation of T Timely and T Pro f it when choose shipping
mode f D

d calculated from historical data. The decision network M is trained using the loss function, Lh,
which encourages selecting decisions with the highest expected reward:

Lh =−
N

∑
n=1

|FD|

∑
d=1

R̂d
n ·Ed( f D

d ), (12)

where R̂d
n is the probability of selecting decision f D

d for order n, obtained from the probability distribution
R̂d

n = M (F I
n ;Φ). This loss formulation directly optimizes the parameters Φ of M , training the network to

prioritize the shipping mode that maximizes the expected combined Ed( f D
d ) from historical experience.

Future Estimation. In addition to learning from experience, having a foresight into the future is also
necessary for making good decisions. We model the decision-making task as a contextual bandit prob-
lem (Bouneffouf et al. 2020) to estimate the future chosen shipping mode of each order. This approach is
compatible with scenarios where the computation of key measures is non-differentiable, such as retrieving
profit or other system-level metrics from historical data.

The decision network M can be regarded as a value network that estimates the overall batch reward
resulting from a particular shipping mode applied to an order. For each order n, the chosen shipping mode
also sampled from the distribution R̂n which can be understood as a normalized reward score:

f̂ D
d,n = GumbelSoftmax(σ(M (F I

n ;Φ))), (13)

Herein, f̂ D
d,n denotes the shipping mode chosen for order nth is dth shipping mode. For each order n, the

simulator predicts statuses f̂ E
e,n based on the inherent attributes F I

n and the selected decision f̂ D
d,n:

F̂E
n = S (F I

n , f̂ D
d,n). (14)

The simulator is pre-trained, with its parameters frozen during decision-making. This design ensures that
the simulator provides a stable and reliable risk-free environment, allowing us to freely explore and evaluate
a wide range of decisions without concern for real-world consequences. The orders are grouped according
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to the selected shipping mode f̂ D
d,n. We calculate the timely delivery rate and profit for each shipping mode

using the necessary information, including order information, selected shipping mode, and the simulated
order status. We use T Timely

d and T Pro f it
d to denote the timely delivery rate and the profit for those orders

that choose the shipping mode f D
d . The total reward for shipping mode f D

d in a batch is computed by:

Rd
batch = T Timely

d +T Pro f it
d . (15)

The value network is trained to minimize the prediction error of batch rewards by optimizing the
following loss:

Lf =
1
N

N

∑
n=1

|FD|

∑
d=1

(
R̂d

n −Rd
batch

)2
. (16)

Through iterative feedback, the decision-maker network refines its understanding of the relationship
between individual decisions and their impact on batch-level performance.
Combined Loss Function and Decision-Making. To ensure that the model can benefit from both historical
experience and future estimates, the overall loss function combines the objectives of the two levels:

LM = Lf +λ ·Lh, (17)

where λ is the hyperparameter that balances the importance of historical experience and future predictions.
Through the integration of two optimization objectives, we develop a multi-perspective decision network

M . This network effectively combines lessons learned from history with visionary predictions for the
future. Given the inherent attributes F I

n for each order n, M outputs a value for each potential decision f D
d ,

denoted as R̂n =M (F I
n ;Φ). This value can be interpreted as either the probability or the reward associated

with each shipping mode. The final decision f̂ D
d is determined by selecting the decision corresponding to

the maximum value output by the network:

f̂ D
d = arg max

f D
d ∈FD

M (F I
n ;Φ). (18)

5 EXPERIMENTS

5.1 Experimental Setting

Datasets Description. We conducted experiments on three real-world supply chain datasets: Dat-
aCo (Fabian Constante and Fernando Silva and António Pereira 2019), Global-Store (Anandaram G 2025),
and OAS (Vinay34 2024). These datasets cover different logistics and transportation settings, including
various shipping modes. Each dataset includes detailed order records, such as order information, selected
shipping modes, and delivery statuses, providing a realistic testbed for evaluating Sim-to-Dec. To ensure
a fair and consistent evaluation, each dataset is randomly divided into training, validation, and test sets in
an 8:1:1 ratio. This split helps mitigate potential temporal biases and improve generalization by avoiding
overfitting to chronological patterns. To further reduce overfitting risk, we apply standard regularization
techniques, including early stopping based on validation loss and ℓ2 weight penalties during training. Both
the simulator and the decision network are trained only on the training set, and the simulation performance
and post-decision metrics on the test set are reported. Each experiment is repeated five times with different
random seeds, and we report average results. The dataset statistics are summarized in the first row of
Table 1 in the form (#Features, #Instances).
Evaluation Metrics. For the simulator, we evaluate its accuracy by comparing the predicted order status
attributes (delay risk, delivery time, and on-time status) against the ground-truth values in the test set.
Accuracy is computed for each attribute individually, and an overall accuracy is reported as the unweighted
average across the three prediction tasks. This provides a holistic measure of the simulator’s fidelity. For
the decision-maker, we compare the average profit and on-time rate of test set orders. We normalize both
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Table 1: Comparison of simulation results. Overall represents the average accuracy of all evolutionary features.

Dataset Dataco (43, 165445) GlobalStore (27, 51290) OAS (22, 28136)
Method Markov Prediction Generation Sim-to-Dec Markov Prediction Generation Sim-to-Dec Markov Prediction Generation Sim-to-Dec

f E
risk 0.4978 0.7019 0.7024 0.9508 0.4961 0.8440 0.9366 0.9743 0.5100 0.7157 0.7149 0.7215

f E
time 0.1487 0.3395 0.3485 0.8851 0.1355 0.6767 0.8066 0.9255 0.0011 0.3706 0.3916 0.3985

f E
status 0.5040 0.8161 0.8156 0.9695 0.4934 0.8430 0.9355 0.9756 0.5068 0.7510 0.7503 0.7574

Overall ↑ 0.3835 0.6191 0.6221 0.9351 0.3750 0.7879 0.8929 0.9585 0.3393 0.6124 0.6189 0.6258

indicators to the [0, 1] range, and report two aggregate metrics: the absolute difference between the two
objectives (Diff), and their sum (Overall), to comprehensively assess decision quality.
Baseline Algorithms. To evaluate simulation methods, we selected three paradigms to simulate the supply
chain: (1) Markov-based simulation (Gagniuc 2017), representing traditional approaches that use state-
transition probabilities to model system dynamics; (2) Prediction-based simulation (Caruana 1997), which
adopts a multi-task framework to predict evolutionary features individually based on input conditions; and
(3) Non-autoregressive generation-based simulation (Gu et al. 2018), which generates multiple evolutionary
features simultaneously in one step. For simplicity, we refer to this paradigm as Generation in the following
sections. For decision-making based on simulation, we selected three paradigms: (1) Linear Programming
(LP) (Dantzig 2002), a traditional optimization method for solving predefined decision problems; (2)
Reinforcement Learning, where a DQN-based RL agent iteratively optimizes strategies through interaction
with the environment; and (3) LLM-based decision-making (Brown et al. 2020), which leverages the expert
knowledge embedded in ChatGPT-3.5, a large language model (LLM), to make decisions under a zero-shot
setting without task-specific fine-tuning.

5.2 Experimental Results

A Study of Generative Simulator Accuracy. As shown in Table 1, we compare our model with other
baselines on three real-world supply chain datasets. We have the following observations: (1) Sim-to-
Dec outperforms all baseline methods on all datasets. Specifically, in terms of overall accuracy, our
method improves the strongest baseline by 50.3%, 7.3%, and 1.1% in DataCo, GlobalStore and OAS
respectively. We attribute this to our unique insight that enables the simulator to sequentially reproduce
realistic changes to the system at a fine-grained level. (2) Compared with simulation methods based
on Markov chains, data-driven simulation has improved accuracy. For example, on the DataCo dataset,
prediction and generation and Sim-to-Dec have improved 61.4%, 62.2% and 143.8% respectively. This
shows that data-driven methods can mine the potential laws in the data to better model the system operation.

Table 2: Comparison of decision-making results.

Method DataCo Global-Store OAS
T Timely ↑ T Profit ↑ Diff ↓ Overall ↑ T Timely ↑ T Profit ↑ Diff ↓ Overall ↑ T Timely ↑ T Profit ↑ Diff ↓ Overall ↑

Real 0.5244 0.0364 0.4880 0.5608 0.3320 0.0848 0.2472 0.4168 0.4800 0.0000 0.4800 0.4800
LP 0.5162 0.5434 0.0272 1.0596 0.3552 0.6001 0.2449 0.9554 0.5037 0.1043 0.3994 0.6080
RL 0.5276 0.2071 0.3205 0.7347 0.2827 0.9326 0.6499 1.2153 0.4817 0.0000 0.4817 0.4817

LLM 0.5258 0.2459 0.2800 0.7717 0.3298 0.0439 0.2859 0.3736 0.4844 0.0000 0.4844 0.4844
Sim-to-Dec 0.5397 0.5637 0.0240 1.1034 0.3446 0.9278 0.5828 1.2724 0.4882 0.1611 0.3271 0.6493

Robustness Check of Generative Simulator against Distribution Shift. The dynamic complexity of the
real world means that the environment in which the system operates is constantly changing. Mining potential
patterns from data and being able to accurately simulate when the operating environment changes or is
disturbed is an ideal property of a robust simulator. We designed an experiment to verify the performance
of our method in this scenario. We repartitioned the DataCo dataset according to f E

time, so that the data
distribution of the training set and the test set shifted, as shown in Figure 4(a). We performed simulations
in this changing environment. As shown in Figure 4(b)-(e), we compared the f E

time distributions generated
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Figure 4: Simulation under distribution shift on DataCo dataset
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Figure 5: Ablation Study and Sensitivity Analysis

by different simulation methods with the distribution in the real test set. The experimental results show that
our method can still capture the underlying patterns of the data when the distribution shifts, and deduce
evolutionary variables that conform to the actual situation, verifying the practicality of our method.
A Study of Decision-Maker. We first compare the performance of different decision-makers when improving
key metrics at the same time. As shown in Table 2, we have the following observations: (1) Our method
shows the best performance when considering both the overall measure (Overall) and the gap between the
two measures (Diff). For example, compared with the strongest baseline, our method improves on overall
by 4.1% and 6.8%, and the Diff is reduced by 11.8% and 18.1% on the DataCo and OAS datasets. This
shows that the decision-maker we proposed has strong decision-making ability and can balance conflicting
optimization goals to achieve common improvement. (2) LP performs well on some datasets. However,
its performance is achieved by enumerating all possible strategies and their associated rewards on the test
set, rather than learning a generalizable policy during training. While this approach leverages more task-
specific information, it significantly limits the method’s generalization capability and results in substantial
computational overhead, making it impractical for large-scale scenario.

5.3 In-depth Analysis: Ablation Studies, Parameter Sensitivity, Computational Efficiency

Table 3: Time Cost of Simulator Training

Dataset Method Time/Epoch (s) # Epoch Total Time (s)

DataCo

Markov - - 53
Prediction 0.86 60 70
Generation 0.74 110 81
Sim-to-Dec 0.90 350 315

GlobalStore

Markov - - 14
Prediction 0.12 210 25
Generation 0.19 200 38
Sim-to-Dec 0.24 200 48

We evaluate the time complexity of our frame-
work and baseline methods. Tables 3 shows that
our simulator demonstrates competitive training
efficiency. Compared with lightweight but less
expressive baselines like Markov models, our
method achieves fine-grained learning in a rea-
sonable time, balancing accuracy and runtime
cost. Figure 5(a) and 5(b) show that decisions
based on historical experience and future esti-
mates work differently on different data sets, but
a combination of the two usually leads to better
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decisions. As shown in Figure 5(c) and 5(d), we use λ to balance the proportion of historical experience
and future estimates in decisions. As λ increases, the performance first increases and then decreases,
indicating that a suitable λ should be selected so that the decision can benefit from both perspectives.
For decision-making, our method requires only 1.2 seconds on the DataCo dataset and 0.2 seconds on
Global-Store, significantly faster than the LLM-based approach (1856s and 655s). LP methods take 8s
and 2s respectively, while RL is fastest (0.5s and 0.1s) but less effective in decision quality. Overall, our
approach offers a strong trade-off between efficiency and performance.

6 CONCLUSION

In this work, we propose a unified framework that tightly integrates a generative simulator with a feedback-
driven decision-maker to improve responsiveness in supply chain transportation. The simulator models
order dynamics through autoregressive learning, enabling fine-grained prediction of shipment evolution
under different transportation strategies. The decision-maker iteratively refines shipping mode selection
by combining historical patterns with forward-looking reward estimation, guided by simulated feedback.
This tight simulation–decision coupling overcomes the limitations of static models and manual heuristics,
providing enhanced flexibility and adaptability in dynamic logistics environments. Extensive experiments
on real-world supply chain datasets demonstrate the superiority of our approach in balancing timely delivery
and cost efficiency, even under distribution shifts. These results underscore the potential of our framework
for broader applications in logistics optimization and adaptive decision-making systems.
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