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ABSTRACT 

This paper presents initial insights into applying deep learning and big data analytics for assessing Weapon 

Combat Effectiveness (WCE) in dynamic combat environments. Traditional WCE models often rely on 

simplified assumptions and limited variables, restricting their real-world applicability. We address these 

limitations using datasets from integrated Virtual-Constructive (VC) simulation frameworks, combining 

strengths of defense modeling, big data, and AI. Our experiments focus on a case study with two opposing 

forces: Blue Force of seven F-16s, and Red Force of two surface-to-air missile units and a high-value 

facility. Using raw simulation data—filtered and enhanced to isolate key Measures of Performance —we 

trained a convolutional neural network to model nonlinear relationships and evaluate mission success 

probability. Initial findings demonstrate the model’s robustness in handling data noise and its potential to 

support decision-making through visualizations. Early results suggest that deep learning, when integrated 

with federated VC simulations, can significantly enhance WCE analytics. 

1 INTRODUCTION 

Although live simulation may appear to be the most realistic and desirable form of training or 
experimentation, it presents several significant limitations when used as a standalone solution. Live 
simulation refers to training exercises conducted in real-world environments using actual personnel and 
physical assets—such as aircraft, ships, weapons, and troops—operating under simulated conditions (e.g., 
mock threats, scripted scenarios, or inert ordnance). These simulations aim to replicate operational 

situations as closely as possible but involve high resource consumption and logistical complexity. Several 
factors make live simulations less practical: 

• Resource Constraints: Access to physical assets may be limited due to availability, maintenance 
schedules, or competing operational demands (Kirby et al. 2011). 

• Lack of Reproducibility: Unlike digital simulations, live exercises are difficult to repeat under 
identical conditions. This can lead to variability in training experiences across units and hinder 

standardization of instruction (West et al. 2013). 
• Cost and Safety Risks: Live simulations often entail significant financial costs and potential safety 

hazards. For example, the U.S. Department of Defense spent approximately one-third of its defense 
budget on training activities in 2012 (Summers 2012). 

• Training Transfer Issues: In some cases, skills or behaviors reinforced during live simulations may 
not transfer effectively or even be detrimental when transitioning to real combat scenarios 

(Summers 2012). 
 This research aims to demonstrate the efficacy of Virtual and Constructive (VC) simulations in 
generating rich datasets to evaluate Weapon Combat Effectiveness (WCE). WCE refers to the quantitative 
and qualitative assessment of a weapon system's performance in achieving its intended tactical or strategic 
goals under varying operational conditions. For instance, assessing the WCE of a surface-to-air missile 
might involve analyzing its hit probability against different aircraft types in various weather and electronic 

warfare environments. The study employs collaborative simulation environments integrating virtual 
simulations (for real-time, human-in-the-loop scenarios) and constructive simulations (for automated, 
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large-scale scenario generation) to facilitate this. These environments operate using Distributed Interactive 
Simulation (DIS) and High-Level Architecture (HLA) protocols (Lee et al. 2019), enabling interoperable 
and scalable simulation frameworks. 

By conducting multiple scenario playthroughs—manual in virtual simulations and automated in 
constructive simulations—the system generates extensive datasets suitable for both performance-driven 
(e.g., missile range, hit/miss ratio, timing) and judgment-driven (e.g., operator decision quality, tactical 
adaptation) analysis. These simulations will log various outputs, including simulation logs, human surveys, 
and text messages, offering a comprehensive view of the scenario dynamics. 

The collected data will then be processed using Machine Learning (ML) algorithms to detect patterns, 

identify key performance indicators, and develop predictive models of weapon performance. For example, 
by analyzing hundreds of engagements, ML can reveal under which conditions a weapon system's 
effectiveness drops, such as delays in operator response or environmental interferences. 

We can create terabytes/petabytes of data with limited expert human interactions to guide the proposed 
system. Our focus will be on self-play. Tesauro (1995) suggests using “lesson-and-practice” training, which 
was successfully implemented by the HOYLE system. This method follows a steady pattern of expert 

human play, called the lesson, coupled with long self-play periods called the practice (Epstein 1994). For 
this research's scope, our learning system's training will come from virtual and constructive simulations. 
The utilization of AI (Rabelo et al. 2018; Rabelo et al. 2021; Cortes et al. 2020) has the potential to capture 
relationships and determine an acceptable WCE. The case study utilized is based on the seminal work of 
Jung (Jung 2018; Jung et al. 2017; Jung et al. 2019). Jung (2018) presented a sophisticated framework that 
includes Big Data and VC Simulations to determine WCE. This paper will expand on previous work where 

linear regression was utilized and instead leverage deep learning to capture relationships for WCE. 
The remaining sections of the paper are organized as follows. Section 2 presents the case study 

employed in this paper, which utilizes VC simulation to model WCE. Section 3 details the computational 
model and the process for data generation. Section 4 outlines the deep learning framework that is trained 
on simulation outputs. Section 5 discusses the results, Section 6 concludes the paper, and discusses potential 
future work. 

2 CASE STUDY 

The case study implemented in this research builds upon the foundational work conducted by Jung (2018), 
which explored the use of Big Data and Virtual-Constructive (VC) simulations for modeling WCE. In the 
scenario, two opposing forces—Blue and Red—engage in a simulated combat operation. The Blue force 
comprises a squadron of seven F-16 fighter aircraft, tasked with executing an airstrike. The Red force is 
defended by two SA-8 TELAR surface-to-air missile (SAM) systems and a strategically significant core 

facility, which serves as the primary target of the Blue team. The mission objective for the Blue force is to 
successfully neutralize the Red team’s core facility while minimizing aircraft losses, thus simulating a real-
world operational tradeoff between mission success and force survivability. 

Jung’s original framework proposed leveraging a federated VC simulation architecture to collect large-
scale data across numerous combat scenarios, which could then be used to model WCE through 
conventional statistical techniques. While this approach marked a significant step forward in simulation-

based analytics, our research seeks to extend and significantly enhance it by incorporating deep learning 
methodologies. Specifically, we hypothesize that deep learning offers powerful capabilities for addressing 
the key analytical challenges inherent in WCE modeling—namely, the presence of noisy data, the need for 
extrapolation, the complexity arising from high-dimensional data spaces, and the nonlinear relationships 
among key operational parameters.  

Deep learning models, particularly when architected with sufficient depth and trained on extensive 

scenario data, can discover latent patterns and decision rules that traditional regression-based methods are 
ill-equipped to capture. Additionally, deep learning models are inherently well-suited for handling the 
“Variety” dimension of Big Data. This includes integrating structured data—such as numerical inputs from 
telemetry logs—and unstructured data—such as textual battlefield reports, audio recordings from mission 
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communications, and visual data from cockpit video feeds. By accommodating this heterogeneous data 
landscape, deep learning allows for a more holistic and nuanced analysis of combat effectiveness, reflecting 
quantitative performance metrics and qualitative expert assessments. Ultimately, this enhanced case study 

seeks to replicate the analytical framework developed in Jung’s model and to significantly advance it by 
integrating scalable, intelligent systems capable of learning from high-dimensional, noisy, and 
heterogeneous datasets. This transformation enables the development of next-generation decision-support 
tools for Weapon Combat Effectiveness (WCE), grounded in robust data analytics and artificial 
intelligence. In this scenario, the Blue team’s mission success is determined by its ability to destroy the Red 
team’s core facility while minimizing its casualties—a classic tradeoff between offensive effectiveness and 

operational survivability. A comprehensive sensitivity analysis was conducted to assess performance across 
a wide range of combat conditions. The hundreds of simulations scenarios were run five times to capture 
stochastic variation. Each simulation ran 345 seconds, offering a rich dataset for subsequent analysis. 

To quantitatively assess the outcomes of these simulations, the evaluation framework employed two 
key metrics commonly used in defense systems analysis: 

• Measure of Effectiveness (MOE): A Measure of Effectiveness represents a high-level outcome 

metric that reflects a mission's operational success. In this study, the selected MOE was the Blue 
team’s survival rate, as determined by the number of F-16 aircraft that remained operational at the 
conclusion of each mission scenario. This measure captures the overall effectiveness of the mission 
from a survivability perspective and aligns with strategic objectives such as force preservation and 
mission continuity. 

• Measures of Performance (MOPs): Measures of Performance are quantitative indicators that reflect 

the technical and tactical performance of specific system components or subsystems during mission 
execution. These are lower-level indicators that influence the MOE. Seventeen MOPs were used in 
the case study, capturing various operational attributes of the Blue and Red teams. Specifically, 
two MOPs were defined for the Blue team—the number of bombs released and the quantity of 
chaffs/flares deployed—while five MOPs were assigned to the Red team, including variables like 
fire control range, tracking accuracy, missile inventory, and response timing. These MOPs serve as 

critical inputs for modeling and understanding how tactical choices and system configurations 
affect mission-level outcomes. 

By combining these structured metrics with advanced deep learning techniques, the enhanced model 
provides accurate predictive analytics and deeper insights into the causal relationships between tactical 
inputs (MOPs) and strategic outcomes (MOE). This capability is essential for optimizing mission planning, 
weapon configuration, and operator training in future combat scenarios: 

 
1. Blue Team: The number of released bombs, with a potential integer range of 1 ≤ X1 ≤ 7. 
2. Blue Team: The number of chaffs and flares, with a potential integer range of 10 ≤ X2 ≤ 100. 
3. Red Team: The control fire range, with a potential float range of 1 ≤ X3 ≤ 10. 
4. Red Team: The control track range, with a potential float range of 1 ≤ X4 ≤ 20. 
5. Red Team: The difference between control fire and track range, with a potential float range of 0 ≤ 

X5 ≤ 19. 
6. Red Team: The control time between fires, with a potential float range of 5 ≤ X6 ≤ 60. 
7. Red Team: The number of missiles, with a potential integer range of 0 ≤ X7 ≤ 6. 
 
The training profile consists of two MOPs, one for each team: 
 

1. Blue Team: The observation error, with a potential float range of 0 ≤ X8 ≤ 100. 
2. Red Team: The reaction time, with a potential float range of 1 ≤ X9 ≤ 100. 
 
The operations plan consists of four MOPs for the Blue team and four MOPs for the Red team: 
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1. Blue Team: Attack method 1, with a potential binary value of X10 = (0,0). 
2. Blue Team: Attack method 2, with a potential binary value of X10 = (0,1). 
3. Blue Team: Attack method 3, with a potential binary value of X10 = (1,0). 

4. Blue Team: The number of attack flights, with a potential integer range of 1 ≤ X11 ≤ 7. 
5. Red Team: Deployment 1, with a potential binary value of X12 = (0,0). 
6. Red Team: Deployment 2, with a potential binary value of X12 = (0,1). 
7. Red Team: Deployment 3, with a potential binary value of X12 = (1,0). 
8. Red Team: The number of defense SAMs, with a potential integer range of 1 ≤ X13 

3 COMPUTATIONAL MODEL 

The case study was developed using a federated simulation architecture that integrates SIMbox and VR-
Forces to support virtual and constructive simulations. This environment builds on enhancements described 
by Kim et al. (2014a and 2014b) and enables the modeling of realistic air-to-ground combat scenarios 
involving dynamic interactions between opposing forces. The complete system architecture is illustrated in 
Figure 1. 

The Blue Team comprises multiple F-16 platforms, modeled using SIMbox simulators and constructive 

agents. These entities are built with source/user-defined C++ code, integrated with MÄK RTI (Run-Time 
Infrastructure), and utilize the DIS (Distributed Interactive Simulation) protocol for interoperability. Each 
F-16 simulation node represents a unit operating in a networked environment that mirrors real-world 
mission execution. 

The Red Team includes several ground-based constructive components: 
o Surface-to-Air Missile (SAM) systems modeled in SIMbox, 

o A core facility representing the mission's primary target, and 
o A support system developed in VR-Forces incorporates a data logger and HLA (High-

Level Architecture) interface for mission command and support operations. 
All simulation elements communicate through a DIS/HLA interoperability layer, which allows real-

time interaction and synchronization of the federated entities during each scenario run. 
Simulation outputs are recorded and stored in the Hadoop Distributed File System (HDFS) to support 

scalable data management across large scenario batches. Following each run, outputs are validated by a 
team of Subject Matter Experts (SMEs) to ensure fidelity and operational relevance. The validated data is 
then processed using a MapReduce framework, where: 

• The MapReduce key is defined as the Blue Team’s mission success, specifically destroying the 
core facility. 

• The MapReduce values include the F-16 survival rate and associated Measures of Performance 

(MOPs) recorded for each simulation instance. 
This federated environment enables the generation of statistical insights, such as probability maps and 

mission effectiveness evaluations, thereby supporting data-driven decision-making for combat mission 
planning and strategy refinement. 

A comprehensive statistical analysis was conducted following data normalization and the initial 
selection of Measures of Performance (MOPs). This included checks for multicollinearity, 

heteroscedasticity, and outliers, which were addressed using appropriate methods such as deleting variables 
or scenarios, Cook’s distance, and robust regression techniques. Heteroscedasticity was ultimately found to 
be absent, indicating consistent variance across the dataset and supporting the reliability of subsequent 
modeling steps. 

To identify the most predictive variables for the Weapon Combat Effectiveness Equation (WCEE), a 
stepwise selection using the Akaike Information Criterion (AIC) was employed. This resulted in a final set 

of ten MOPs: X1, X2, X3, X7, X8, X9, X10b, X11, X12a, and X12b. When assigned specific values, these inputs 
yielded a high Measure of Effectiveness (YMOE = 95.90). Statistical validation using t-tests and ANOVA 
confirmed the feasibility of these WCEE models. Further evaluation using MMRE and PRED supported 
model accuracy, enabling the comparison—and, when needed, ensemble development—of WCEEs. From 
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here, the optimal MOE and MOPs were extracted: YMOE = 95.90, X1 = 5, X2 = 10, X3 = 5.00, X7 = 3, X8 
= 10.00, X9 = 10.00, X10b = 1, X11 = 2, X12a = 0, and X12b= 0. 

During the attribute analysis phase, MOP5 (the difference between fire control and tracking ranges) 

was identified as a derived variable mathematically dependent on MOP3 and MOP4. While such derived 
metrics can introduce multicollinearity and violate assumptions of predictor independence, we deliberately 
included MOP5 in the exploration phase to evaluate its marginal contribution to prediction accuracy. This 
allowed the model to autonomously assess and eliminate redundant features during the Akaike Information 
Criterion (AIC)-based stepwise selection process. As expected, MOP5 was ultimately excluded from the 
final Weapon Combat Effectiveness Equation (WCEE), which aligned with standard practices in regression 

modeling and reinforced the robustness of the variable selection process. 
The final effectiveness values are presented as a probability map, which is meant to act as a visual aid 

for the command team to scan for optimal areas quickly. An example is shown in Figure 2. The map has 
two axes representing different Blue and Red forces' MOP values. 

 

Figure 1: Computational model for virtual constructive simulation. 

The probability map serves as a decision-support tool for the command team, enabling rapid 

identification of effective operational configurations. The horizontal axis represents selected Blue Team 
MOPs (e.g., X1, X3, ..., Xn), while the vertical axis represents varying Red Team conditions (e.g., X2, X4, 
..., Xm). Each cell on the map indicates the computed probability of mission success for a given combination 
of force attributes, with values ranging from low to high. 

High-probability zones (e.g., ≥90%) highlight favorable configurations for Blue Team operations, 
guiding tactical adjustments and force deployment strategies. Conversely, low-probability regions signal 

operational vulnerabilities under specific Red Team responses or environmental conditions. This visual 
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representation allows planners to intuitively assess performance trade-offs and optimize mission planning 
under complex, data-driven conditions. 

 

Figure 2: Example of MOE probability map based on MOPs influencing operations plan. 

4 UTILIZATION OF DEEP LEARNING 

Previous research on Weapon Combat Effectiveness (WCE), particularly the work by Jung (2018), laid the 

groundwork for modeling mission outcomes using structured data from Virtual-Constructive (VC) 

simulations and linear regression techniques. However, this approach presents several limitations that 

constrain the development of more intelligent and robust analytics. Specifically, four critical gaps were 

identified: (1) the exclusive reliance on structured data, omitting valuable unstructured sources such as 

audio, video, and mission communications; (2) the absence of methods for handling data noise, which is a 

core challenge in real-world, large-scale simulations; (3) the use of linear regression, which assumes 

linearity and leads to the exclusion of nonlinear but potentially important variables such as X13 (number of 

defense SAMs); and (4) the dependence on MapReduce, which in this case hindered flexible and efficient 

data exploration. 

This study presents initial experiments that overcome prior limitations by applying deep learning to 

raw big data generated from federated Virtual-Constructive (VC) simulations. Over 314,000 simulation 

entries were filtered to extract the most relevant Measures of Performance (MOPs), reducing dimensionality 

and improving training efficiency. MapReduce was excluded to enable more agile data processing, and 

controlled noise was added to test model robustness. The refined dataset was used to train a convolutional 

neural network (CNN) using MOPs as inputs. Literature searches in Scopus and other databases revealed 

no existing studies combining deep learning, WCE, big data, and VC simulations—underscoring the 

novelty of this work. 

In advancing beyond traditional regression techniques, CNNs were selected for their superior ability to 

manage high-dimensional, nonlinear, and noisy data characteristics intrinsic to WCE analytics. Unlike 

support vector machine (SVM) regression and boosting algorithms such as XGBoost, CNNs can 

automatically detect latent patterns, nonlinear dependencies, and feature interactions without requiring 

extensive manual preprocessing or feature engineering. In this study, CNNs generalized the heterogeneous 

data landscape well and captured local and global relationships among MOPs. 

While SVMs and XGBoost are widely regarded for their strong performance in structured tabular data, 

they often depend on meticulous hyperparameter tuning and risk underfitting or overfitting when key 

 

Blue Team Factors 

X1 X3 ∙∙∙ Xn 

0 1 0.1 0.5 0.9 1.3 ∙∙∙ 1.2 ∙∙∙ 4.8 

 

 

 

 
 

Red 
Team 

Factors 

 
X2 

0.2 48% 99% 13% 18% 23% 50% ∙∙∙ 100% ∙∙∙ 38% 

0.6 13% 18% 53% 59% 71% 99% ∙∙∙ 80% ∙∙∙ 21% 

1.0 0% 15% 99% 81% 76% 55% ∙∙∙ 75% ∙∙∙ 11% 

 
X4 

12 3% 67% 54% 64% 74% 87% ∙∙∙ 76% ∙∙∙ 32% 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ∙∙∙ ⁞ ∙∙∙ ⁞ 

28 34% 78% 59% 73% 79% 92% ∙∙∙ 94% ∙∙∙ 53% 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ∙∙∙ ⁞ ∙∙∙ ⁞ 

 
Xm 

1.4 15% 19% 57% 61% 73% 98% ∙∙∙ 82% ∙∙∙ 28% 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ∙∙∙ ⁞ ∙∙∙ ⁞ 

3.6 5% 69% 54% 68% 84% 97% ∙∙∙ 86% ∙∙∙ 42% 
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interactions are not explicitly modeled. By contrast, our CNN architecture—built and tested in the KNIME 

environment—achieved high predictive accuracy with minimal intervention. The final configuration, which 

used optimized learning rates, batch sizes, and Xavier-based weight initialization, achieved an average 

prediction error of just 0.11%. This result significantly outperformed previous models, including Jung’s 

linear regression-based approach, validating the choice of deep learning as the next step in WCE analytics.  
The KNIME environment was utilized to build the flow of the initial experiment using deep learning 

convolutional neural networks (Ibrahim and Rabelo 2021). KNIME is a data analytics platform that uses 
various modules to implement Machine Learning and Data Mining solutions, while requiring no 

programming from the user (and using R and Python can be enhanced). This usability is achieved through 
an intuitive workflow-based user interface. In addition, KNIME uses libraries to implement dozens of 
Machine Learning algorithms. Figure 3 shows the flow built for this experiment. 

 

Figure 3: Example of deep learning implementation. 

Several decisions and numerous trials were attempted to produce a deep learning configuration with the 
highest accuracy: 

 
• Architecture: The architecture selected consisted of four layers (one input layer, two dense layers, 

and one output layer). 
• First Dense Layer Features: The first dense layer uses ten neurons, a learning rate of 0.1, an 

activation function of the sigmoid (good for regression problems), and a Xavier type of 
initialization of weights. Xavier's initialization is recognized as excellent for deep learning and, in 

our case, provided excellent results (other kinds of initializations were tested, such as Sigmoid 
Uniform, Uniform, Relu, and Relu Uniform). As explained by Glorot and Bengio (2010), Xavier 
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initialization sets a layer’s weights to variates from a random uniform distribution that’s “bounded 
between: 

±
√6

√𝑛𝑖 + 𝑛𝑖+1
 

− where nᵢ is the number of incoming network connections, or fan-in, to the layer, and nᵢ₊₁ is the 
number of outgoing network connections from that layer, also known as the fan-out. 

• Second Dense Layer Features: The second dense layer uses ten neurons, a learning rate of 0.1, an 
activation function of the sigmoid, and a Xavier type of initialization of weights. 

• The Output Layer: it has only one output neuron indicating the level of probability and other 
parameters such as a learning rate of 0.1, a Uniform initialization, and the loss function was set to 
Sum of Square Errors, which is entirely appropriate for regression problems. 
 

For the optimization algorithm, gradient descent was the best. Gradient descent was combined with a 
line search, finding the locally optimal step size on every iteration (and we selected a search of 10-line 

search operations – this resulted in more time for training but assured a better result) (Ibrahim and Rabelo 
2021; Glorot and Bengio 2010; Goodfellow et al. 2016). Figure 4 provides details of the best architecture 
for this experiment. 

The next parameters to analyze and try were the batch size, the number of epochs, and the number of 
iterations. Batch size is the number of samples processed before the model is updated. The number of 
epochs is the number of complete passes through the training dataset. Finally, iterations are the number of 

parameter updates done on one input data batch. The best results were given with a minimum of 6 epochs, 
10 iterations, and a batch size of 20. 

The training was excellent for trials of 5 epochs, and the average prediction error was 0.11% for 
prediction samples. The results were excellent, and now we can try other things, such as interpolation. The 
heat maps of Figures 4 and 6 was reproduced, considering X1, X2, X3, X7, X8, X9, X10b, X11, X12a, X12b. 
Figure 4 and 5 display the heat map for MOP X1 and X12b (Blue Forces) vs. the entire universe of MOPs of 

the Red Forces. 

 

Figure 4: Heat map showing the impact of Blue Team MOP X1 (number of bombs released) on mission 

success probability or Measure of Effectiveness (MOE). 
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Figure 5: Heat map showing the impact of Red Team MOP X12b (e.g., specific SAM deployment 
configuration) on Blue Force mission success probability. 

5 RESULTS AND VALIDATION WITH SMES 

Figures 4 and 5 visually display the MOP versus the probability. The map represented in Figure 4 visualizes 
the impact of MOP X1—interpreted as the number of bombs released by the Blue Force, an outcome metric 
relevant to Weapon Combat Effectiveness (WCE), such as the probability of mission success or a composite 

Measure of Effectiveness (MOE). The Y-axis corresponds to discrete or sampled values of X1 across 
hundreds (or thousands) of simulated scenarios. The color gradient, ranging from yellow (low effectiveness, 
~15) to blue (high effectiveness, ~90), indicates the computed outcome score based on the deep learning 
model’s evaluation of each configuration. 
From a WCE perspective, this heat map is a decision-support visualization tool for mission planners and 
analysts. The layered horizontal bands represent how effectiveness outcomes vary with changes in the 

quantity of ordinance released, allowing users to: 
• Identify threshold effects: e.g., certain values of X1 might suddenly yield higher mission success 

rates (transition from yellow to blue). 
• Evaluate diminishing returns: e.g., effectiveness plateaus despite increased bomb deployment, 

which could signal inefficiency or unnecessary resource expenditure. 
• Assess robustness: The alternating bands may indicate that mission success depends not solely on 

X1 but on its interaction with other variables (e.g., tactics, Red Force deployment), reinforcing the 
importance of multi-MOP optimization. 

• Support decision trade-offs: By analyzing which values of X1 result in acceptable effectiveness 
without overcommitting resources, commanders can balance tactical aggressiveness with risk and 
resource constraints. 

Visual regularity also highlights that X1 alone is not a sufficient determinant of success; rather, it must 

be evaluated with other MOPs. As such, this heat map is a diagnostic tool in the broader WCEE 
development process, offering an empirical foundation for refining tactics, force configuration, and loadout 
planning under varied operational conditions. 

On the other hand, the influence of MOP X12b—associated with a specific Red Team deployment 
configuration—on a WCE-related outcome, such as the probability of Blue Force mission success or a 
modeled Measure of Effectiveness (MOE – See Figure 5). The Y-axis represents the full range of simulation 
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instances or configurations involving different values of X12b, while the color gradient (from yellow to dark 
blue) indicates the output metric on a scale of 15 (low effectiveness) to 90 (high effectiveness): 

• X12b likely corresponds to a binary-coded or categorical decision variable indicating whether a 

particular Red Team SAM or defensive strategy was deployed. Even if it is a binary variable (e.g., 

0 or 1), it may have been simulated across many different contexts, reflected in the many lines on 

the Y-axis. 

• Color Bands and Effectiveness Zones: 

o The dominance of blue hues near the middle of the map suggests that scenarios where X12b 

is active (or in a specific configuration) correlate with lower Blue Team effectiveness, that 

is, the Red Team defense under this deployment significantly disrupts the mission success. 

o Conversely, lighter zones (yellow-to-green) toward the upper and lower sections suggest 

more favorable WCE outcomes when X12b is inactive or configured differently. 
This heat map serves as a critical situational awareness tool in mission planning and weapon system 

configuration: 

• Red Team Defensive Impact Assessment: The visualization enables planners to quantify how 

specific Red Team deployments (e.g., X12b = 1) diminish mission effectiveness, providing essential 

input into countermeasure planning, flight path adaptation, or decoy deployment. 

• Threat Identification & Avoidance: Lower MOE (darker blue) areas highlight high-threat 

environments that should be avoided or neutralized early in the mission timeline. This supports 

prioritizing the targeting of Red SAM systems during early strike phases. 

• Tactical Adaptation: The Blue Team can use this intelligence to reconfigure attack packages (e.g., 

increase chaff/flares, change formation, or alter entry angle) specifically when X12b-type 

defenses are detected or anticipated. 
When viewed alongside the heat map for X1 (number of bombs released), Figure 5 for X12b provides 

cross-dimensional insight: 

• X1’s map shows the offensive control variable from the Blue Force side. 

• X12b reflects defensive influence from the Red Force. 
To validate the model’s outputs, we consulted Subject Matter Experts (SMEs) and assessed the model’s 

extrapolation capabilities by adjusting the ranges of X1 (number of bombs released, 1–6) and X7 (number 
of missiles, 1–7). As illustrated in Figure 6, variations in X11 (number of attack flights) led to anticipated 
shifts in the probability distribution, with scenarios involving fewer flights showing higher mission 
effectiveness under certain configurations. The appearance of a yellow band near the top of the map 

highlights a decline in effectiveness when X1 exceeds its operational limit (capped at 5). Despite this 
infeasibility, the deep learning model successfully extrapolated outcomes while maintaining valid 
probability bounds between 0 and 1, demonstrating robustness and reliable behavior in edge cases. 

 Upon reviewing these probabilities with our SMEs, they agreed with the results. They explained that 

there are more opportunities with other types of military problems, such as package selection. They 

confirmed that it was essential to use unstructured and structured data together. Dealing with noise, 

nonlinearities, and extrapolation capabilities is essential in this WCE domain. 
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Figure 6: The distribution of probabilities according to the variations of input X11 going from small to 
large values. 

6 CONCLUSIONS 

This paper revisits the Weapon Combat Effectiveness (WCE) model by Jung (2018), addressing 

its limitations through advanced data-driven techniques. We went beyond the original regression 

model and raw data by training and testing deep learning architectures capable of capturing 

nonlinear dynamics and uncovering hidden patterns in high-dimensional simulation data. The 

resulting neural networks successfully predicted Measures of Effectiveness (MOEs) and 

reproduced—while enhancing—the original probability maps. 

A key outcome was demonstrating how deep learning overcomes the constraints of linear 

models, particularly in handling noise, unstructured data, and nonlinear relationships. This allowed 

the inclusion of previously excluded variables like the number of defensive SAMs (X13), 

improving prediction accuracy and interpretability. 

Future work will focus on integrating package selection optimization, where weapons, 

missiles, and bomb loadouts are dynamically configured to improve mission success, building on 

Multi-Model Predictive Control (M2PC) principles (Rabelo et al. 2000). Adopting transformers 

and large language models (LLMs) presents new opportunities to fuse multimodal inputs (e.g., 

cockpit images, mission logs, and debrief texts), enhancing WCE analytics through richer 

contextual understanding and improved adaptability. 
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