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ABSTRACT 

The complexity of job shops arises from variable product routing, machine reliability, and operator learning, 
requiring intelligent scheduling strategies. Traditional models rely on static rules such as first-available 
assignment, often ignoring dynamic processing times and learning effects. This paper proposes a Data-
Driven Job Shop Scheduling (DDJSS) framework that dynamically selects machines based on real-time 
resource status. The framework is tested in FlexSim under four scenarios: (1) traditional first-available 

assignment, (2) random assignment, (3) DDJSS, and (4) minimum processing time without learning. 
Performance is evaluated using waiting time, queue length, throughput, work-in-process (WIP), utilization, 
and tardiness. Results demonstrate that DDJSS significantly improves workload balance, reduces queues, 
and minimizes WIP. The throughput increased by over 144% and 348%, for some exemplary jobs, 
compared to the traditional scenario. This study highlights the value of integrating learning behavior and 
data-driven assignments for improving decision-making in flexible job shop environments. 

1 INTRODUCTION 

Job shop scheduling has long been a pivotal concern in optimizing manufacturing systems due to its 

inherent complexity and high impact on production efficiency. In job shops, multiple product types follow 

unique routing sequences through different machines, often with dynamic arrival times and machine 

breakdowns. One critical factor that exacerbates this complexity is resource uncertainty, which refers to 

unpredictable variations in machine availability, operator performance, and processing times due to 

learning effects, maintenance schedules, or external disruptions. Accurately identifying and mitigating 

these uncertainties is essential for maintaining consistent throughput and reducing job tardiness.  Arisha et 

al. (2001) emphasized that the combinatorial nature of job shop problems often makes them NP-hard and 

difficult to solve with traditional methods. This complexity has spurred extensive research to improve 

scheduling efficiency using innovative modeling and optimization approaches, particularly in environments 

that demand high flexibility and adaptability. One of the primary advancements in this field has been the 

integration of Discrete Event Simulation (DES) into scheduling decision-making. Simulation allows for 

evaluating different scheduling rules and system behaviors under uncertainty, providing a practical 

complement to optimization models. Mahdavi et al. (2010) developed a simulation-based DSS combining 

discrete-event simulation with an event–condition–action (ECA) controller. The system uses real-time data 

to adaptively coordinate decisions and optimize performance, emphasizing responsiveness and multi-

criteria control in flexible job shops. Similarly, Vinod and Sridharan (2010) evaluated the effectiveness of 

due-date assignment methods and scheduling decision rules through DES models for dynamic job shop 

environments, emphasizing the value of simulation in environments with high variability. 

 Xiong et al. (2022) reviewed job shop scheduling models and identified key gaps such as poor handling 

of complex constraints, limited support for dynamic system behavior, and the lack of unified evaluation 

standards. They recommended AI, hybrid algorithms, and simulation-based approaches to overcome these 
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issues. Zhao and Zhang (2021) incorporated deep reinforcement learning into job-shop production control 

systems, achieving dynamic adaptability by training intelligent agents to learn optimal dispatching and 

routing behaviors in real-time. In parallel, mathematical modeling and metaheuristics have been widely 

adopted for scheduling. Shen and Yao (2014) applied multi-objective evolutionary algorithms in dynamic 

flexible job shops, emphasizing adaptability under complex and volatile manufacturing conditions. Amiri 

et al. (2018) extended this approach using simulation optimization for resource assignment and sequencing 

under uncertainty, integrating stochastic resource constraints. Ojstersek et al. (2019) explored the synergy 

of mathematical and simulation modeling in improving interactivity within scheduling solutions, 

particularly focusing on flexible job shop environments. To ensure standardized performance evaluation 

across these various methods, this study follows the established metrics outlined by Pinedo (2016), 

including throughput, queue length, waiting time, tardiness, and resource utilization. 

 FlexSim is a discrete-event simulation (DES) software platform widely used for modeling, analyzing, 

and optimizing manufacturing and logistics systems. It provides a 3D visual environment and supports 

customizable logic for simulating complex workflows, machine behaviors, and resource interactions across 

diverse industrial scenarios. Wu et al. (2010) and Wang and Chen (2016) used FlexSim models for 

production line simulation and logistics system optimization, respectively. These studies highlighted 

FlexSim’s value in identifying bottlenecks, rebalancing layouts, and simulating alternative work routing 

strategies. Lewicki et al. (2021) applied FlexSim to enhance process transparency and evaluate smart 

factory principles under Industry 4.0, particularly addressing workforce allocation and scheduling across 

varying shifts. 

 Several studies also investigated system reliability, maintainability, and workforce dynamics using 

simulation. Aliyu and Mokhtar (2021) focused on reliability and maintainability optimization using 

FlexSim by modeling machine failure patterns and repair times through MTBF/MTTR distributions. 

Krynke (2021) demonstrated the application of FlexSim in workforce scheduling, optimizing personnel 

placement to reduce idle time and improve flow continuity. Similarly, Rahman et al. (2023) proposed a 

simulation framework for line balancing under demand uncertainty, showcasing how task sequencing and 

operator assignments affect overall system throughput and responsiveness. In addition to system-level 

scheduling, learning curves have emerged as critical factors in job shop performance. Mosheiov and Sidney 

(2002) examined general job-dependent learning effects, showing that operator proficiency increases over 

time, reducing processing time. Glock et al. (2019) presented a systematic literature review, noting that 

ignoring learning dynamics can significantly distort productivity and throughput predictions in simulations 

and planning models. 

 Domain-specific applications and hybrid simulation have also provided new insights. Gupta and 

Sivakumar (2004) studied job shop scheduling within semiconductor manufacturing, focusing on 

cleanroom constraints and batch process requirements. Supsomboon and Vajaisarnun (2016) used 

simulation to improve job shop performance in machine parts manufacturing, adjusting routing sequences 

and work-in-process (WIP) levels. Cai et al. (2012) applied FlexSim to simulate underground longwall 

mining operations, showing how discrete-event logic can replicate the dependencies of mobile equipment, 

conveyor flows, and breakdowns in mining cycles. Rodrigues et al. (2019) combined agent-based modeling 

with DES to simulate decentralized scheduling decisions in job shop systems. Yan and Wang (2007) 

introduced a rule-based optimization framework that integrates simulation feedback to fine-tune 

dispatching policies dynamically. Such hybrid approaches bridge the gap between predictive modeling and 

reactive control in real-time shop floors. 

 While prior studies have advanced job shop scheduling using simulation and AI, few have dynamically 

integrated operator learning effects into machine assignment. Most models rely on resource availability or 

static assignment rules, overlooking the potential performance gains from allocating jobs based on operator 

experience and shorter processing times. This research addresses that gap by developing a FlexSim model 

that allocates machines based on minimized processing times while accounting for operator learning effects. 
The study’s main objective is to enhance scheduling performance in variable job shop environments by 

incorporating real-time learning-adjusted data. The novelty lies in the design of the Data-Driven Job Shop 
Scheduling (DDJSS) algorithm, which uses current system data to dynamically assign machines. A FlexSim 
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simulation evaluates the DDJSS against three alternative scenarios, with performance assessed via metrics 
such as waiting time, queue length, tardiness, resource utilization, and throughput. 

2 PROBLEM STATEMENT 

In a job shop production system, multiple products with unique routing sequences and non-uniform arrival 
patterns must be processed across various workstations. This variability creates significant challenges in 
assigning jobs efficiently. Idle machines may remain underutilized despite job backlogs due to rigid 
scheduling that overlooks processing time differences. Selecting machines based on the shortest processing 
time could improve performance, but such dynamic decisions require appropriate modeling. Additionally, 
operator efficiency evolves over time due to learning effects, which must be captured to reflect realistic 

improvements in productivity and cycle time. 
 Another key factor is machine reliability, as unexpected breakdowns disrupt flow and increase WIP. 
The ability to reassign jobs during such failures is crucial for maintaining system performance. These 
complexities necessitate a simulation-driven approach that incorporates processing variability, operator 
learning, and equipment reliability. This enables better resource allocation, dynamic scheduling, and overall 
optimization. The goal is to improve utilization by identifying overloaded or underused resources and 

adjusting capacity accordingly. 

3 CASE STUDY 

This case study investigates a simulation-based job shop scheduling environment developed in FlexSim, 

incorporating machine availability, operator learning curves, and complex product-specific routing. The 

objective is to analyze system behavior under realistic production dynamics and identify opportunities for 

improving throughput, resource utilization, and decision-making logic. This hypothetical job shop 

processes five different product types, each with distinct routing sequences and varying frequencies of order 

arrivals. The jobs arrive at the facilities following an exponential distribution with a mean interarrival time 

of 4 minutes with a specific product mix order distribution as shown in Table 1. 
 

Table 1: Product Routing Sequences and Order Proportions. 

Product Routing Sequence Order % 

Automotive Engine Brackets Milling → Drilling → Shaping → Lathe 25% 

Aerospace Turbine Blades Lathe → Milling → Drilling → Grinding → EDM 15% 

Precision Gears Lathe → Shaping → Milling → Drilling 20% 

Medical Implants (Titanium) Milling → Drilling → Lathe → Polishing 18% 

Hydraulic Cylinder Pistons Lathe → Milling → Drilling → Shaping 22% 
 

The facility comprises several machining stations, each equipped with a specific number of machines 

to support various production processes. The Lathe station consists of five machines, while the Drilling and 

Shaping stations each contain three machines. The Milling station is equipped with four machines to 

accommodate high-volume tasks. For precision finishing, the Grinding and Polishing stations have two 

machines each. Additionally, there is a single Electrical Discharge Machining (EDM) unit, which is used 

for specialized high-precision operations. This setup supports a wide range of product routings with diverse 

processing requirements. 

3.1 Operational Data 

The values presented in Tables 2 and 3 were determined using synthetic yet representative data, designed 

to reflect typical trends observed in job shop environments. These values are not extracted from a specific 

industrial dataset, but instead derived through educated assumptions. 
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 Table 2 summarizes the reliability and maintainability parameters assigned to each machine type in the 

simulation model. Breakdowns are modeled using exponential distributions based on the Mean Time 

Between Failures (MTBF) and Mean Time To Repair (MTTR). MTBF indicates the average time between 

failures, while MTTR reflects the downtime needed for repairs. These parameters are vital for accurately 

modeling machine availability and evaluating their effects on production flow and resource utilization. 

 

Table 2: Machine-Specific Breakdown and Repair Characteristics. 

Machine Type Lathe Milling Drilling Shaping Grinding Polishing EDM 

MTBF (min) 10,000 7,000 8,800 8,200 4,000 5,200 3,500 

MTTR (min) 300 360 240 300 420 360 480 

 

 The inclusion of learning curves allows the simulation to capture realistic human factors, such as 

adaptation speed and productivity growth, which are critical for accurate performance evaluation and 

decision-making in job shop environments. Table 3 presents the average Learning Rates (LR) assigned to 

each machine type in the simulation model, reflecting the progressive improvement in operator efficiency 

through repeated task execution. 

 

Table 3: Average Learning Rates by Machine Type. 

Machine Type Lathe Milling Drilling Shaping Grinding Polishing EDM 

Learning Rate 80% 85% 88% 86% 82% 90% 85% 

Processing times vary by product, machine, and operation type. To reflect real-world variability, 

triangular distributions (minimum, mode, maximum) were assigned to each machine–product pair. These 

capture uncertainty due to material handling, machine condition, and operator performance. For instance, 

automotive engine brackets may take 5–15 minutes (mode: 10) on Lathe-1, but 9–14 minutes on Lathe-3. 

Each product follows a distinct processing path using a specific set of machines, with operations like EDM, 

polishing, or grinding included only when applicable (e.g., turbine blades are not polished).  

4 METHODOLOGY 

This section outlines the modeling principles and implementation of the job shop simulation system using 
FlexSim. The methodology comprises three key components: the theoretical modeling of operator learning 
curves, the Data Driven Job Shop Scheduling (DDJSS) algorithm, and four simulation scenarios to make a 

comparison. In this study, resource uncertainty is explicitly defined and addressed across three dimensions: 
machine availability uncertainty, captured through random breakdown patterns and varying MTBF/MTTR 
values; operator learning uncertainty, modeled using learning curves that adjust processing times based on 
accumulated experience; and dynamic resource status, represented by real-time resource utilization and 
queuing data within the simulation environment. 

4.1 Learning Curve and Operator Efficiency Modeling 

The processing time reduction due to operator learning is modeled using a power-law (exponential) learning 

curve, a well-established empirical relationship in manufacturing systems introduced by Wright (1936). 

The fundamental assumption is that each time cumulative production doubles, the processing time per unit 
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decreases by a fixed percentage is known as the learning rate (LR). The general form of the learning curve 

is: 

 y= ax-b (1) 

where,  y is the hours required to produce the x-th unit, a is the time to produce the first unit, x is 

the cumulative number of units produced, and b is the learning index, defined as: 

 
𝑏 =

log⁡(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑒)

log⁡(2)
 

(2) 

For example, if a job's first unit time is 12 minutes (from a triangular distribution) and the learning rate 

is 90% (b≈- 0.152), then after 8 completed units, the adjusted time is: y=12×8−0.152≈8.75 minutes. This 

reflects improved efficiency as the operator gains experience. 

4.2 Data Driven Job Shop Scheduling (DDJSS) Algorithm 

Algorithm 1 presents the Data-Driven Job Shop Scheduling (DDJSS) algorithm used for real-time machine 
assignments. 
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 To improve machine selection and routing in dynamic job shop environments, the proposed DDJSS 
algorithm uses real-time system data such as machine availability, the lowest processing time required 
among available machines, and the learning effect of experienced operators to select the machine with the 

lowest estimated processing time. While the algorithm structure follows a rule-based implementation, its 
logic is inherently data-driven in execution, allowing it to adapt to breakdowns, operator learning, and 
workload changes. Unlike AI-based or simulation optimization methods that require extensive data and 
complex model integration, DDJSS enables interpretable, low-latency decisions, making it practical for 
real-time use in variable, operator-driven settings. 
 Jobs are selected from the waiting area based on a First-Come-First-Served (FCFS) policy to preserve 

fairness and prevent starvation in the queue. The term “minimum predicted processing time” refers to the 
learning-adjusted expected processing duration required to complete the operation on a given machine. It 
does not include current queue time or machine state, but reflects the pure processing time adjusted for 
operator learning effects. This value is not equivalent to minimum completion time, which would include 
additional delays like waiting or setup time. The selection logic prioritizes the machine expected to process 
the product in the least amount of time once available, improving responsiveness without preemptively 

predicting full system delay. The Decision Flowchart for DDJSS Algorithm is shown in Figure 1. 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 

Figure 1: Decision Flowchart for Data Driven Job Shop Scheduling (DDJSS) Algorithm. 

4.3 Developing Simulation Scenarios in FlexSim 

To assess the effectiveness of the proposed decision algorithm, four simulation models were developed in 
FlexSim. Figure 2 illustrates the general FlexSim layout used for all four scenarios. This layout includes 
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multiple parallel machine groups (e.g., Lathe, Milling, Drilling) and intermediate waiting areas. While the 
visual layout remains identical across the scenarios, the key difference lies in the scheduling logic. 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 2: FlexSim Layout Used in All Scenarios. 

4.3.1 Scenario 1: Traditional Job Shop Scheduling Process 

This scenario mimics a traditional job shop environment where machine selection for each job operation is 
based solely on first-available machine logic. In this case, we did not consider machine-specific processing 

times, and learning curves for selecting a machine for a specific job. It represents the status quo or legacy 
system. 

4.3.2 Scenario 2: Job Shop Scheduling Process with Random Assignment 

In this scenario, job operations are assigned randomly to any available machine at a given station. Unlike 
the first-available logic in Scenario 1, this method introduces randomness without considering machine 
availability, processing time, or operator skill. It serves as a baseline to evaluate the impact of more 

optimized scheduling strategies. 

4.3.3 Scenario 3: Proposed System – Data Driven Job Shop Scheduling (DDJSS) 

The proposed model implements the DDJSS algorithm, which dynamically assigns jobs to machines based 
on the lowest predicted processing time, adjusted for operator learning, machine availability, and queue 
conditions. This approach improves routing decisions by considering breakdowns, rerouted jobs, and real-
time system status, aiming to reduce delays and balance workload efficiently. 

4.3.4 Scenario 4: Job Shop Scheduling with Minimal Processing Time Assignment 

In this scenario, job operations are assigned to machines based on the minimum estimated processing time, 
without accounting for learning curve effects. Unlike the DDJSS approach, this model does not adjust for 
operator experience but still considers machine availability. It aims to optimize scheduling by minimizing 
processing time while maintaining a simplified logic for comparative analysis. 

5 EXPERIMENTAL RESULTS 

This section presents a comparative analysis of four scheduling scenarios implemented in FlexSim, 
executed over a simulated production period of one month (44,640 minutes). All scenarios share identical 
system configurations, including an exponential interarrival time distribution with a mean of 4 minutes, 
ensuring a consistent job inflow across models. 
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5.1 Queue Analysis: Waiting Time and Queue Length 

Table 4 compares average waiting times across scenarios. The traditional model (Scenario 1) showed major 
delays, particularly in polishing (pqWait: 10,663.53 min), EDM (eqWait: 15,263.04 min), and milling 

(mqWait: 3,783.57 min). Scenario 2 performed similarly or worse, with pqWait rising to 11,622.96 min. 
Scenario 4 moderately reduced delays (e.g., mqWait: 1,236.43 min) by selecting minimum processing 
times. In contrast, Scenario 3 (DDJSS) significantly minimized waiting times across all stations, pqWait to 
7.83, eqWait to 21.49, and mqWait to just 0.47 demonstrate the impact of learning-adjusted, data-driven 
scheduling. 
 

Table 4: Average Waiting Time in Queue. 

Object Scenario 1 Scenario 2 Scenario 3 Scenario 4 

lqWait 0.93 28.39 0.53 1.31 

mqWait 3,783.57 3,552.89 0.47 1,236.43 

dqWait 6.14 56.92 0.58 3.26 

sqWait 1.98 20.16 0.47 2.09 

gqWait 20.28 104.15 5.51 21.24 

pqWait 10,663.53 11,622.96 7.83 8.41 

eqWait 15,263.04 14,659.57 21.49 1,334.35 

 
 Table 5 presents the average queue content. Scenarios 1 and 2 exhibited high queue accumulation due 
to poor load balancing. For instance, the polishing queue (pqWait) averaged 400.45 and 451.23 jobs in 
Scenarios 1 and 2, respectively, while the EDM queue (eqWait) reached 479.08 and 481.04. The milling 
queue (mqWait) also showed severe congestion with 946.74 jobs in both scenarios. Scenario 4 reduced 
queue sizes moderately, but critical stations like milling (mqWait = 1,067.46) and EDM (eqWait = 130.55) 

still experienced notable accumulation. In contrast, Scenario 3 (DDJSS) achieved near-zero queue content 
across all stations. For example, pqWait = 0.09 and mqWait = 0.01 indicate smoother job flow and effective 
congestion control through learning-adjusted scheduling. 
 

Table 5: Average Content in Queue. 

Object Scenario 1 Scenario 2 Scenario 3 Scenario 4 

lqWait 0.22 6.59 0.00 0.15 

mqWait 946.74 946.26 0.01 1,067.46 

dqWait 1.29 11.87 0.02 0.97 

sqWait 0.30 2.96 0.00 0.25 

gqWait 0.63 3.44 0.04 0.63 

pqWait 400.45 451.23 0.09 0.14 

eqWait 479.08 481.04 1.04 130.55 

 
These results reflect the importance of smart scheduling and dynamic assignment strategies in 

minimizing idle time, balancing workload, and enhancing system responsiveness. 

5.2 WIP Levels 

Table 6 compares the WIP levels for five key product categories tracked through their respective output 
queues: LatheOut (Automotive Engine Brackets), DrillingOut (Precision Gears), ShappingOut (Hydraulic 
Cylinder Pistons), PolishingOut (Medical Implants), and EdmOut (Aerospace Turbine Blades). Scenarios 
1 and 2 exhibit extremely high WIP accumulation due to static and random machine assignment. For 

example, WIP levels for Precision Gears remain constant at 1,300 units, while Medical Implants exceed 
1,240 units across both scenarios. Scenario 4 slightly improves system responsiveness by prioritizing 
machines with shorter processing times; however, queues like Automotive Engine Brackets still show 522 
units and Aerospace Turbine Blades reach 488 units, indicating incomplete relief of congestion. In contrast, 
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Scenario 3 (DDJSS) achieves a dramatic reduction in WIP down to just 1 unit for Medical Implants, 2 for 
Aerospace Blades, and only 3 for Engine Brackets demonstrate effective workload balancing, improved 
system flow, and real-time responsiveness enabled by data-driven scheduling. 

 
Table 6: Comparison of WIP levels. 

Product Output Queue Scenario-1 Scenario-2 Scenario-3 Scenario-4 

Automotive Engine Brackets LatheOut 491 496 3 522 

Precision Gears DrillingOut 1,300 1,300 8 646 

Hydraulic Cylinder Pistons ShappingOut 361 370 1 426 

Medical Implants (Titanium) PolishingOut 1,245 1,246 1 400 

Aerospace Turbine Blades EdmOut 409 445 2 488 

 

5.3 Tardiness 

The due dates for all jobs were assumed to follow a triangular distribution with parameters (8000, 10000, 

12000), reflecting realistic variability in delivery expectations. Table 7 summarizes the average job 
tardiness across all scenarios. Scenarios 1 and 2, which use static and random machine assignment, exhibit 
high tardiness of 1,020.18 minutes and 1,118.98 minutes, respectively indicate inefficient routing and poor 
delivery reliability. Scenario 4, which uses a minimal processing time heuristic, reduces tardiness to 406.12 
minutes, demonstrating partial improvement. However, Scenario 3 (DDJSS) eliminates tardiness entirely, 
achieving 0 minutes of delay. This outcome underscores the value of learning-adjusted, data-driven 

scheduling in effectively meeting delivery deadlines, improving workflow synchronization, and 
significantly enhancing delivery performance compared to traditional methods. 

 
Table 7: Comparison of Tardiness Across Scheduling Scenarios. 

Scenarios Scenario-1 Scenario-2 Scenario-3 Scenario-4 

Tardiness 1,020.18 1,118.98 0 406.12 

 

5.4 Average Resource Utilization 

Table 8 shows the average machine utilization percentage by type across different scheduling scenarios. 

While Scenarios 1 and 2 maintain high machine utilization, Scenario 3 achieves optimal performance with 
minimal queues despite low utilization in several stations (e.g., Lathe, Grinding, Polishing). This suggests 
effective workload balancing and points to possible overcapacity, indicating that some machines could be 
reduced without affecting overall system efficiency. Scenario 4 maintains moderately high utilization with 
improved efficiency, showing better resource use than the baseline but still lacking the adaptive balance 
achieved by DDJSS. 

 
Table 8: Average Resource Utilization Percentage Across Scenarios. 

Scenarios/Machine Type Lathe Milling Drilling Shaping Grinding Polishing EDM 

Scenario-1 57.66 96.75 84.95 56.59 44.54 94.11 80.93 

Scenario-2 58.52 96.65 85.16 56.27 44.30 94.06 80.89 

Scenario-3 5.75 20.52 24.05 12.04 10.26 14.74 29.96 

Scenario-4 49.73 96.79 80.57 50.89 41.43 29.92 79.83 

 

5.5 Throughput Performance 

Table 9 presents the throughput of five primary product categories tracked through their respective output 
queues. Compared to Scenario 1 (traditional model), Scenario 3 (DDJSS) achieved the highest total 
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throughput of 11,283 units, representing a 49.6% improvement over the baseline output of 7,541 units. This 
gain stems from the integration of adaptive machine pairing and learning-adjusted scheduling logic. The 
most significant improvements were observed at PolishingOut and EdmOut, where outputs increased by 

over 144% and 348%, respectively. These stations had previously suffered from major queuing delays and 
inefficiencies. By prioritizing machines based on learning-adjusted processing times in real time, DDJSS 
alleviated these bottlenecks and improved overall resource utilization. 

 
Table 9: Throughput Comparison Across Scenarios. 

Product Output Queue Scenario-1 Scenario-2 Scenario-3 Scenario-4 

Automotive Engine Brackets LatheOut 2,293 2,261 2,845 2,235 

Precision Gears DrillingOut 1,997 1,875 2,227 1,819 

Hydraulic Cylinder Pistons ShappingOut 2,048 2,026 2,535 1,983 

Medical Implants (Titanium) PolishingOut 842 839 2,060 1,685 

Aerospace Turbine Blades EdmOut 361 361 1,616 1,015 

Total Throughput 7,541 6,523 11,283 8,737 

 
Other stations also showed notable gains: LatheOut improved by over 24%, DrillingOut by 11.5%, and 

ShappingOut by nearly 24%. These results confirm the effectiveness of DDJSS in boosting throughput 
through smarter, data-responsive scheduling. Scenario 2, which used random machine selection, recorded 

the lowest throughput at 6,523 units, highlighting the consequences of unstructured decision-making. 
Scenario 4 achieved a moderate improvement to 8,737 units by minimizing processing times, but it lacked 
the dynamic adaptability of DDJSS. 

5.6 Sensitivity Analysis 

To ensure the reliability and stability of the proposed scheduling model, a sensitivity analysis was 
conducted using the FlexSim Experimenter, running 150 replications for Scenario 1 and Scenario 3. Each 

replication simulated 30 days (44,640 minutes) of continuous production. All replications maintained the 
same input conditions, including an exponential interarrival time distribution with a mean of 4 minutes. 
The goal was to verify whether the performance improvements observed in earlier simulations (Table 9) 
remained consistent across repeated trials under identical workload conditions. 

Table 10 presents the statistical summary of output results, including the mean, standard deviation, and 
95% confidence intervals (CIs) for each product's throughput across 150 simulation replications. The results 

confirm that the proposed DDJSS model consistently outperformed the traditional scheduling setup with 
not only higher average outputs but also reduced variability. For example, Medical Implants (Titanium) 
achieved an average output of 2,011 ± 41.89 under DDJSS, compared to just 833 ± 17.01 in the traditional 
model, representing a significant increase in both quantity and stability, as reflected in the tight confidence 
interval of [2004–2018] versus [831–836]. This closely aligns with the earlier result of 2,060 units reported 
for Scenario 3 (Table 9), indicating strong consistency across replications with a minor deviation. Similarly, 

Aerospace Turbine Blades improved markedly from 392 ± 19.11 to 1,672 ± 40.32, with a 95% confidence 
interval of [1665–1678], again highlighting the statistical reliability of the performance boost. 
 

Table 10: Sensitivity Analysis for Throughput. 

Product Scenario-1 (Traditional) Scenario-3 (DDJSS) 

 Mean Std Dev 95% CI Mean Std Dev 95% CI 

Automotive Engine Brackets 2,293 48.30 2285-2301 2,782 50.90 2774-2790 

Precision Gears 1,840 50.04 1832-1848 2,230 45.63 2222-2237 

Hydraulic Cylinder Pistons 2,023 40.57 2017-2030 2,454 46.02 2446-2461 

Medical Implants (Titanium) 833 17.01 831-836 2,011 41.89 2004-2018 

Aerospace Turbine Blades 392 19.11 389-395 1,672 40.32 1665-1678 

Total Throughput 7,381 11,149 
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The total throughput under Scenario 3 (DDJSS) reached 11,149 units, showing a significant 
improvement over the traditional mean of 7,381 units. These findings demonstrate that DDJSS not only 
enhances throughput but also ensures consistent and predictable system performance, validating its 

robustness in dynamic job shop environments. 

6 CONCLUSION 

This study introduced a simulation-based scheduling approach that considers machine reliability, 
processing time variations, and operator learning behavior to dynamically assign the jobs to machines, 
which addresses the complexities of modern job shop systems. By developing and comparing four 
simulation scenarios in FlexSim, we showed that traditional first-available assignment, random assignment, 

and minimum processing time without learning result in longer waiting times, higher tardiness, elevated 
WIP levels, and lower throughput. The proposed DDJSS approach prioritizes machine selection based on 
minimum learning-adjusted processing time and adapts dynamically to system states such as machine 
breakdowns and operator efficiency levels. The comparative analysis revealed substantial improvements in 
system performance, including significantly reduced queue lengths, decreased waiting times, lower 
tardiness, reduced WIP levels, and notably increased throughputs. These findings validate the effectiveness 

of simulation-driven scheduling strategies that account for human learning and machine reliability in 
complex manufacturing systems. However, this study has certain limitations. The simulations used 
synthetic data, which may limit real-world applicability. Additionally, resource adjustments based on 
machine utilization were not explored. Despite this, the results support the value of simulation-driven 
scheduling that incorporates learning and reliability. Future work could integrate real-time data and 
optimization techniques to enhance adaptive control. 
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