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ABSTRACT

The challenge of optimizing a smooth convex functional over probability spaces is highly relevant in
experimental design, emergency response, variations of the problem of moments, etc. A viable and
provably efficient solver is the fully-corrective Frank-Wolfe (FCFW) algorithm. We propose an FCFW
recursion that rigorously handles the zero-order setting, where the derivative of the objective is known
to exist, but only the objective is observable. Central to our proposal is an estimator for the objective’s
influence function, which gives, roughly speaking, the directional derivative of the objective function in
the direction of point mass probability distributions, constructed via a combination of Monte Carlo, and a
projection onto the orthonormal expansion of an L, function on a compact set. A bias-variance analysis of
the influence function estimator guides step size and Monte Carlo sample size choice, and helps characterize
the recursive rate behavior on smooth non-convex problems.

1 INTRODUCTION

The challenge of optimizing a smooth functional on the space of compactly supported probability measures
is stated as follows:

min. J(u)
st. pe 2?2, (P)

where 2~ C R?is compact, &2 (.2") is the space of probability measures supportedon 2", and J : Z(Z) — R
is a smooth functional. The problem (P) has recently received a lot of attention on account of its direct
applicability in various contexts. Of particular interest in this paper is the frequently encountered zero-order
setting, also known as the derivative-free setting, where J is smooth in a sense to be defined in Section 1.2,
J(u) € Ris observable atany u € #(2°), butits derivative J;, (v — 1) (to be defined precisely in Section 1.2)
is not directly observable. The derivative operator JL( -— ), a crucial aid in the search for a critical point
associated with J, will therefore have to be appropriately estimated as the search evolves. The analogue of
this setting in the Euclidean context is widely understood to be useful — see Shashaani et al. (2018), Conn
et al. (2009). Correctly converging iterative algorithms to solve (P) generate a sequence L C Z(Z") of
probability measures that satisfy a reasonable criterion such as J(u) — inf{J(u),u € 2(Z)} as k — oo
in some appropriate sense, assuming the infimum is finite.

1.1 Illustrative Examples

The question in (P) arises in numerous and varied contexts. In what follows, we outline three examples
as illustration.

Example 1 (Experimental Design) Consider the question of how best to sample points from a set 2~ C R?
in the service of estimating the parameter vector * € R of a parametric response surface

Y(x) = f(x,B") +&x),
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where Y (x) is the response atx, f(-, B*) : R? — R is some response surface, e.g., a Scheffé polynomial (Cornell
2011; Draper and Pukelsheim 1999), a power-mean-mixture model (Coetzer and Focke 2010), or a model
using Padé approximants (Focke et al. 2021), and &(x) satisfies E[(x)] = 0, var[e(x)] = 6> < e0. To pose the
problem precisely, suppose we obtain observations Y1, Y3, ..., Y, at the locations X1, X, ..., X, ~ ue2(Z),
and construct the “least-squares” estimator ﬁn of B*, that is,

i=1

B argmin{f (¥~ (% B))*: B € Rd}.

The experimental design question is then that of identifying a measure g € & that optimizes a performance
measure associated with f,. For example, A-optimal design in classical statistics selects the trace of the

covariance of matrix as the performance measure, J(i) :=tr (cov( ﬁn)> , whereas D-optimal design chooses

the determinant of the inverse covariance matrix, J(i) := —det (cov*1 (ﬁn)) Various other performance

measures may be of interest — see, for instance, Atkinson et al. (2007).

If J and its derivative J L (defined in Section 1.2) can be observed without error, then a first-order method
such as the fully corrective Frank Wolfe (FCFW) method (detailed in Yu et al. (2024) and Section 2) can
be used to minimize J. However, it is sometimes the case that this is not possible because the response
surface f has a complicated form and J,, while guaranteed to exist with linear structure (see Definition 2 for
details), might be difficult or at least inconvenient to compute or approximate. One might then reasonably
seek a Kiefer-Wolfowitz type (Kiefer and Wolfowitz 1952) derivative-free analogue of first-order FCFW
in which the derivative JL is estimated upon demand using observations of J at appropriate locations.

Example 2 (Problem of Moments) Let Z¢(.2") denote the set of probability measures supported on 2~ C R4
and having a density function, that is, corresponding to each yu € Z¢(%Z") there exists a Lebesgue integrable
function f,, : RY — [0,00) such that tt(A) = [, fu(x)dx for all (Lebesgue) measurable sets A € . (R?). For
Z" = [a,b] being some finite interval, it is well-known that the uniform probability measure maximizes
entropy, that is, i*(A) = [4q(,, 4%/ (b — a) solves the optimization problem

min. H(u):= /Rdfu(x)logfu(x)dx

st HePA(X), X =lab] (1)

Similarly, the exponential distribution with parameter A has the largest entropy among all contin-
uous distributions supported on R and constrained to have mean A~!, that is, the measure u*(A) =
Jarjo.0) A €xp{—Ax} dx, for all A € Z(R) solves the optimization problem

min. H(u) = /R fiu(x)log fu (x)dx

St /Rxdu(x):rl; WEPA(L), X =[0,0). @)

A third classical result asserts that the normal distribution with mean zero and variance ¢ has the
maximum entropy among all continuous distributions supported on R and having specified variance 6% < co.

As a generalization of (1) and (2), we might consider functionals other than entropy and ask which
among the probability measures in &?(:Z") minimizes a specified statistical functional J : #(Z") — R,
while subject to a finite set of linear (in () constraints, that is,

min. J(u)
st. Au=b;, puec2a), (3)
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where A : Z(2") — R¢ is a linear operator, and b € R°. Depending on the nature of the statistical functional
J, only an algorithmic solution to (3) may be possible in the sense that no “named distribution” might
solve (3). Furthermore, while J might have a derivative J;L with linear structure, its calculation may be too
challenging or inconvenient, calling for a derivative-free method such as the one we outline in this paper.
Admittedly, however, the derivative-free method we propose here does not treat constraints, and needs to
be augmented appropriately to solve (3).

Example 3 (P-means Problem) The P-means problem (Molchanov and Zuyev 2002; Okabe, Boots, Sugihara,
and Chiu 2000), often described as the randomized version of the k-means clustering problem, is stated
as follows. Suppose demand sources located at £1,05,..., 6, € 2 CR? are to be serviced by responders
located in 2", where 2 is some known compact set. For randomization, suppose that the responders
are located in 2~ according to a spatial Poisson process X,, having mean measure u, with u(2") =1,
so that u € Z(Z°). Also, assume that the i-th demand source is serviced by one of the responders
(Xu,1,Xu2,---,Xun) of X, with incurred cost ¢;(X,,). In the simplest setting,

ci(Xy) = minj—i 2 || Xu,j = 4ill2 N>0;
ST | diam(2) = sup, ey -yl N=0,

but can take a much more complicated form depending on the specific application. The P-means problem,
seeking u € #(Z") that minimizes the expected total cost, is then stated as:

min. J(u) :i/ompx (ci(Xy) > 1) dr

st. pe2(2).

As in the previous examples, while the derivative JL endowed with linear structure might exist under
mild assumptions, it may not be easy to compute, especially if the cost function c; has a complicated form.
Such settings call for derivative-free methods such as the one we outline in this paper.

1.2 Preliminaries

In what follows, we provide definitions of some key mathematical machinery used in the paper.

Definition 1 (Measure, Signed Measure, Probability Measure) Let (2",X) be a measurable space. A set
function gt : £ — R* U {eo} is called a measure if (a) tL(A) > 0 VA € Z, (b) t(0) = 0, and (c) u (U7 1(A)) =
Y.7-1 1(A;) for a countable collection {Aj,j > 1} of pairwise disjoint sets in . The set function p is
called a signed measure if the non-negativity condition in (a) is dropped and the infinite sum in (c)
converges absolutely. It is called a o-finite measure if there exists a countable collection {A;, j > 1} such
that (Aj) <eo,j>1 and U7 A; = 2, and a probability measure if 1(2") = 1. In the current paper
X CRY, L =PB(Z) is the Borel c-algebra on 27, and &2 (.2") refers to the set of probability measures
on (2, B(XZ)).

Definition 2 (Influence function and von Mises Derivative) Suppose J : Z(2°) — R is a real-valued
function, the influence function hy : Z — R of J at u € 2 (") is defined as

o) = i + {70016, - ) 10} @

t—0+
where O, : A(Z°) —{0,1}, defined by 0,(A) := 4 (x) for A € #(Z"), is the Dirac measure (or atomic
mass) concentrated at x € 2  (Fernholz 1983). The influence function should be loosely understood as
the rate of change in the objective J at u, due to a perturbation of u by a point mass 6,. The von Mises
derivative is defined as
.1
v —nyi= lim H{riv ) s}, wve 2@,

t—0t 1
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provided J}/i() is linear in its argument, that is, there exists a function ¢, : 2" — R, integrable with respect
to both ¢ and v, such that

Tuv=w) = [ 6u@av ) () )
= EX~V[¢M(X)] —Exp [¢”(X)]

When (5) holds, we can see that ¢, in (5) and A, in (4) coincide to within a constant since vV — i has total
measure Zzero.

2 FRANK-WOLFE METHODS FOR OPTIMIZATION OVER PROBABILITY MEASURES

We now introduce Frank-Wolfe methods for optimizing measures over &2 (2"). To motivate our approach,
recall the Frank-Wolfe recursion (Dunn and Harshbarger 1978), also known as the conditional gradient
method (Bubeck 2015), in finite-dimensional Euclidean spaces. When minimizing a smooth function
f:R? — R over a compact convex set Z C R?, the Frank-Wolfe recursion is given by

Yerr = (1= M)+ Mese, ¢ = argmin V. () s,
seZ
where 1y € (0,1] is a step size. This method ensures that the iterates {y;} remain feasible, and the linear
subproblem can be solved efficiently.
To extend the Frank-Wolfe idea to &?(Z"), consider a smooth functional J : #(2") — R. Instead of
gradients in the finite-dimensional setting, the von Mises derivative J, ;1 serves as the first-order approximation:

J(u) = J()+J, (u—p), forue 2(2).
This suggests the following recursion for measures:

Mirt = (1= M) e + Mettg, e = argmin Jy, (u— ).
ue2(X)

As shown in Lemma 5 of Yu et al. (2024), the minimizer of Jj (u— i) is a Dirac measure J,-(,,), Where
x*(u) minimizes the influence function /y (x) over 2. Thus, the recursion simplifies to

Mt = (1= M)l + MBS (y), ¥ (k) € argljgfinhﬂk (x). (dFW)
xed

The approach encapsulated by (dFW) solves an infinite-dimensional optimization problem by iteratively
accumulating point masses at optimally chosen locations in 2. Unlike traditional finite-dimensionalization
techniques such as gridding, the (dFW) recursion dynamically updates its support set without requiring a
predefined discretization of the search space. Under standard assumptions of convexity and L-smoothness of
J, the (dAFW) method guarantees an O(k~!) convergence rate in objective value, as established in Theorem 1.

This result follows from the complexity analysis in Yu et al. (2024).

Lemma 1 (Complexity; Yu et al. 2024) Suppose J is convex and L-smooth. Then the iterates (dFW)
satisfy

2LR?
J —IFr< = k>1

where J* :=inf{J(u): p € Z(Z)} and R = sup{||u1 — W2 : U1, 2 € Z(Z")}.

A natural extension of Frank-Wolfe is the fully corrective version, which often yields improved practical
performance (Bredies and Pikkarainen 2013; Boyd et al. 2017). A fully corrective modification of (dFW)
is presented in Algorithm 1. Unlike (dFW), where the update is a convex combination of the previous

3361



Yu, Henderson, and Pasupathy

Algorithm 1 Fully-corrective Frank Wolfe (FCFW) on Z(2")

Input: Initial measure fy € 2(2")
Output: Iterates Wi,...,Ux € #(Z")
1 Ag < 0 or {‘U()}

2for k=0,1,...,K do

3 x*() « argmin,e o hy, (x)

4 A1 < AU {60y}

5 Meyr < argmingcony(a,. ) J (1)

6 end for

iterate t; and the Dirac measure 6y (), fully corrective Frank Wolfe (FCFW) maintains and optimizes
over an expanding set of Dirac measures. Specifically, FCFW starts with an initial measure Lo and an
empty set Ag. At each iteration k, a new Dirac measure &, (,,) is added to Ay, forming the updated set:

Ak+1 — {5)(*(‘“0)7 ceey 6X*(.“’k)}

The FCFW algorithm then minimizes J(ut) over the convex hull of Ay, incorporating all selected atoms,
as shown in Step 5. This fully corrective step is equivalent to solving:

k k
po,T;?ERJ (;’)piﬁx*(u[)) S.t. l.;')pi =1, p;>0.
Since J is convex, this results in a finite-dimensional convex optimization problem, which remains com-
putationally feasible in practice.

As an extension of (AFW), FCFW also achieves an O(k~!) convergence rate under the same assumptions
as Theorem 1, with a similar proof. However, FCFW introduces additional theoretical properties that enhance
its practical performance. In particular, Yu et al. (2024) establish a sufficient decrease property under a
weaker assumption, requiring only 7y, (x*(tx)) < O rather than the global optimality of x* ().

3 ESTIMATING THE DERIVATIVE

The von Mises derivative J;l (or the influence function Ay ) of the functional J is a key mathematical object
that determines the “direction” along which iterates are updated within FCFW. As we have described
through illustrative examples in Section 1.1, it is sometimes the case that while ];,1 might exist, it is not
directly observable. We thus turn to the question of how to estimate the von Mises derivative J;L.

3.1 Recall Estimation in R?

To provide intuition for the method we outline, we first consider the derivative estimation problem in
Euclidean space. Suppose f: 2 C RY — R is a real-valued differentiable function with domain 2 C R?,
whose gradient V f(x) we want to estimate. Assume for simplicity that 2 has a non-empty interior. Now,
suppose Z is an R%-valued random vector such that

E[ZZT] =1,
where I; is the d x d identity matrix. Then, we see that
E[ZZTVf(x)] = Vf(x). (©)

The left-hand side of (6) cannot be used directly to construct an unbiased estimator of V f(x) because
Z™V f(x) is not directly observable. However, notice that for small > 0, ZTVf(x) can be approximated
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through finite-differencing, that is,

2S00 % ¢ (fx+Z) — ). )

The expressions in (6) and (7) thus suggest the following (biased) estimator for V f(x):

V() = Z % ;(f(x—i—tZ)—f(x)), £>0. @)

The estimator in (8) seems to have been independently discovered by various authors (Nesterov and
Spokoiny 2017; Spall 1998) and has recently become the work-horse of zeroth-order optimization methods
in Euclidean space (Duchi et al. 2015). The properties of V f(x;¢) have been investigated thoroughly (Spall
1998) but, considering our purpose, we will not go into details here.

3.2 Estimation in &(2Z") using L, Approximation

Recall that the von Mises derivative JL is given by

Bv=w = [ m@dv-p) ©)

where hy 1 2 — R is the influence function of J at p € &2(2Z"). Due to the linear structure in (9), the
problem of estimating J, L essentially amounts to the problem of estimating the influence function hy,. We
next mimic the development in Section 3.1 to obtain an estimator. A significant challenge is the infinite
dimensionality of 4, which we attempt to overcome using a projection framework.

Suppose that iy, € Lr(Z"), the (Hilbert) space of square integrable functions on 2", and that diam(.2") <
co. Suppose further that {u,,n > 1} is a complete orthonormal basis of L,(.Z"), so that we can write

) d )
hu(x) = Y ajuj(x) = Y ajuj(x)+r(x); r(x):= Y aujx), (10)
j=1 Jj=1 Jj=d+1

where (u;,uj) = [4 ui(x)u;j(x)dx = 6;; and (u;,r) =0,j=1,2,...,d. Standard results (e.g., Luenberger
(1997), Section 3.8) guarantee the existence of a complete orthonormal sequence on L(Z").
Since (u, : n > 1) forms an orthonormal set, we have

aj:(hu7uj>:/%hu(x)uj(x)dx, i=12,... (1D

The expression for a; in (11), and the expression for £ in (10) suggests the Monte Carlo estimator

(agE

d
hy(x) = Zlaj(m)uj(x) with @;(m) = (X )uj (X)), (12)
]J=

3=

t=1

where X; ~ Unif(2") and v is the volume of 2", which is finite by assumption. The estimator d;(m) of a;
in (12) is still not observable because A, (X;) is not observable. So, we next construct a finite-difference
estimator for A, (X;) as

FD(X%) =+ (1 —)p +58y) —J(10), (13)

where s > 0 is the step-size. The estimator (13) can now be plugged into (12) to obtain an observable (but
biased) Monte Carlo estimator of the influence function,

R

flu(p,x) =) ajm,s)uj(x), xeZ, (14)

1

J
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where the “parameter vector” triple p := (m,s,d), and
V & .
dj(mas) - % ZFDS,,LL(Xt)uj(Xt), X ~ Ul’llf(%)
=1

Observe that the (random) function estimator izu (p,-) (of hy(-)) appearing in (14) has two sources of
bias. The first is due to the truncation (to d terms) of the infinite sum appearing in (10), and the second is
due to the finite-difference approximation appearing in (13). Both of these sources of bias, along with a
term due to the variance associated with Monte Carlo sampling, appear in the following result quantifying
the quality of the function estimator h.

Theorem 1 (Estimator Quality) Suppose that the following assumptions hold:

A.l  the functional J: Z(%2") — R is L-smooth;

A2  diam(Z") < oo}

A3 the orthonormal vectors uj,j = 1,2,... are such that |[ul|w := sup ;- [[u;|e < o; and

A4 the second moment E[hy (X)?] < oo, where X ~ Unif(:2"), which then implies, in view of A3, that
01 = sup = Var(fy (X)u;(X)) < eo.

u
Then,
A 2dLs - dvo,
E[[|au(p.) =)L) < lull + Y lajl+—~= |, (15)
i) ~maOL] < e 255+ E e+ 2
and ,
X 2 8d>L 2% o,
E [l (p. ) )|12] < 211wl ( Y |a,|> . (16)
Jj=d+1
Suppose further that
A5  the coefficients a; decay polynomially, that is, 3C;
Then the function estimator /y, ((m,s),-) satisfies
A 2dLs C; X dvo,
E[||u(p,) —hu ()] < lulleo | —5 + —=d T + —= 17
i) = Ol < e (224 S amert e 22 (1)
and g s
, 2 8d*L?s* c? : 2d*?o,
E[h ) —h(- ]<z 2 L g2 22" 70 ) 18
) = ()[2] < 20 ( A G LA e (18)
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Proof Sketch. We only provide a proof sketch for (16) and (18); the proofs for (15) and (17) follow
similarly and are omitted. First, by Assumption A.3, we have

M&

i (p,-) = ()12 = sup

j—aj(m,s))uj(x)+ aju
xe& ’ j Z ’

J:] j=d+1

(Zaj—aj m,s)| + Z la]|> a2,

Jj=d+1
2 (
J

2
laj—a;(m,s) ) < Z ‘%’) H“”i
Jj=d+1
d
2(dY]

(aj—aj(m,s) ( )y !%I) |- (19)
j=1

Jj=d+1

IN
=

IN

Next,
E[(a;—a;(m,s))*] =E [(aj—aj(m)+aj(m)—aj(m,s))ﬂ
<2E [( i —dj(m ))2] +2E [(dj(m) —&j(m,s))z] =:1+1I

2
2v oy

From Assumption A.4 and properties of the unbiased Monte Carlo estimator of a;, we have I < —
Using the L-smoothness of J, the finite-difference error w(X) := FD; ;(X) —hy(X) satisfies [w(X)| <

2sL. Since E[u?(X)] = v~ ! and thus E[Ju;(X)|] <v~!/2, we obtain the bound

2
11=2E (1 ZW(Xz)uj(Xt)>
mt:l

- 2# (mE [w*(X)u3(X)] +m(m—1)E [w(X1)u(X))w(X2)u(X2)])
85212

S2 2
< 24m2L (mIE [13(X)] +m(m — 1)(1E]u(X1)\)2> <

Taking the expectation of (19), we obtain

- 2
E [llh(p.) —ha()]I2] <2 dZE j—a;(m, S))2]+< )y !%\) |2

= j=d+1
2
8d%12s 2 = 2d2v26
=2/jul2, Y lajl
Jj=d+1
Finally, by Assumption A.5, we have 7, |a;| < (C1)d=¢*1/(c—1), which yields (18). O

Assumptions 1 and 2 of Theorem 1 are standard. Assumption 3 is not overly restrictive, e.g., it is
satisfied by Fourier series. Assumption 4 is satisfied, e.g., if 2 is compact and hy is continuous, and
might be verified in other settings through, e.g., Lyapunov methods. Some form of coefficient decay like
in Assumption 5 is necessary to ensure the tails of the expansion are ultimately negligible and is common
in Fourier analysis. We leave the question of how to verify that condition to future work.

3365



Yu, Henderson, and Pasupathy

4 THE DERIVATIVE-FREE FCFW ALGORITHM

The function estimator fzu (p,-) appearing in (14) for the influence function 4, suggests a straightforward
zeroth-order extension of the first-order FCFW algorithm in Algorithm 1 by simply replacing A, (-) with
By, (Px,-)s pr := (my, sx,dy) with the sample size sequence (my : k > 1), the step-size sequence (si : k > 1),
and the number of terms in the expansion (dj : k > 1) determined appropriately.

Algorithm 2 Derivative-Free Fully Corrective Frank Wolfe on &7(.2")
Input: Initial probability measure yy € &?(2"); sample-size sequence (my : k> 1);
step-size sequence (s : k > 1) and truncation sequence (di : k > 1)
Output: Iterates U,...,Ux € Z(Z)
1 A() <0 or {,u()}
2for k=0,1,...,K do
3 find x} € 2 such that /iy, (pg,x}) <0
4 Ak+1 — Ak @] {Sx*(ﬂk)}
5 My argmin,chonv(AH,)‘](:uk)
6 end for

It is plausible that as long as my — oo, s — 0, and dj — oo (at appropriate rates), then consistency of
some form, e.g., |y, | — 0, should result. Even more interesting than such consistency is the question of
convergence rate, and in particular, how the decay rate ¢ appearing in A.5, and the parameter sequence
pr = (my, sk, dy) interact to determine the convergence rate.

In preparation for such a consistency and rate result, we now state an important sufficient decrease
lemma quantifying the behavior of the sequence (J(L) : k > 1) as a function of the quality of the solution
obtained in Step 3 of Algorithm 2.

Lemma 2 (Almost sufficient decrease) Suppose J is L-smooth. Then the sequence {i} generated by
Algorithm 2 satisfies

(1, 1
I (1) — I () < _mln{mhik(Pkyxk)7 2LR2} +%&, k=0, (20)

where A
* 7 * : h (pk7X*)
€1 1= Iy (5F) — I (1, 3}): n:=mm{—”"mz"’1 =

and R = sup{||t1 — o[ : i1, o € 2(27)}.

Proof Sketch.  Define W05 := (1 — %) + %Oy;, where ¥, € [0,1] was defined in the statement of the
lemma. Using the smooth function inequality on J, and after (lots of) algebra, we have that

. 1. * 1 * 7 *
J(Uiv0.5) —J (M) < —min {Mhik (PrsX1) 2LR2} + Y (e () — by, (Pis 7)) -

Since fly+1 € argming ccony(a,, )7 (Hk), we have that J(t1) < J(tro.5), and thus

. | * 1 * 7 *
J(Mier1) —J () < _mln{mhik(pkaxk)v 2LR2} + Y (e () — by, (prsx2)) -
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It is important that Lemma 2 does not guarantee descent, that is, the objective function does not
necessarily decrease at each iteration because the term &, that appears on the right-hand side of (20) can be
positive. This is the key manner in which the current context of derivative-free smooth optimization differs
from the first-order context where an inequality analogous to (20) has & = 0, and the estimator ilﬂk (Prs+)
is replaced by A, (), thereby guaranteeing descent at every step.

Given the inequality in (2) and the nature of &, it stands to reason that if the parameter vector
pr = (my,sx,dy) is such that the estimator error ||/, (-) — Ay, (px,-)||- is appropriately controlled across
iterations, then consistency is obtained, as demonstrated in the following result.

Theorem 2 (Consistency and Complexity) Suppose the assumptions A.1-A.5 in Theorem 1 hold. Suppose

further that - . N
Z —" <oo; Ydisp<oo and Y d TV <oo. 1)
k=1

=1 k=1
Let J*:=inf{J(u) :u € (& )} Then, the random sequence {1 } generated using Algorithm 2 satisfies

]}i_rghuk (x;) =0 as.

Furthermore, there exists (a random) K < oo such that

1
1 n ’
h <—no | 2LR*(J —J 2 22
Kgglkgn} eI —Retl ( (/ (kk, ) )+i;<08k> (22)
where R = sup{ ||t — 2| : 1, o € P (Z).
Proof Sketch. First, due to (21) and (17),
Y leel <o and Y] g <o as., (23)
k=1 k=1
where g is as in (20). Also, from (20), we have
. 1 LR?
J(Hk41) = J () < —min 2LR2h“"(pk’xk) " + [ €| (24)
Adding the inequalities (24) for k =1,2,...,n, we see that
n ) 1 .
_oo<J*—J(/.11)g](unH)—J(ul)g—Zmln{zLthuk(pk,xk , }+Z]8k (25)
k=1
From (23) and (25),
Yy (poxi)® <o as. (26)

From (26) and (23), and observing that

n
Zhuk X)) <2 Zfz (Prsxz) +228k a.s.,
k=1 k=1 k=1

we conclude that |/, (x})] — 0 as k — oo a.s. Then, there exists Ko < oo such that |/, (pr,x})| < LR? for
all £ > Kp. Using (20) and after some computation, we obtain

2LR2(J(/'L/<+1) *J(/Jk)) < 7h.uk (xlt)z + 8,3, Vk > KO'
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Summing over k = Ky, ...,n and simplifying gives

1/2
. * 1 2 * - 2
< _ 2
Kg}gn'h‘i"(xk)' T Vn—Ko+1 <2LR Wlkz) =) k_K08k> ’

which proves (22). 0

Theorem 2 establishes that the value of the influence function at the point x; chosen at iteration k
converges to 0, and also gives the rate result (22) on how quickly this happens. One might be tempted to
view this result as saying that the derivative converges to 0 as the iterations progress, but that is a stronger
statement than is proved in Theorem 2. The difficulty stems from the fact that we chose x; arbitrarily,
except that it has a negative estimated influence function value. For example, one could select a sequence
of points that have negative true influence function value, but of smaller and smaller absolute value, while
there exist other points with negative influence function values that are bounded away from 0. In short, our
very weak selection criterion for x; leads to correspondingly weak convergence results. With a stronger
selection criterion, stronger conclusions are possible using the tools we have developed, here. Indeed, a
close reading of Theorem 2 makes clear that the better the choice of x;, the better the asymptotic result
that can be achieved.

5 CONCLUDING REMARKS

The infinite dimensional problem (P) that we have tackled in this paper is extremely challenging when we
do not have access to first-order information, in particular, the influence function that, roughly speaking,
provides directional derivatives in the direction of point mass probability distributions. We developed an
estimator of the influence function that has a finite-dimensional representation. The estimator is obtained
by expressing the influence function as a linear combination of orthonormal basis functions, then neglecting
all but finitely many terms in the expansion. The remaining basis function coefficients are estimated using
Monte Carlo. The estimator is biased because of both truncation of the expansion and finite differencing used
to estimate certain directional derivatives. We provided an error analysis of the resulting influence-function
estimator.

We then provided a fully corrective Frank-Wolfe algorithm that exploits the influence function estimator,
along with a result on the asymptotics of the sequence of measures that result. It is of central importance
in applications that the sequence of measures that are attained are finite discrete measures, and thus readily
stored, sampled and represented. This is a significant advantage of the approach explored in this paper
where we directly tackle an infinite-dimensional problem, relative to an approach where one discretizes
the domain 2" at the outset and then attempts to solve a finite-dimensional optimization problem. In both
approaches, one obtains algorithms that work with finite dimensional representations, but the approach
advocated herein does not need to impose arbitrary discretizations at the outset.

There is much more to be explored. For example, what are the implications of the conditions (21) on
the various parameters of the influence function estimator, and are there versions of Theorem 2 that, under
stronger conditions, provide stronger convergence guarantees? Such results might rely, for example, on
some combination of stronger assumptions on the functional, J, or on the selection xj; at each iteration k.
We assumed that the functional, J, could be exactly observed at a measure, , but in many problems, J (i)
can only be observed through unbiased estimates of J(11) at any given measure p. Extensions to that setting
would be welcome. Implementing, testing and comparing algorithms is a central goal. Moreover, there are
many application-specific ideas that could be explored, e.g., how should one select the orthonormal basis
and the ordering of functions within the basis for a given application?
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