
Proceedings of the 2025 Winter Simulation Conference
E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds.

TOWARDS A DEVS-BASED SIMULATION ENGINE FOR DIGITAL TWIN APPLICATIONS

Arnis Lektauers

Institute of Information Technology, Riga Technical University, Riga, LATVIA

ABSTRACT

Digital twins (DT) are increasingly being adopted to improve system monitoring, prediction, and decision
making in various domains. Although simulation plays a central role in many DT implementations, a lack
of formal modeling foundations often leads to ad hoc and non-scalable solutions. This paper proposes a
simulation engine for DT applications based on the Discrete Event System Specification (DEVS) formalism.
DEVS provides a robust, modular, and hierarchical modeling framework suitable for modeling the structure
and behavior of complex cyber-physical systems. A key contribution is the integration of the Parallel
DEVS for Multicomponent Systems (multiPDEVS) formalism with X-Machines to support state and
memory separation for simulation models with the goal of improving model scalability and reusability,
as well as providing a basis for integration with DTs. The paper presents the architectural design of the
engine, highlights its main functional components, and demonstrates its capabilities using a preliminary
use case.

1 INTRODUCTION

The integration of information technology into the control of complex cyber-physical systems (CPS)
highlights the growing importance of formal simulation-based approaches in the management of complex,
data-driven solutions in various sectors, from manufacturing and smart cities to healthcare (Sultanovs
et al. 2020), training (Lektauers et al. 2022) and aerospace. The Digital Twin (DT) has emerged as
a transformative concept in this context. DT can be defined as a virtual replica of a physical system,
continuously synchronized with real-world data, allowing simulation and analysis of the system’s behavior
in parallel with its operation (Iliuţă et al. 2024).

By coupling sensor data with models, DTs allow one to monitor current conditions in real time
and predict future states under various scenarios. In practice, this means that a DT can run simulations
to forecast performance, anticipate faults or maintenance needs, and evaluate ’what if’ scenarios, thus
supporting proactive decision-making and optimization in complex systems. DTs are gaining traction
across industries, reflecting their potential to improve the operational efficiency of complex systems, reduce
unexpected breakdowns, and support smarter decision making based on real data simulations. As a result,
simulation plays a critical role in DT development, serving as one of its key enabling technologies (Biller
et al. 2022).

However, with current DT simulation practices, achieving the benefits mentioned above is difficult.
Many existing DT implementations are developed in an ad hoc manner, without a unified or formalized
approach. This can lead to inconsistencies and an increased risk of errors during the development process
(Niyonkuru and Wainer 2021). The lack of a consistent and unified understanding of what constitutes a DT
(Traoré 2021), combined with the lack of an appropriate formalism, complicates the verification and testing
of DTs. As a result, it is also difficult to ensure that the virtual representation remains consistent with its
physical counterpart over time. These problems become exponentially harder when scaling up, for example,
when DT concepts are extended to the scale of smart factories or cities. In such cases, interoperability and
scalability issues arise. Many simulation components are being built in isolation, making them difficult to
reuse or combine with other systems and limiting their modularity (Rasheed et al. 2020). Another challenge

979-8-3315-8726-0/25/$31.00 ©2025 IEEE 2884

Lektauers

is achieving real-time performance. Integrating high-fidelity models with real-time data streams can place
stringent demands on computational resources and network bandwidth, which affects the ability to realize
synchronized and responsive simulations. What is needed is a more systematic approach to building DTs,
where formal semantics, modular design, and efficiency are built in from the start.

Although no single simulation methodology can satisfy all DT application requirements, several
paradigms align well with DT-specific needs, including real-time responsiveness, multiscale modeling, and
integration with live data. Table 1 provides an overview of the simulation methods commonly applied
in DT contexts, reflecting a wide spectrum of approaches, from discrete event modeling to hybrid and
agent-based simulations (Yao et al. 2023; Vanommeslaeghe et al. 2024; Wooley et al. 2023). Among the
various approaches for the simulation modeling of DTs cited in scientific sources, Agent-Based Modeling
and Simulation (ABMS) stands out for its integration with Multi-Agent Systems (MAS) that have many
similarities with DT (Pretel et al. 2024). The flexibility of ABMS to capture adaptive behavior complements
the robust time management and integration capabilities of DEVS.

Table 1: Simulation modeling methods commonly used in DT applications.

Simulation Method Main Capabilities Typical Application Domains
Discrete Event Simula-
tion (DES)

Event-driven approach Manufacturing, logistics (Biller et al.
2022)

Discrete Event System
Specification (DEVS)

Modular simulation architecture;
event-driven, real-time hybrid exe-
cution support

Manufacturing, logistics, healthcare,
CPS (Niyonkuru and Wainer 2021;
Zeigler et al. 2018)

Cellular Automata (CA) Emergent behavior analysis Emergency response systems, urban
planing (Foures et al. 2018)

Agent-Based Modeling &
Simulation (ABMS)

Emergent behavior; decentralized
control; adaptive scenarios

Transportation, smart grid, emer-
gency response, urban planning
(Ambra and Macharis 2020; Pretel
et al. 2024)

System Dynamics Feedback-driven modeling; multi-
disciplinary integration; low compu-
tational complexity

Defense, maintenance planning, pol-
icy analysis, lifecycle simulation
(Choi et al. 2023)

Continuous Simulation
(ODE/PDE)

Physics-based modeling; real-time
control

Aerospace, automotive, energy sys-
tems (Tian et al. 2023)

Co-Simulation System integration; cross-domain fi-
delity

Smart manufacturing, CPS, robotics
(Vanommeslaeghe et al. 2024)

Hybrid Simulation Synchronization of different time
models; holistic representation of
processes

Autonomous systems, process con-
trol, manufacturing (Farsi et al.
2019)

Data-Driven Simulation /
Surrogate Modeling

Fast estimation; model calibration;
predictive analytics

Prognostics, digital health, structural
monitoring (Chakraborty et al. 2021;
Tian et al. 2023; Yao et al. 2023)

Real-Time Simulation /
Hardware-in-the-Loop
(HIL)

Synchronization with physical sys-
tems and control loops

Automotive, aerospace, robotics
(Jiménez Aparicio and Roßmann
2025)

This paper proposes a DEVS-based simulation engine to support digital twin applications. Based on
the DEVS formalism, the proposed engine aims to overcome the shortcomings of current DT simulation
practices: it provides a formal, modular approach to modeling complex twins; it ensures scalability through

2885

Lektauers

hierarchical decomposition and efficient event-based execution; and it enables the seamless integration of
discrete event simulation and ABMS. The following sections discuss in detail the concept and architecture
of the DEVS-based DT simulation engine, including formal definitions of its modeling components, the
design of the service-oriented platform, the implementation of multi-agent extensions, and preliminary
results from a case study.

2 DEVS-BASED SIMULATION

The Discrete Event System Specification (DEVS), introduced by Zeigler in 1976 (Zeigler 1976), is a widely
recognized formalism for modeling and simulating discrete-event systems. DEVS offers a mathematically
rigorous foundation that enables systems to be modeled as modular and hierarchically composed components,
each defined by their state transition logic and event scheduling behavior (Zeigler 1976; Zeigler et al. 2018).
Based on a generic and extensible structure, the DEVS formalism can be adapted to a wide range of simulation
paradigms, including differential equations, cellular automata, and hybrid models, making it suitable for
the simulation of CPS (Wainer et al. 2018), combining discrete and continuous dynamics.

Several studies have explored the role of DEVS simulation in DT solutions. For instance, Niyonkuru and
Wainer (2021) proposed a DEVS-based architecture for digital quadruplets, emphasizing modularity and the
ability to integrate real-time data into simulation-based components. Their work establishes the feasibility
of using DEVS for live synchronized virtual-physical models, although it does not support agent-level
modeling. Similarly, Vanommeslaeghe et al. (2024) demonstrated how DEVS can be co-simulated with
embedded systems using the Functional Mock-up Interface (FMI) 3.0, suggesting an increasing interest in
using DEVS for operational DT scenarios. In a complementary direction, David et al. (2021) introduced
a conceptual framework to infer DEVS models using reinforcement learning, with the aim of automating
and generalizing the construction of simulation models in different DT contexts.

In DEVS, a complex system is decomposed into submodels (atomic and coupled models) that interact
via discrete events, which naturally facilitates modularity and reusability. Atomic models encapsulate
behavior through internal, external, and confluent transition functions along with an output function and a
time advance function. Coupled models, in contrast, define the structure and interconnections of submodels
without directly encoding behavior. This separation of behavior and structure facilitates composability and
reuse. However, in classic DEVS, coupled models are static containers that cannot represent their own
internal state or behavior directly. This limitation has motivated various extensions, such as ML-DEVS
(Steiniger and Uhrmacher 2016) and EB-DEVS (Foguelman, Henning, Uhrmacher, and Castro 2021), to
support dynamic model structures and emergent behavior.

2.1 multiPDEVS Approach for Multicomponent Simulation

Although classic DEVS provides solid foundations for modeling modular systems, it is limited in expressing
dynamic structures or high-volume interactions, particularly in multi-component settings. To address these
challenges, the author adopts the multiPDEVS (Parallel DEVS for Multicomponent Systems) (Foures et al.
2018) formalism.

multiPDEVS is an extension of the classic DEVS, Parallel DEVS (PDEVS) and Multicomponent DEVS
(multiDEVS) formalisms (Zeigler et al. 2018), designed to support parallel discrete event processing across
multicomponent systems, nonmodular decomposition, and efficient handling of simulation event collisions
and conflicts. According to Foures et al. (2018), a multiPDEVS model is defined as a set of interacting
components {Md}:

multiPDEVS = (X ,Y,D,{Md}), (1)

where X and Y are sets of input and output events, D is the set of component references.
For each d ∈ D, a component Md is defined as a tuple:

Md = (Sd , Id ,Ed ,δext,d ,δint,d ,δcon,d ,δreac,d ,λd , tad), (2)

2886

Lektauers

where Sd is the set of sequential states of d, Id ⊆ D is the set of influencing components, and Ed ⊆ D
is the set of influenced components, Qi = {(s,ed)|s ∈ Sd ,ed ∈ R+

0 , 0 ≤ ed ≤ tad(sd)} is the set of total
states with e the time elapsed since the last transition.

tad : ×
i∈Id

Qi → R+
0 ∪{∞} is the time advance function to schedule the time of the next internal event

based on total states of the influencers.
λd : ×

i∈Id

Qi → Y b is the output function, where Y b is the set of output bags.

δint,d : ×
i∈Id

Qi → ×
j∈Ed

S′j is the internal transition function that maps the total state of the influencers into

suggested states S′ for the set of influencees.
δext,d : ×

i∈Id

Qi ×Xb → ×
j∈Ed

S′j is the external transition function, where Xb is the set of input bags.

δreac,d : Kb
d ×Qd → Sd is the reaction transition function, where Kb

d is the set of bags of suggested states
for d over elements in Kd . Kd = {(sd ,c)|sd ∈ S′d ,d ∈ Ec}, where the tuple (sd ,c) is a suggested state for
d ∈ Ec produced by the component c.

δcon,d : ×
i∈Id

Qi ×Xb → ×
j∈Ed

S′j is the confluent transition function (originally introduced in PDEVS).

2.1.1 Component Memory Extension

A common challenge in multiPDEVS is the requirement for a component to recompute the entire state of
an influencee even to change a single state variable. To address this, the author incorporates an explicit
memory structure M as a formal extension to the components states Sd . A similar approach, for example, is
used in the formalism X-Machines (Extended Finite-State Machines with Memory and Functions) (Kefalas
et al. 2003).

Formally, DEVS and X-Machines represent two complementary formal modeling approaches. X-
Machines extend classical finite state machines by incorporating an internal memory structure M. The
difference between states and memory sets allows flexibility in modeling systems because there are situations
where models have only one or few internal states and multiple complex variables stored in memory (Kiran
2017).

In that context, the original set of sequential states Sd of the component Md (2) the author proposes to
replace by a tuple of a finite set of states Sd and (possibly) large set of memory values Md : Sd = (Sd ,Md).
The revised multiPDEVS component definition becomes the following:

Md = (Sd ,Md , Id ,Ed ,δext,d ,δint,d ,δcon,d ,δreac,d ,λd , tad). (3)

Separation of state logic and memory allows for more compact state representations, more precise
control of simulation transitions, and reduced overhead during state propagation. It also provides a natural
mechanism to implement agent models with contextual awareness and decision memory, aligning well with
ABM and DT applications that require adaptive behavior and where agents / components have few control
states (e.g., Idle, Active) and rich internal memory (e.g., battery level, path history, local temperature, etc.).

In Figure 1, a simple abstract example is shown that defines a smart light control agent that implements
the revised multiPDEVS component (3). The agent operates in one of three control states: IDLE (no
presence detected), ACTIVE (person detected), and ALERT (motion detected but light malfunctioning).
It maintains internal memory, including occupancy (representing the motion detection), lightStatus, and
lastSwitchTime. A transition function governs the agent’s behavior based on current memory values and
conditions such as elapsed time. The agent performs actions such as turning the light on or off or sending
an alert and transitions between states accordingly. The diagram illustrates the separation between control
logic (states) and data context (memory), showing how decisions emerge from their interaction via state
transitions.

2887

Lektauers

Model Memory

occupancy : Boolean
lightStatus: ON / OFF / FAIL
lastSwitchTime: DateTime

Model State

IDLE ACTIVE ALERT

Control Logic Data Context

Transition Function

switch light ON; update lastSwitchTime

Transition Function

switch light OFF

Transition Function

send alert

occupancy == True
lightStatus == OFF

occupancy == False
elapsedTime > threshold

occupancy == True
lightStatus == FAIL

Figure 1: Abstract model example of the separation between control logic (states) and data context (memory).

3 MODELING AND SIMULATION AS A SERVICE

To support the full lifecycle of digital twin (DT) applications, the proposed simulation platform is designed
following the Modeling and Simulation as a Service (MSaaS) paradigm (Procházka and Hodický 2017).
This architecture facilitates modular, distributed, and interoperable simulation components accessible via
service-based interfaces.

Figure 2 illustrates the conceptual operational architecture of the platform, depicting a closed-loop DT
value chain (Traoré 2021). At the core of this architecture lies the modeling and simulation layer, which
exposes simulation functionality via APIs using standard web protocols such as HTTP and WebSockets. This
structure enables seamless integration with external systems and user interfaces, fostering both machine-
to-machine communication and human-in-the-loop interaction.

3.1 Simulation Engine Architecture

The DEVS-based simulation engine (Figure 3) is designed to operate within the MSaaS environment and
serves as the computational backbone of the DT platform. The architecture follows a modular and service-
oriented structure designed to support DT development and operation in distributed environments. At its
core, the simulation engine implements the two main parts: the formal model and the model simulator.
These are coupled via the modeling and simulation relations, ensuring a clear separation of concerns
between representation and execution. In general, this architecture provides a flexible and interoperable
simulation framework to implement complex DT scenarios.

The key component of the engine is the Simulator that integrates a high-performance event scheduler,
enabling scalability for large-scale, real-time DT applications. The simulation back-end supports multi-
PDEVS and multi-agent simulation constructs, facilitating fine-grained concurrency and dynamic model
structures. To support experimentation, the engine incorporates the Experimental Frame (EF), which com-
prises a Generator to produce input data, an Acceptor to filter the simulation scenario, and a Transducer
to summarize the results (Zeigler et al. 2018).

In terms of model management, the engine supports models defined in a Simulation Model Definition
Language (SMDL), inspired by the Digital Twins Definition Language (DTDL) (Microsoft Azure 2025),
which is in work in progress by the engine authors and allows seamless integration with IoT and DT

2888

Lektauers

Digital	Twin	Platform

Modeling	and
Simulation	as	a
Service	(MSaaS)

API

Digital	Twin	Value	Chain

Human	OperatorReal	World

Data	Semantics
Cleaning

Interpretation
Transformations

Capability	Models

Data	Model

Simulation	Model

2D	/	3D	Model

Decision	Model

Database

Decision
Interface

M
onitoring

P
rognosis

D
iagnosis

A
ct

io
ns

Data
Exchange
Interface

Decision-Making

P
ercepts

Figure 2: Generic DT platform concept based on operational architecture principles for a DT value chain
(adapted from Traoré 2021).

Modelling	and	Simulation
as	a	Service	(MSaaS) REST	API WebSocket

www

..

Digital	Twin	Platform

External	Simulation
Models

FMI	Adapter
Master

Functional	Mock-up
Interface	(FMI)

Simulation	Model	
Definition	Language
(SMDL)	Processor

Simulator

Simulation	
Manager

Simulation	
Server

...Slave

Model

Solver

Slave

Model

Solver

Simulation	Engine

Web	API

Figure 3: Architecture of the simulation engine implementing the MSaaS paradigm.

infrastructures. The SMDL Processor handles model specification input – it parses a model description to
construct the DEVS models in the engine. Using an SMDL, users can define their twin simulation model,
which the processor then translates into instantiated model elements.

2889

Lektauers

The Simulation Manager manages and coordinates the execution of the simulation, ensuring correct
timing and coordination of interactions. Its main task is to ensure the scalability of the simulation by using
the available heterogeneous computing (CPU / GPU) resources as needed. The manager communicates
with the FMI adapter (to step external models) and relies on the SMDL processor for the initial model
setup.

Users can define models using DEVS or provide external Functional Mock-up Units (FMUs) supported
via a built-in FMI adapter. This hybrid capability allows for co-simulation with third-party tools and
supports a wide range of modeling paradigms including discrete-event, continuous, and hybrid systems.
The FMI adapter is responsible for co-simulation, enabling the engine to load FMUs and orchestrate their
execution alongside DEVS models, conceptually similar, as described in Vanommeslaeghe et al. (2024).

3.2 Real-Time Data Loop Support and Collaborative Simulation

DTs often operate as part of a cyber-physical feedback loop, where simulations must ingest real-time data
from physical systems and return actionable outputs. The proposed engine supports this loop through the
MSaaS architecture:

• Input handling: Real-time input streams are supported via RESTful API and WebSocket endpoints,
enabling external systems to push sensor data or events into the simulation model at run-time.

• Output generation: Simulation responses, for example, predicted failures, control signals, simulation
statistics, or agent decisions, are exposed through the WebSocket endpoint to external subscribers.

• Clock synchronization: DEVS’s explicit handling of simulation time allows the engine to be
synchronized with wall-clock time when necessary, enabling accurate simulation aligned with
physical system operations.

Since each component of the model maintains its own timing logic, incoming updates can be scheduled
with precise control over how and when they impact the simulation. This makes the approach suitable for
industrial DT deployments where data frequency, causality, and timing guarantees are critical (e.g., smart
grids, production cells, or autonomous systems).

The simulation engine can be used to run multiple collaboratively interacting DTs, each using a separate
simulation engine instance. The interacting DTs can communicate by exchanging events, involving an
external simulation orchestrator, using RESTful APIs and WebSocket endpoints on each simulation engine
instance. This approach enables coordinated behavior, such as cooperative decision-making or shared
resource management, as well as supports scalability and facilitates the creation of interconnected DT
ecosystems consisting of interacting fragments suitable for system-of-system modeling.

4 IMPLEMENTATION AND PRELIMINARY TESTING

Figure 4 presents a UML class diagram of the implementation of the simulation engine, highlighting the
key classes and their relationships in the multiPDEVS-based and agent-based design. The open source
implementation in the Kotlin language is divided into five main packages: Common and Simulation
packages defining generic simulation abstractions, DEVS and multiPDEVS packages implementing the
extended discrete event formalism, and an Agents package supporting multi-agent modeling.

At the core, an AbstractModel mixin implements Simulable, Couplable, Observable
and Stateful interfaces. A conceptually similar mixin-based approach is used in the Quartz (A Crys-
tal Modeling & Simulation Framework) discrete event simulation library (Franceschini et al. 2018).
AbstractModel is a container for model variables (implemented by the Variable class) and states
(implemented by the State class).

The Component class in the multiPDEVS package implements a multiPDEVS component formally
defined by (1). The Model class in the same package implements a multiPDEVS model formally defined
by (3).

2890

Lektauers

Simulation Common

DEVS MultiPDEVS

<<interface>>
Simulable

AtomicModel

Component

CoupledModel

<<interface>>
Couplable

AbstractModel

Entity

Model

Agents

AgentModel

SimulationEngine

MultiPDEVSSimulator

<<interface>>
Simulator

DEVSModel

DEVSSimulator

<<interface>>
Stateful

<<interface>>
Observable

Schedule

StateVariable

Figure 4: Simulation engine packages and core classes.

The SimulationEngine class orchestrates the overall execution, coordinating Simulator objects
(each implementing the Simulator interface). A central Schedule structure maintains the future event
list, using a binary heap (Nutaro 2011).

4.1 Multi-Level Multi-Agent Simulation

The engine implementation strategy enables multilevel multi-agent simulation by bridging the gap between
ABMS and the system-theoretic DEVS approach. In contrast to earlier hybrid or transformation-based
simulation frameworks for complex systems (Seddari et al. 2021; Farsi et al. 2019), the implemented
approach integrates agents directly into the discrete event simulation core, allowing DT models to incorporate
both strict system dynamics and flexible agent behaviors in one platform. The design of the agent-based
simulation package is influenced by FLAME GPU which is a GPU-accelerated simulator for domain-
independent complex system simulations (Kiran 2017; Richmond et al. 2023).

The package Agents (Figure 5) introduces AgentModel, Population, Agent, Environment,
Layer andFunction classes to enable multi-agent and multilevel simulation within the DEVS framework.

Each AgentModel represents a specialized multi-PDEVS component that acts as a simulator of agent
populations (Population class) using a time-stepped approach at a defined time resolution level. Each
Population contains many agents (Agent class) of the same type. Each agent interacts within a given
Environment. The coupled set (AgentModel, Agent, Environment, Population) partially
corresponds to the Influence Reaction Model for Multi-Level Simulation (IRM4MLS) (Morvan and Jolly
2012). In comparison to IRM4MLS, in this implementation, each agent belongs to only one simulation
level defined by the AgentModel.

The X-Machines formalism is adopted for Agent design, which extends finite-state machines with
an internal memory component M separating a finite control state S and a (potentially large) memory M
for variables and attributes, as described in Subsection 2.1.1. Each step of Agent instance execution is
implemented by one or more sequential functions (Function class). The functions are automatically
organized in layers (Layer class) based on their dependencies, which allows functions in individual layers
to potentially be executed in parallel (e.g., on a GPU).

2891

Lektauers

Agents

AgentEnvironment

Population

AgentModel

MultiPDEVS

Component

Common

AbstractModel

StateVariable

Layer

Function

Figure 5: Diagram of ABMS classes.

4.2 Testing: Case Study of Fire Spread Modeling

To evaluate the implemented simulation engine, a preliminary case study was conducted involving a simple
scenario of fire spread modeling, which is described by the authors of multiPDEVS (Foures et al. 2018)
and is also implemented in the Quartz discrete event simulation library (Franceschini et al. 2018).

The fire spread case study models a 2D grid-based environment where each grid cell represents a forest
unit (or patch) and can be in one of three states: unburned, burning, or burned. In each simulation step, the
fire spreads from burning cells to neighboring unburned cells with a predefined probability. The transition
dynamics follows discrete event timing; each cell has an internal time variable governing how long it
remains in the burning state before transitioning to burned. This simple model captures emergent spatial
dynamics, such as the propagation of the fire front. The model is usable for benchmarking purposes due
to its controllable complexity, modular cell behavior, and high interaction density between components. In
the implementation, each cell is modeled as an agent with state-memory separation, allowing context-aware
spreading and timing behavior.

Simulation runs were carried out on a test environment consisting of an Apple M2 Max CPU, 32 GB
of RAM, running on OSX 15.4.1. Two grid sizes were tested to examine scalability: a 25×25 cell grid
(625 agents) and a 50×50 cell grid (2500 agents). In each case, the simulation was executed for a fixed
virtual duration of 1200 time units (sufficient for the fire to spread and burn out) and repeated for 10
independent runs. In this experiment, the scheduling of the engine was single-threaded (using one logical
SimulationEngine instance managing all events sequentially).

Figure 6 presents a bar graph of the average execution times, showing that the 50× 50 case takes
approximately five times longer than the 25×25 case. This scaling is in line with expectations: the larger
grid has 4x the number of agents and significantly more interactions, leading to a super-linear increase
in processing time due to the overhead of managing more events. However, even for 2500 agents and a
1200 steps of simulation, the total execution time remained under 2 seconds, suggesting that the simulation
engine is suitable for complex real-time or near-real-time applications. These preliminary performance
tests demonstrate that the DEVS-based engine can efficiently handle components or agents of the order
103-104 and their interactions in real time or near real time, on a single modern laptop-class processor.
The engine maintained correct time synchronization and event ordering throughout the runs, and the fire
spreading dynamics was visually verified to match the expected behavior.

These preliminary performance tests demonstrate the engine’s ability to efficiently manage thousands
of active components and their interactions. A GPU-accelerated scheduler was not directly needed at this

2892

Lektauers

Av
er

ag
e

El
ap

se
d

Ti
m

e
(m

s)

0

500

1000

1500

2000

25x25 grid 50x50 grid

Grid Average Elapsed
Time (ms)

Relative Standard
Deviation (%)

25x25 grid 869,14 4,65

50x50 grid 1885,899 2,93

1

Figure 6: Average wall-clock execution time (milliseconds) for the fire spread simulation on grids of size
25×25 and 50×50 (1200 time steps, 10 runs per scenario). Error bars indicate relative standard deviation
across runs.

scale, but the infrastructure is designed for larger scenarios. It is anticipated that more complex agents
(with more functions or layers) or larger scale models (e.g., 100k agents) will require the use of GPUs and
parallel execution.

5 CONCLUSION

This paper has presented a formal, modular simulation engine architecture grounded in the DEVS formalism,
designed to meet the growing demands of DT applications. Using a system theoretical framework and based
on the MSaaS paradigm, the engine supports scalable and time-consistent integration of DT components.
The integration of an FMI adapter enables interoperability with diverse modeling ecosystems.

A key contribution of this work is the integration of multiPDEVS with the X-Machines formalism that
enables the modeling of MAS with memory, context awareness, and decision-making logic within a formally
verifiable and composable simulation environment. As a result, the engine supports both well-structured
system decomposition and flexible agent-based behaviors - capabilities essential for representing modern
CPS and DTs. The developed simulation engine provides a solid foundation for DTs that require hybrid
modeling, multilevel abstraction, and dynamic scenario evaluation.

Although the tested fire spread model provides a controlled environment to test the core functionality
and scalability of the engine, it does not fully reflect the complexity or data-driven dynamics of industrial
DT applications. The fire spread use case serves primarily as a proof-of-concept to demonstrate functional
correctness, component integration, and basic performance scaling of the proposed engine. Therefore,
as part of the ongoing work, the author is preparing validations using more representative DT scenarios
from the manufacturing and transportation domains. In particular, the plan is to apply the engine to more
complex case studies (e.g., a public transport DT) to evaluate its performance and scalability in realistic
settings.

Future versions of the engine will be benchmarked against classical DEVS engines (e.g., Quartz), EB-
DEVS, and ABMS-focused frameworks such as FLAME GPU based on the hypothesis that the integration
of X-Machines can provide better scalability of large models due to reduced state transition overhead and
improved separation of logic between states and memory.

Significant attention in the future will also be paid to the use of GPUs for simulation acceleration,
as well as to improving the integration of ABMS with multiPDEVS. Extending the engine with adaptive
machine learning components, such as those that can update agent behavior or model parameters at runtime,
allowing models to be adjusted online as new data is received, is also being explored.

2893

Lektauers

By connecting formal modeling with practical deployment needs, the proposed engine paves the way
for more reliable, reusable, and intelligent digital twin simulations.

ACKNOWLEDGEMENTS

This research is conducted as part of the project "Development of the DigiTDevOps digital twin development
and operation platform" under the European Union’s Recovery and Resilience Mechanism Plan (Project
Number: 5.1.1.2.i.0/4/24/A/CFLA/001).

REFERENCES
Ambra, T., and C. Macharis. 2020. “Agent-Based Digital Twins (ABM-DT) in Synchromodal Transport and Logistics: The

Fusion of Virtual and Physical Spaces”. In 2020 Winter Simulation Conference (WSC), 159–169 https://doi.org/10.1109/
WSC48552.2020.9383955.

Biller, B., X. Jiang, J. Yi, P. Venditti, and S. Biller. 2022. “Simulation: The Critical Technology in Digital Twin Development”.
In 2022 Winter Simulation Conference (WSC), 1340–1355 https://doi.org/10.1109/WSC57314.2022.10015246.

Chakraborty, S., S. Adhikari, and R. Ganguli. 2021. “The Role of Surrogate Models in the Development of Digital Twins of
Dynamic Systems”. Applied Mathematical Modelling 90:662–681.

Choi, J., S. Moon, and S. Min. 2023. “Digital Twin Simulation Modeling Process with System Dynamics: An Application to
Naval Ship Operation”. International Journal of Robust and Nonlinear Control 33(16):10136–10150.

David, I., J. Galasso, and E. Syriani. 2021. “Inference of Simulation Models in Digital Twins by Reinforcement Learning”. In
2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C).
October 10–15, Fukuoka, Japan, 221–224.

Farsi, M., J. Erkoyuncu, D. Steenstra, and R. Roy. 2019, February. “A Modular Hybrid Simulation Framework for Complex
Manufacturing System Design”. Simulation Modelling Practice and Theory 94:14–30.

Foguelman, D., P. Henning, A. Uhrmacher, and R. Castro. 2021, May. “EB-DEVS: A Formal Framework for Modeling and
Simulation of Emergent Behavior in Dynamic Complex Systems”. Journal of Computational Science 53:101387.

Foures, D., R. Franceschini, P.-A. Bisgambiglia, and B. P. Zeigler. 2018, January. “multiPDEVS: A Parallel Multicomponent
System Specification Formalism”. Complexity 2018(1):1–19.

Franceschini, R., P.-A. Bisgambiglia, P. Bisgambiglia, and D. R. C. Hill. 2018. “An Overview of the Quartz Modelling and
Simulation Framework”. In Proceedings of 8th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications, Volume 1, 120–127. Setubal, Portugal: SCITEPRESS - Science and Technology Publications,
Lda.

Iliuţă, M.-E., M.-A. Moisescu, E. Pop, A.-D. Ionita, S.-I. Caramihai, and T.-C. Mitulescu. 2024. “Digital Twin—A Review of
the Evolution from Concept to Technology and Its Analytical Perspectives on Applications in Various Fields”. Applied
Sciences 14(13):5454.

Jiménez Aparicio, J. L., and J. Roßmann. 2025. Experimentable Digital Twins in the Loop, 195–206. Cham: Springer Nature
Switzerland.

Kefalas, P., G. Eleftherakis, and E. Kehris. 2003. “Communicating X-Machines: From Theory to Practice”. In Advances in
Informatics, edited by Y. Manolopoulos, S. Evripidou, and A. C. Kakas, 316–335. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Kiran, M. 2017. X-Machines for Agent-Based Modeling: FLAME Perspectives. Boca Raton: Chapman and Hall/CRC.
Lektauers, A., J. Bikovska, and V. Bolsakovs. 2022. “An Agent-Directed Digital Twin Framework for Simulation-Based

Training”. In 2022 63rd International Scientific Conference on Information Technology and Management Science of Riga
Technical University (ITMS), 1–6. Riga: Institute of Electrical and Electronics Engineers (IEEE).

Microsoft Azure 2025. “Digital Twins Definition Language (DTDL)”. https://github.com/Azure/opendigitaltwins-dtdl. Accessed:
April 17, 2025.

Morvan, G., and D. Jolly. 2012. “Multi-Level Agent-Based Modeling with the Influence Reaction Principle”. CoRR abs/1204.0634.
Niyonkuru, D., and G. Wainer. 2021, April. “A DEVS-Based Engine for Building Digital Quadruplets”. SIMULATION 97(7):485–

506.
Nutaro, J. 2011. Building Software for Simulation: Theory and Algorithms, with Applications in C++. Hoboken, New Jersey:

Jon Wiley & Sons.
Pretel, E., A. Moya, E. Navarro, V. López-Jaquero, and P. González. 2024. “Analysing the Synergies Between Multi-Agent

Systems and Digital Twins: A Systematic Literature Review”. Information and Software Technology 174:107503.
Procházka, D., and J. Hodický. 2017. “Modelling and Simulation as a Service and Concept Development and Experimentation”.

In 2017 International Conference on Military Technologies (ICMT), 721–727. Brno: Institute of Electrical and Electronics
Engineers (IEEE).

2894

https://doi.org/10.1109/WSC48552.2020.9383955
https://doi.org/10.1109/WSC48552.2020.9383955
https://doi.org/10.1109/WSC57314.2022.10015246
https://github.com/Azure/opendigitaltwins-dtdl

Lektauers

Rasheed, A., O. San, and T. Kvamsdal. 2020. “Digital Twin: Values, Challenges and Enablers from a Modeling Perspective”.
IEEE Access 8:21980–22012.

Richmond, P., R. Chisholm, P. Heywood, M. K. Chimeh, and M. Leach. 2023. “FLAME GPU 2: A Framework for Flexible
and Performant Agent Based Simulation on GPUs”. Software: Practice and Experience 53(8):1659–1680.

Seddari, N., S. Boukelkoul, A. Bouras, M. Belaoued, and R. Mohamed. 2021. “A New Transformation Approach for Complex
Systems Modelling and Simulation: Application to Industrial Control System”. International Journal of Simulation and
Process Modelling 16(1):34–48.

Steiniger, A., and A. M. Uhrmacher. 2016, January. “Intensional Couplings in Variable-Structure Models: An Exploration Based
on Multilevel-DEVS”. ACM Transactions on Modeling and Computer Simulation 26(2):1–27.

Sultanovs, E., J. Strebko, A. Romanovs, and A. Lektauers. 2020. “The Information Technologies in the Control Mechanism of
Medical Processes”. In 2020 61st International Scientific Conference on Information Technology and Management Science
of Riga Technical University, 1–5. Riga: Institute of Electrical and Electronics Engineers (IEEE).

Tian, H., H. Zhao, H. Li, X. Huang, X. Qian, and X. Huang. 2023. “Digital Twins of Multiple Energy Networks Based on
Real-Time Simulation using Holomorphic Embedding Method, Part II: Data-Driven Simulation”. International Journal of
Electrical Power & Energy Systems 153:109325.

Traoré, M. K. 2021. “Unifying Digital Twin Framework: Simulation-Based Proof-of-Concept”. IFAC-PapersOnLine 54(1):886–
893.

Vanommeslaeghe, Y., B. Van Acker, J. Denil, and P. De Meulenaere. 2024. “Integrating DEVS and FMI 3.0 for the Simulated
Deployment of Embedded Applications”. In 2024 Annual Modeling and Simulation Conference (ANNSIM), edited by J. O.
Bentley and R. C. Rodríguez, 1–13. Washington, DC: The Society for Modeling & Simulation International (SCS).

Wainer, G., R. Goldstein, and A. Khan. 2018. “Introduction to the Discrete Event System Specification Formalism and
Its Application for Modeling and Simulating Cyber-Physical Systems”. In 2018 Winter Simulation Conference (WSC),
177–191 https://doi.org/10.1109/WSC.2018.8632408.

Wooley, A., D. Silva, and J. Bitencourt. 2023, August. “When is a Simulation a Digital Twin? A Systematic Literature Review”.
Manufacturing Letters 35:940–951.

Yao, J.-F., Y. Yang, X.-C. Wang, and X.-P. Zhang. 2023. “Systematic Review of Digital Twin Technology and Applications”.
Visual computing for industry, biomedicine, and art 6:10.

Zeigler, B., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation: Discrete Event Iterative System Computational
Foundations. 3rd ed. New York: Academic Press.

Zeigler, B. P. 1976. Theory of Modeling and Simulation. New York: John Wiley.

AUTHOR BIOGRAPHY
ARNIS LEKTAUERS is an Associate Professor in the Faculty of Computer Science, Information Technology, and Energy
at Riga Technical University, Latvia. He obtained his Ph.D. from Riga Technical University in 2008. His main scientific
interests include the research of high-performance interactive hybrid simulation solutions with an application to complex systems
analysis in the area of industrial, economic, ecological and sustainable development. He is actively involved in academic and
professional activities in various capacities. His email address is arnis.lektauers@rtu.lv.

2895

https://doi.org/10.1109/WSC.2018.8632408
mailto://arnis.lektauers@rtu.lv

	240-con307s3-file1

