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ABSTRACT

Production planning and control (PPC) is challenged by the complex and volatile environment manufacturers
face. One promising approach in PPC is the application of Reinforcement Learning (RL). In RL, an intelligent
agent is trained in a simulation environment based on its experiences. The behavior of the agent is trained
by defining a reward function that provides positive feedback if the agent performs well and negative
feedback if it does not. Accordingly, the design of the reward function determines the impact RL can
have. This article deals with the challenge of how to design a suitable reward function. To do so, 8 design
principles and 21 design parameters were identified based on a structured literature review. The principles
and parameters were utilized to systematically derive reward function alternatives for a given PPC task.
These alternatives were applied to a use case in rough production scheduling being a sub task of PPC.

1 INTRODUCTION

More than ever, the environment producing companies are exposed to can be described as volatile, uncertain,
complex, and ambiguous (VUCA) (Heesen 2024). Globally, economic tensions and upcoming tariffs are
forcing manufacturers to rethink their supply chains and production networks. The wars in the Ukraine
and in the Middle East cause uncertainty and disrupt supply chains regularly. Additionally, increased and
unpredictable customer requirements demand more complex production systems that can adapt to the needs,
as the automotive industry currently demonstrates in their transformation process from combustion engines
to electrified vehicles. Moreover, some important industries naturally have complex production systems,
such as the semiconductor industry or participants in the circular economy. Accordingly, manufacturers
must make complex planning decisions with growing frequency. Manufacturing companies must find
answers in this tense situation to maintain market competitiveness and guarantee economic sustainability.

One of the key enablers to reach a flexible and adaptable production system that can handle the VUCA
world is a suitable production planning and control (PPC) (Esteso et al. 2023). PPC encompasses a range
of strategic, tactical, and operational activities essential for managing production environments. Strategic
PPC activities include tasks such as sales planning and the configuration of the production network (Schuh
et al. 2012). They have a long-term planning horizon. Tactical activities include, e.g., process planning
or production system planning and have a mid-term planning horizon (Schuh et al. 2012). Operational
activities focus on short-term planning horizons, addressing specific customer orders, like order management
and order dispatching (Schuh et al. 2012). PPC generally aims to ensure optimal capacity utilization with
high adherence to delivery dates, minimal tied capital, and low procurement costs (Kellner et al. 2022).

The challenges of PPC in a dynamic world lie in carrying out the tasks fast, adaptively, and with good
results (Wegmann and Zaeh 2023). To do so, the application of Reinforcement Learning (RL) from the
field of Artificial Intelligence shows promising results in several industries (e.g., Gros et al. (2020) in the
automotive industry and Wegmann et al. (2025) in the special machinery industry). In the context of this
publication, RL can be described as an autonomous agent interacting with a simulation environment to
learn a specified behavior (van Otterlo and Wiering 2012). The agent perceives the current state of the
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environment and performs actions according to a so-called policy (Sutton and Barto 2018). The process of
identifying an optimized policy for a given problem involves the agent receiving rewards or penalties based
on its actions (Sutton and Barto 2018). In PPC, an agent is, for example, rewarded for low inventories,
short throughput times, and a high delivery reliability. The rewards and penalties in the feedback loops are
defined within the reward function (Sutton and Barto 2018). The reward function plays an important role in
RL, as it crucially affects the effectiveness and efficiency of the overall approach. However, for a specific
task with a specific goal, there is an infinite number of possibilities to construct the reward function. The
function can incorporate and combine multiple KPIs and it can be mathematically formulated in accordance
with the designer’s preferences. To enable adaptive and flexible production systems that meet the challenges
of the VUCA world, this publication focuses on the application of RL in PPC and specifically focuses on
the design process of the corresponding reward function. This publication accordingly states the central
research question: How can the process of reward function design for RL in PPC be structured and
methodologically supported?

2 STATE OF THE RESEARCH

2.1 Challenges in Reward Function Design

The research question can be broken down into four challenges (CH) in the design of a reward function.
First, it is unclear which principles must be taken into account in reward function design, i.e., which
decisions must be addressed (CH1). While it seems straightforward that the architect of a reward function
has to decide which KPIs to incorporate in the function, other decisions also play an important role, e.g.,
the mathematical formulation or how to deal with unauthorized actions of the agent. Second, it is unclear
how the decision space for these principles can be structured (CH2), i.e., which parameters a certain
principle consists of. For the mathematical formulation, for example, multiple options exist, such as using
a discrete or a continuous function design. Also, the concrete expression of it must be defined, e.g., as a
linear function compared to an exponential one. Third, it is unclear how the structure of design principles
and parameters can be translated into concrete reward functions. Accordingly, the design phase must be
methodologically supported (CH3) (Jaensch et al. 2022). The solution space resulting from CH1 and
CH2 can become quite large and practitioners as well as scientists need a procedure to navigate through it
in a structured way. Last, it is unclear how different reward function design alternatives impact the PPC
task’s performance (CH4). On the one hand, an analysis should be carried out to derive generally valid
statements on the design procedure. Initial studies, for example, already showed that exponential reward
function definitions could be superior when gradient-based RL optimization algorithms are applied (Kuhnle
2020). On the other hand, the structured identification and evaluation of possible reward functions for a
certain use case should lead to the identification of a reward function that provides good results.

2.2 Related Work

A structured literature review was carried out to identify relevant publications in the field of reward function
design for RL in PPC. The procedure of the literature search is based on the methodology presented by ? for
the systematic identification and classification of relevant literature. After defining the search framework,
literature sources were selected, which are supplemented by further works using backward and forward
searches (?). The search was conducted in Scopus in April 2025 and combined the domains of PPC (by using
the keywords "production", "manufacturing", and "assembly"), RL (by using the keyword "Reinforcement
Learning"), and reward function design (by using the keywords "reward" and "design"). The results were
restricted to the subject areas of computer science and engineering. Only publications in English language
and with open access availability were observed. Additionally, the results were restricted to the years
2015 to 2025. The search resulted in 357 documents overall for which a title and abstract screening was
performed. Publications that could be assigned to the domains mentioned above (PPC, RL, and reward
function design) after the first scan were included. Explicitly, publications that focused on application fields
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outside of production (e.g., control of smart energy grids), outside of PPC (e.g., application in robotics or
computer-aided design), and on the elaboration and comparison of specific optimization algorithms (e.g.,
advancements in Q-learning), were excluded. Additionally, articles that were not published yet and still in
press were excluded. This first screening procedure resulted in 63 relevant publications for which a full
paper analysis was performed. Five of the 63 publications were not accessible in full. If a publication
addressed at least one of the four challenges mentioned above, it was included. Otherwise it was excluded.
This resulted in 12 relevant publications. They are briefly described below and characterized according to
the challenges CH1 to CH4.

Kuhnle et al. (2019) stated generally applicable modeling guidelines for reward function design, e.g.,
that multiple targets can be integrated by linear combinations (CH3). Ou et al. (2019) evaluated the impact
of five different reward functions based on a simulation study (CH4). They mainly focused on different
KPIs to be incorporated, e.g., the end-of-line output and the machines’ production efficiency. Hillebrand
et al. (2020) highlighted the importance of a reward function design methodology and roughly presented
aspects to be considered. These aspects include, e.g., the sparsity of the reward (CH1). Jeong et al.
(2021) utilized RL in material handling task assignment and route planning. They roughly considered
different reward principles (CH1) but did not specify their parameters or investigate their influences on the
overall performances of the tasks. Kuhnle et al. (2021) applied RL for the adaptive control of production
systems. In their reward module, multiple possible reward functions were defined and they were applied to
a use case in the semiconductor industry (CH4). The authors mainly distinguished between the definitions
of sparse and dense reward functions and provided some examples (CH1 and CH2). Lamprecht et al.
(2021) optimized maintenance scheduling by applying an RL approach. They defined a trivial and a more
sophisticated reward function and compared them experimentally (CH4). Zhou et al. (2021) investigated
the influence of different reward function designs on the performance of a production scheduling system.
Specifically, the authors defined four KPIs to be optimized based on experiments: makespan, utilization,
energy consumption, and balanced workloads. However, while a first glimpse on the design principles (CH1)
was provided, other principles and their parameters were not investigated. Jaensch et al. (2022) addressed
the challenge that reward functions are often defined from scratch without a standardized procedure. They
proposed a test-driven development of RL, and reward functions specifically. The central idea of this
approach is to validate reward function designs in small iterations by successfully applying test cases (CH3
and CH4). Rinciog and Meyer (2022) proposed a framework for standardizing RL approaches. The authors
elaborated on some design principles and their parameters (CH1 and CH2), e.g., on the timing of reward
distribution and on the shape of the function itself. Tang et al. (2023) proposed reward function categories
in their approach to support the design process. The authors mapped certain scenarios, e.g., the fulfillment
of an order, to fuzzy reward formulations, e.g., a "huge positive" reward (CH3). The fuzzy formulations
were then translated to a discrete reward function design. Panzer et al. (2024) investigated the application
of RL to select appropriate heuristics in production control. They discussed some aspects in reward function
design that could affect the performance of the production control tasks, e.g., the normalization of rewards
(CH1). Additionally, they provided some methodological insights on how to shape the reward function,
e.g., by conducting a sensitivity analysis (CH3). Serrano-Ruiz et al. (2024) applied RL to a job shop
scheduling problem. The authors discussed how design decisions regarding the reward function could
influence the RL agent’s behavior, e.g., the combination of multiple objectives or the importance of local
rewards (CH1 and CH3). The evaluation of the publications in regard to the fulfillment of CH1 to CH4 is
summarized in Figure 1.

2.3 Need for Action

Regarding CH1, the publications mentioned above show that several works already emphasize the importance
of principles for reward function design. However, they are only partially discussed and are never summarized
holistically or in a structured way. Most of the works focus on reducing the sparsity of the rewards, aiming
for a dense reward function. Also, the next challenge, detailing what the solution space of these principles
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Figure 1: Fulfillment of the challenges CH1 to CH4 in current literature.

looks like (design parameters, CH2), is rarely elaborated. Only one publication exists that provides a
methodology to design a good reward function (CH3). However, Jaensch et al. (2022) do not incorporate
design elements and their ranges specifically. Some researchers already conducted experimental comparative
studies (CH4), but never in combination with a structured approach resulting from CH1 to CH3. To close
the research gap, this publication aims to adress CH1 to CH4 holistically.

3 REWARD FUNCTION DESIGN

3.1 Scientific Approach for Reward Function Design

To meet the challenges and the need for action mentioned above, this publication pursues a five-step
research approach of a morphological method (Zwicky 1967). The approach aims at the identification
and investigation of the total set of possible configurations that solve a given problem statement. This
set of configurations is referred to as a morphological box. Accordingly, the morphological box in this
publication identifies possible configurations in reward function design and supports in identifying good
reward functions. The approach of Zwicky (1967) starts with the formulation of the problem under
consideration, which is the definition of possible reward function designs in RL in PPC and the selection
of good ones among them. The second step lies in the identification and definition of the dimensions and
corresponding value ranges of the problem. The dimensions are referred to as design principles and the
value ranges as design parameters in this publication. For the identification of these, a literature analysis
according to Blessing and Chakrabarti (2009) was carried out using similar key words and selection criteria
as in Section 2.2. For each publication, the design principles and parameters were extracted. In the third
step, the morphological box was constructed, consolidating all of the design principles and parameters
from the individual contributions and, thus, summarizing all the potential design approaches in reward
function design. In the fourth step, all of the solutions, i.e., design principles and parameters, which are
contained in the morphological box, were closely analyzed and evaluated regarding the impact on the
initial problem statement. In step 5, the possible solutions were selected and operationalized. To do so,
an application guide was constructed based on Design of Experiment (DoE) approaches. (Zwicky 1967)
The corresponding key result (R), namely the morphological box (R1) and the application guide (R2), are
described in the following section.
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3.2 R1: Morphological Box for Reward Function Design in PPC

The first scientific result is represented by the morphological box for reward function design in PPC based
on step 1 to step 4. As mentioned, the morphological box is structured into design principles and design
parameters. A design principle corresponds to the element of a reward function that can be varied in the
process of constructing the reward function. One example is the timing of the reward distribution. A design
parameter corresponds to the expression of a certain design principle. The timing of the reward distribution
can, for example, be dense (reward is provided after each action of the agent), sparse (reward is provided
after multiple actions or at the end of a training episode), or a combination of both. Table 1 gives an
overview of the results. The classification was carried out based on the work of Janssen and Gray (2012)
and extended by the findings of the literature search. For each design principle and parameter, exemplary
references are provided. The design principles and corresponding parameters are described in detail in the
following. The design principles are highlighted in bold and the design parameters in italics.

Table 1: Morphological box for reward function design in PPC.

Principle (P) Parameter Exemplary References

P1 Logistical KPIs

Order-related (Liu et al. 2020), (Park et al. 2020), (Nasuta et al. 2024)
Resource-related (Waschneck et al. 2018), (Nasuta et al. 2024)
Global (Ou et al. 2019), (Liu et al. 2020), (Samsonov et al. 2022)
Combined (Zhou et al. 2021), (Kuhnle et al. 2022), (Valet et al. 2022)

P2 Timing
Dense (Samsonov et al. 2022), (Valet et al. 2022), (Nasuta et al. 2024)
Sparse (Kuhnle et al. 2021), (Samsonov et al. 2022), (Nasuta et al. 2024)
Combined (Lang et al. 2020), (Liu et al. 2020)

P3 Function definition
Continuous (Zhou et al. 2021), (Samsonov et al. 2022), (Nasuta et al. 2024)
Categorical (Kuhnle et al. 2022), (Samsonov et al. 2022), (Valet et al. 2022)

P4 Function progress
Exponential (Kuhnle et al. 2022), (Samsonov et al. 2022), (Nasuta et al. 2024)
Polynomial (Park et al. 2020), (Samsonov et al. 2022), (Valet et al. 2022)

P5 Value range
Positive (Kuhnle et al. 2021), (Zhou et al. 2021), (Kuhnle et al. 2022)
Negative (Park et al. 2020)
Combined (Samsonov et al. 2022), (Valet et al. 2022), (Nasuta et al. 2024)

P6 Normalization
Yes (Kuhnle et al. 2021), (Zhou et al. 2021), (Kuhnle et al. 2022)
No (Park et al. 2020), (Samsonov et al. 2022), (Valet et al. 2022)

P7 Dealing with illegal actions
Penalization (Kuhnle et al. 2021), (Kuhnle et al. 2022), (Valet et al. 2022)
Restricted action space (Lang et al. 2020), (Liu et al. 2020), (Park et al. 2020)
Action Masking (Samsonov et al. 2022), (Nasuta et al. 2024)

P8 Penalization of targets not achieved
Yes (Kardos et al. 2021), (Lang et al. 2020), (Valet et al. 2022)
No (Ou et al. 2019), (Park et al. 2020), (Samsonov et al. 2022)

The first design principle is the selection of the relevant logistical KPIs to be incorporated into the
reward function. Logistical KPIs in the context of PPC are diverse. In this publication, they are categorized
into order-related, resource-related, global, and aggregated KPIs. An order-related KPI can be assigned
to a certain customer order and is, for example, the throughput time. A resource-related KPI can be
assigned to a certain production resource and is, for example, the utilization. A global KPI targets the
overall production system and is, for example, the delivery reliability. Finally, different KPIs can also be
combined. The second principle is the timing of the reward distribution. A dense reward is provided after
every action or time step. A sparse reward is only provided after each episode (Rinciog and Meyer 2022).
Some works utilize a combination of the two approaches, e.g., Lang et al. (2020) or Liu et al. (2020).
The function definition represents the third principle. A function can either be defined to be continuous
or categorical. Similarly, the function progress is either exponential or polynomial. The next design
principle deals with the value range of the reward function. A reward function is defined in a positive
value range (rewards are larger than 0), in a negative value range (rewards are smaller than 0), or covers
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Figure 2: Flow chart of the application guide.

both ranges in a combined approach. Some approaches utilize normalization, which represents another
design principle. Zhou et al. (2021) and Kuhnle et al. (2022) are two examples for this. This principle
can either be applied or not. How to deal with illegal actions represents an additional design principle.
Utilizing the reward function to restrict an illegal behavior of the agent results in a penalization of the
corresponding actions. Other approaches either directly restrict the action space to only legal actions or
apply action masking methods. The last design principle deals with the penalization of targets that are
not achieved. Lang et al. (2020) and Valet et al. (2022) are two examples for that. Again, this principle
can either be applied or not.

3.3 R2: Application Guide for Reward Function Design in PPC

After the morphological box was presented in Section 3.2, this section deals with the application of it to
support the process of reward function design, which refers to the fifth step of the morphological method.
The morphological box opens up a parameter space. From a user’s perspective, for each design principle,
one design parameter can be selected. The combination of all design parameters results in a concrete
reward function. However, there are some adjustments that are not covered in the morphological box. For
example, a linear reward function can have different characteristics with unlimited possibilities. Thus, the
application guide must combine a methodological approach with an experimental one, as most approaches
in the fields of Machine Learning and Artificial Intelligence do. To do so, methods from the DoE are
applied to the morphological box. The morphological box consists of 8 design principles with overall
21 design parameters. A full factorial experiment design would lead to 1728 possible combinations, not
including the integration of different characteristics, e.g., of different linear functions. Thus, an experiment
design that varies one factor at a time (OFAT) is suggested in this publication according to (Tanco et al.
2009). Additionally, the idea of reward shaping is incorporated. Reward shaping refers to adjusting the
reward function with the help of domain knowledge by adding additional, small rewards. The resulting
guide is summarized as a flow chart in Figure 2 and described in the following.

To begin the procedure, an initial reward function must be defined as a starting point. This reward
function is iteratively adapted according to the morphological box (R1). When applying the idea of varying
OFAT, only one design principle from R1 is taken into consideration and the corresponding design parameters
are adjusted, leading to a new reward function. While the morphological box provides guidelines and
structures the solution space in reward function design, the configuration of a concrete reward function
is up to the user. For example, the user must decide which concrete polynomial function to select. The
above-mentioned idea of reward shaping can also be incorporated. In the next step, the constructed reward
function is applied to the use case under consideration and the results are documented. If the application is
successful and the performance of the RL approach is sufficiently good, the procedure of reward function
design can be finished. Otherwise, it is iteratively optimized according to the morphological box.
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Figure 3: Variables in the IaC process of the use case.

4 APPLICATION TO A USE CASE IN ROUGH SCHEDULING

4.1 Description of the Use Case

To demonstrate and evaluate the scientific results R1 and R2, they were applied to a use case. The use case
lies in rough production scheduling as part of order management in a company in the special machinery
industry. In order management, the machines must be scheduled efficiently through the steps of product
design and adjustment, manufacturing and procurement, assembly, as well as the initial installation and
commissioning (IaC) of the machines. The last step, IaC, is the focus of this application. In IaC, the
machines are placed on the shop floor and block a production area for the whole IaC process. The limited
availability of floor space during IaC leads to a scheduling problem. The relevant variables in the context
of IaC are described and summarized in Figure 3. Due to varying processing times in the previous steps,
the individual arrival times of customer orders in IaC are assumed to be stochastic. When arriving, an area
on the shop floor as well as the start and the end date must be defined. Some time can lie in between the
arrival of the machine and the start of IaC, which is called the waiting time. The overall processing time
between the start and end in IaC is the working time. Adding the initially described waiting time to that
results in the throughput time. If the customer due date lies before the end of IaC, that would result in a
delay. The production areas in IaC are assumed to be simplified as chessboard areas. They are divided
into modules, which are again divided into fields. In the use case, the available floor space consists of
six modules in total, with four fields each. The customer orders to be scheduled on the floor space have
an area demand of 1, 2, or 4 fields, as well as individual working times. Additionally, customer orders
have an orientation that determines whether an order with an area demand of 2 fields occupies the module
horizontally (H) or vertically (V). Figure 4 shows an example of the production areas for 5 modules with
4 fields each and scheduled orders with different floor space requirements and orientations.

4.2 Description of the RL approach

In this section, the RL approach to support decision-making in rough scheduling of orders in IaC is described.
This section especially focuses on the modeling of the action space, the state space, and the agent with the
optimization algorithm. The reward function is constructed afterward and evaluated utilizing R1 and R2.

The action space represents the agent’s room for maneuvers. The approach chosen runs through the
list of orders to be scheduled in ascending order and assigns each order to necessary fields within a module
and a start date within the planning horizon. Some actions are specifically defined as forbidden: the order is
scheduled before its arrival date in commissioning; the order can no longer be processed within the planning
horizon; the order is assigned to a field that is already occupied by another order during the processing
time. If the agent selects a forbidden action, there is no scheduling and no updating of the state space.
Instead, the agent must select a different action for this order. If necessary, the agent receives a penalty for
selecting a forbidden action, which is defined later in the approach. The state space provides the agent
with information about the environment and the consequences of its action. According to Samsonov et al.
(2022), it makes sense to use variables in the state space that are related to the indicators in the reward
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Figure 4: Scheduling problem in IaC modeled as chess board fields according to the production area supply
and demand.

function. Since multiple reward functions with different indicators were constructed and tested (Section
4.3), the state space is therefore adjusted slightly depending on the target variables in the reward function.
Some basic variables are part of the state space for all experiments and reward functions. These are the
occupancy of each field and module at each point in time within the planning horizon, the remaining number
of orders, and the specifications of all remaining orders in one episode such as arrival dates, processing
times, space requirements, and orientation requirements. Reward functions that only incorporate the waiting
time are additionally assigned the state variables mean waiting time of already scheduled orders and the
waiting time of the last scheduled order. Reward functions that only incorporate the delay or on-time
delivery are assigned the state variables delay of the last scheduled order and due date of the next order
to be scheduled. Reward functions that combine the two optimization goals are assigned all of the state
variables from above combined. The individual components of the state space are scaled to the interval
[0, 1] using the min-max normalization function (García et al. 2015). The optimization algorithm used
in this approach was a Proximal Policy Optimization (PPO) algorithm implemented in the Python library
Stable Baselines3. For the hyper parameters, the mini batch size was set to 32 and the number of epochs
when optimizing the loss was set to 3. The other hyper parameters were set to a default value. Each
training episode consisted of 30 subsequent orders that were randomly drawn from a data base of 10,971
orders. To evaluate the performance of the system, five benchmark data sets from different time horizons
in the overall data set were extracted. Each of them consisted of 30 consecutive orders that were placed
between January 2014 and March 2021. Thus, various scenarios of high and low production volumes as
well as of different product variants during that time interval were covered in the evaluation process. For
each of the benchmark data sets, 10 schedules were planned by the trained RL agent to level for stochastic
effects in choosing an action. Consequently, 50 schedules were created by each RL model that served
as a basis to evaluate the key performance indicators. From an application perspective, the overall goal
was to minimize the waiting time which directly affects the overall throughput time. Additionally, the
scheduling aimed to maximize the on-time delivery rate.

4.3 Application of the Methodology

According to the application guide R2, an initial reward function was chosen to serve as a basis for the
upcoming methodological steps:

r1 =


1, if waiting time = 0
0.5, if 0 < waiting time <= 0.3
0, if waiting time > 0.3

According to the morphological box R1, it only incorporates the waiting time as a logistical KPI
(P1). The timing can be defined as dense, since the reward is distributed for each scheduled order (P2).
The function is defined categorical (P3), making a distinction into a polynomial or a exponential function
obsolete (P4). The value range is positive (P5) and the function is normalized (P6). Last, illegal actions (P7)
or missing a target KPI (P8) are not penalized. From hereon, the reward function was adjusted utilizing the
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Figure 5: Excerpt from the results of the application of different reward functions to the use case.

design principles and parameters from R1 step by step. To keep the example easy to understand, the first
two iterations are described in detail. These addressed the principles of function definition and progress
(P3 and P4) as well as the timing of the reward distribution (P2). The other principles and parameter
variations are summarized afterward and the final results are presented.

Function definition and progress. First, the design principles P3 and P4 were addressed by introducing
a linear function (r2), a squared function (r3), and an exponential function (r4). They are specifically defined
as:

r2 = 1−waiting time

r3 = (1−waiting time)2

r4 =−1+ eln(2)·(1−waiting time)

According to the idea of OFAT in R2 and the morphological box in R1, the logistical KPI to be
considered is still just the waiting time (P1), the timing remains dense (P2), the value range of the reward
remains positive as the waiting time ranges from 0 to 1 (P5), the values remain normalized (P6), and no
penalization is carried out (P7 and P8). The application of these reward functions to the use case showed
that r3 provided the best results compared to r1, r2, and r4. r3 resulted in a mean on-time delivery of around
48 % and a mean waiting time of 16 days. Accordingly, r3 serves as a candidate for further optimization.

Timing. In the next iteration, P2 was varied. Since the candidate r3 from before is defined as a dense
reward function, sparse reward elements are integrated into the function that only reward the agent at the
end of an episode. The sparse reward element uses the average waiting time in the created schedule as a
logistic KPI and is integrated into the function with different weights. The sparse element and the resulting
reward functions are defined as:

rsparse = (1−mean waiting time)2

r5 = 0.5∗ r3 +0.5∗ rsparse

r6 = 0.25∗ r3 +0.75∗ rsparse

r7 = 0.75∗ r3 +0.25∗ rsparse

The waiting time is still the only KPI to be incorporated (P1), the function definition remains squared
(P3 and P4), the values of the reward function are still positive (P5) and are normalized (P6). Also, no
penalization is taking place (P7 and P8). The application to the use case showed that the introduction of the
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sparse rewards did not led to an improvement of the overall performance. All three new reward functions
led to worse results compared to r3.

Following the same procedure, also the influence of the value range (P5) and thus normalization (P6) as
well as the penalization of illegal actions was observed in experiments (P7). An overall target dimension to
be achieved could not be provided in the use case and was, thus, disregarded (P8). The same structure was
then first applied to reward functions that incorporate the on-time delivery in the reward function and second
to reward functions that combine the waiting time and the on-time delivery in the reward function (P1).
Running through the methodology and carrying out all the experiments resulted in 117 reward functions
overall that were applied to the use case. An excerpt of the results is presented in Figure 5.

Different findings can be derived from the results. First, it can be seen that the function definition has
only a minor influence on the overall performance of the agent, as r1, r2, r3, and r4 are very close together.
The introduction of a sparse element did not lead to better results, as r5, r6, and r7 show. All of them
perform worse than their solely dense variant r3. Additional experiments were carried out with reward
functions that had no dense component at all (r8, r9, and r10) leading to even worse results. Furthermore,
the introduction of strong penalties on wrong actions did not improve the quality of the results but affected
them strongly negative, as r11 and r12 show. Finally, the value range of the reward function was also
varied. Small variations did not affect the performance while strong increases (from a value range of [0,1]
to [0,16] of the reward function in r13) also led to worse results. Overall, the best value for the KPIs
waiting time and on-time delivery is provided by the cubical defined reward function without punishment
of impermissible actions rmax = (1−mean waiting time)3.

Figure 5 illustrates that in the course of the iterative process, reward functions were created that lead
to an improvement in the logistical KPIs. The difference between good and bad reward function designs is
shown by a reduction in waiting time from 42.3 to 12.8 days and by an increase in delivery reliability from
13.5 % to 49.5 % when comparing the rmax to the worst reward functions in the exemplary experiments of
Figure 5. When being compared to the initial reward function r1, rmax still shows a reduction in waiting
time from 16.3 to 12.8 days and an increase in on-time delivery from 42.7 % to 49.5 %. These results
emphasizes the importance of a methodological approach to reward function design.

5 SUMMARY, DISCUSSION, AND OUTLOOK

This publication aimed to support the design of reward functions in RL approaches applied to PPC tasks.
By identifying and structuring design principles and corresponding parameters within a morphological
box, challenge (CH) 1 and CH2 were successfully fulfilled. Additionally, a methodology to apply the
morphological box in the form of a user guide was provided, addressing CH3. Various reward functions
resulting from the approach were then applied to a use case, thereby fulfilling CH4. However, some
limitations were identified. First, the application was limited to a single use case in rough production
scheduling. Other PPC tasks, e.g., order dispatching, with even more complex scenarios, should also be
considered in future works. The use of OFAT as the experimental design does not necessarily yield fast and
optimal results and could be improved by employing more advanced approaches, such as factorial designs
according to Fisher or Taguchi (Tanco et al. 2009). Furthermore, the design principles and parameters
in the morphological box were based solely on a literature review, which means that innovative design
choices not published were not incorporated. Thus, expert knowledge could enhance the results in future
works. Expert knowledge also remains essential when applying the approach, e.g., for deriving specific
exponential functions or defining the penalization of false actions. Additionally, the interplay of reward
function design with other RL design elements (action space, state space, and the optimization algorithm)
was not addressed. As the effectiveness of the optimization algorithm can be affected by the function
progress (Kuhnle 2020), for example, these intercorrelations should be investigated. Moreover, the interplay
of these design elements with a validated simulation environment should be further examined, as proposed
by the works of Belsare et al. (2022) and Hua et al. (2022). Finally, the experimental approach involved
high computational costs and significant manual effort. These aspects scale with the complexity of the use
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case. A sensitivity analysis could be carried out to identify the parameters that have the greatest impact on
the performance of the approach. Variation of these parameters should then be the focus of the analysis.
By incorporating these future research directions, RL in PPC can be taken to the next level and could
potentially lead to more robust and resilient manufacturing organizations.
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