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ABSTRACT

This study presents an approach to dynamically calibrate a digital twin to support decision-making in
systems operating under uncertainty. The framework integrates uncertainty by turning a physics-based
model into a stochastic simulation, where independent variables that represent environmental conditions
may be nonstationary whereas target variables are conditionally stationary. Calibration itself is formulated
as a simulation optimization problem that we solve using a root-finding strategy. As a case study, we
apply the framework to the prediction of short-term power deficit, known as the wake effect, in wind farms
using real-world data and demonstrate the robustness of the proposed framework. Besides advancing the
digital twin research, the presented methodology is expected to impact wind farm wake steering strategy
by enabling accurate short-term wake effect prediction.

1 INTRODUCTION

Stochastic simulation research is undergoing a fascinating evolution in the age of digital twins. One basic
research need for digital twins is the ability to exploit the continuous ingestion of data to adjust (calibrate)
the model rapidly and robustly for more accurate near-term predictions. In other words, dynamic calibration
of simulation models to characterize the evolving behavior of the underlying real-world environment with
an influx of data is a growing challenge we address in this paper.

1.1 Motivating Examples

Figure 1: Simulated wind speed deficit in a wind farm under strong and minimal wake conditions using
the FLORIS model available at https://nrel.github.io/floris/.

Our motivating example and case study in this paper involves calibration of wake effect in wind turbines.
Wake effect is a aerodynamic phenomenon in which airflow passes through the upstream turbines leads to
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a wind speed deficit and increased turbulence for the downstream turbines. This aerodynamic interaction
compromises the downstream turbines’ power generation and often induces increased mechanical loads.
Accurately understanding the wake effect is crucial for optimizing wind farm performance, ensuring turbine
reliability, and designing efficient wind farm layout (Shakoor et al. 2016).

Figure 1 illustrates the impact of different wake scenarios in a wind farm of multiple turbines, when the
wake effect is modeled by the famous Jensen wake model (Jensen 1983). Figure 2 depicts the relationship
between the wake parameter, optimal rotor angle offsets, and the resulting achievable power generation.
In strong wake condition, the turbines adopt larger yaw offsets to deflect the wake effect and mitigate
downstream power losses. In contrast, under weaker wake conditions, the wind power deficit recovers
more rapidly, and the optimal rotor angle align more closer to the wind direction. Such decision-making
in wind farm is known as wake steering, where rotor angles are strategically adjusted to optimize power
generation by managing wake interactions.

Figure 2: Impact of wake decay on optimal rotor angle (left) and the resulting power output (right).

1.2 Existing Work

In practice, dynamically implementing wake steering strategies is challenging. Traditionally, wake effects
have mostly been analyzed with their long-term effects (statically), focusing on optimizing a global wake
parameter by aligning the outputs of the model to the historical data through empirical minimization or using
point predictions via machine-learning (Jain et al. 2023; Park et al. 2022). While long-term wake analysis
is valuable in layout design or evaluating overall efficiency, it is less suited for the real-time operational
decisions. A recent study modeled inter-turbine delays to refine short-term wake dynamics and inform
control strategies (Xiao et al. 2025). However, the delayed wake effect is deterministically computed
using fixed time intervals based on current conditions, rather than through a fully predictive or stochastic
framework. Indeed a large portion of dynamic calibration literature is based on deterministic models or
fixed-delay assumptions, such as moving average prediction or by deliberate selection of window size (Wang
et al. 2025; Staid et al. 2015). These methods do not fully account for the inherent uncertainties present
in the collected data due to weather variability, unknown turbine configurations, and measurement errors.
A framework based in the stochastic simulation that explicitly accounts for uncertainty in the environment
appears to be more suited. Although, there have been recent studies where stochastic simulation is used
to generate the power output scenarios (Zhang et al. 2024), quantify the risk of instability (Vicente et al.
2017) and spatial optimization of the wind farm (Katikas et al. 2024), its use in the analysis of wake effects
remains relatively unexplored. A critical challenge in the use of simulation to accurately predict the correct
wake under the upcoming weather conditions lies in the nonstationary nature of the wind conditions and
its interaction with the stochastic behavior of the turbines. We focus on this aspect in our proposed work.
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1.3 Our Contribution

We present a stochastic simulation-based digital twin calibration framework that blends physics-based,
data-driven, and probabilistic models to account for evolving and uncertain data. We divide the inputs
to the calibration problem (which are covariates and target variable in the dataset) into nonstationary and
conditionally stationary random variates, to which we fit appropriate probabilistic input models to provide
a data generator for the simulation optimization problem. While we present the framework as tailored to
our motivating example, with a weather emulator, a wind farm simulator, and a physics-based wake model
to capture turbine responses and interactions, it is generalizable to other digital twin applications.

Our paper is organized as follow. In Section 2, we formally state and formulate the problem, introduce
a dual reformulation, and list key assumptions. We then present the proposed stochastic-simulation based
dynamic wake calibration in Section 3, detailing the design of the weather emulator, wind farm simulator,
and the calibration process. In Section 4, we provide experimental results using real-world wind farm data
to evaluate the wake prediction performance. Lastly, in Section 5, we conclude with final remarks and
discuss the broader implications of our framework in enabling proactive wind farm control strategies.

2 PROBLEM STATEMENT AND PROPOSED FRAMEWORK

We start by establishing the necessary definitions and assumptions. Let xreal ∈ X ⊂ Rmx represent the
mx-dimensional vector of independent variables (often representing environmental conditions in digital
twins). Let yreal ∈ Y ⊂ Rmy be the corresponding my-dimensional vector of target variables. Consider
θ ∈ Θ as the calibration parameter of the digital twin output h : X ×Θ → Y . Assuming we have T data
points {(xreal

t , yreal
t ), t = 1, 2, · · · , T} collected over time at our disposal, define a (positive) discrepancy

function d+ : Y ×Y → R+ such as absolute or mean squared error. Then, the classical (static) calibration
problem involves

min
θ∈Θ

1

T

T∑
t=1

d+(y
real
t , h(xreal

t , θ)).

Since the independent variables are largely time-varying and affect the accuracy of a digital twin, it is
desirable to adjust the calibration parameter θt for the newest incoming data (xreal

t , yreal
t ) at time t, which

can be the solution to minθ∈Θt d+(y
real
t , h(xreal

t , θ)), with Θt = Θ. This calibration decision has to be
made before we receive data from the system at time t. Therefore, the original problem changes to

min
θ∈Θt

d+(y
pred
t , h(x

pred
t , θ)), (1)

where (x
pred
t , y

pred
t ) are the predictions of what we would expect to see at time t. The easiest choice

for the predicted values is (xreal
t−1, y

real
t−1). Other approaches aiming to increase the predictive accuracy of

(x
pred
t , y

pred
t ) use moving averages or machine learning techniques that provide point predictions.

2.1 Regularization

In time-varying environments, the collected data (xreal
t , yreal

t ) itself is subject to noise, and calibrating the
system in this condition, even with the knowledge of future conditions, can lead to unrealistic parametric
evolution. Robust calibration would be less sensitive to such fluctuations that are misguided by noise in
the data (as in our case study). One strategy here is to add regularization terms to the objective, or impose
constraints that force the changes in the parameter to be more gradual. Regularization may prove ineffective
when the real system changes are significant impacting the scale of the target variables from time to time.
Therefore, we focus instead on constraining the feasible space to Θt = {θ ∈ Θ : |θreal

t−1 − θ| ≤ η} with an
allowable change threshold of η > 0. Here, we have access to xreal

t−1 and yreal
t−1, which allows us to compute

θreal
t−1 = argminθ∈Θ d+(y

real
t−1, h(x

real
t−1, θ)). However, since θreal

t−1 itself is affected by the noise in the data,
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the earlier concerns would cause challenges in picking η as well. We therefore consider the dual version
of the optimization problem (1) as

min
θ∈Θ

|θreal
t−1 − θ| s.t. d+(y

pred
t , h(x

pred
t , θ)) ≤ κ

pred
t,α , (2)

where κt,α can be set based on the range of the discrepancy function controlled by α ∈ [0, 1]. Define
greal
t (θ) := d+(y

real
t , h(xreal

t , θ)) with greal
t,min = minθ∈Θ greal

t (θ) and greal
t,max = maxθ∈Θ greal

t (θ). Then the
predicted version of κreal

t,α = α(greal
t,max − greal

t,min) + greal
t,min, which ensures that

greal
t (θ)− greal

t,min

greal
t,max − greal

t,min

≤ α,

would yield the right-hand-side in (2). Notably, α governs how tightly the calibration is expected to follow
past trends. A lower α allows the calibration to be more responsive to rapid fluctuations in the observed
data. In contrast, a higher α promotes smoother (regularized) and more gradual calibration. Figure 3
illustrates how α influences the resulting parameter trajectories in the wake calibration context.

Figure 3: Wake parameter evolution trends with different α settings.

2.2 Stochastic Simulation

In our approach, we turn the calibration problem into a simulation-optimization problem by using probabilistic
predictions or a distribution for random vectors (Xt, Yt), denoted by PXt,Yt , i.e.,

min
θ∈Θ

|θreal
t−1 − θ| s.t. EXt,Yt [d+(Yt, h(Xt, θ))] ≤ κsim

t,α(PXt,Yt). (3)

Here, the probability distribution generates all variables jointly, capturing dependencies and relationships
across all variables. Note, in (3), the constraint’s right-hand-side now needs to be computed with respect to
PXt,Yt as well. This poses a computational challenge as we need to compute the minimum and maximum
of EXt,Yt [d+(Yt, h(Xt, θ))], adding two more simulation-optimization problems besides the main one.

Importantly, in digital twins the independent variables (e.g., weather or environmental characteristics)
can have a nonstationary behavior, but the behavior of the target variable (e.g., turbine output) given a
realization of independent variable may not be nonstationary. We assume, therefore, that the conditional
distribution of target PYt|Xt

can be modeled separately to use PYt|Xt
PXt as an alternative to PXt,Yt in (3).

Remark 1 Why would the target variable given Xt be random? In the wind farm case study for example,
even if we know Xt (weather conditions), one could expect a distribution of Yt (generated power) that
varies for each turbine due to the rotor angle in that turbine. The collected (xreal

t , yreal
t ) does not provide the

information of under which rotor angle such power was generated, introducing another source of uncertainty.
We, therefore, propose a nested simulation, where in the outer level, Xt is simulated using a nonstationary

probability model, and given its realized value, the inner level produces Yt from a conditional probability

2851



Jeon, Shashaani, Byon, and Jain

distribution function that accounts for uncertainty about configurations in the system from which the data
was collected:

min
θ∈Θ

|θreal
t−1 − θ| s.t. EXt

[
EYt|Xt

[d+(Yt, h(Xt, θ))]
]︸ ︷︷ ︸

:=gsim
t (θ)

≤ κsim
t,α(PYt|Xt

PXt). (4)

Remark 2 We hypothesize that fitting a time-varying distribution to the target variables may be an overshoot
and result in biases due to artificial correlations. In Figure 6, we justify this hypothesis in a side experiment
for our case study by illustrating worse calibrations under a joint input model.
Remark 3 While Yt is assumed to be nonstationary given Xt, it may still contain auto-correlation. In our
application, we found that the generated power exhibits temporal-momentum effects (e.g., rotor inertia in
wind turbines), which renders Yt also time-varying. This time-varying behavior can be treated separately by
making the current output dependent not only on the current environmental conditions but also on the system’s
recent output. In other words, we still consider Yt stationary given Xt, yet introduce an auto-correlation
structure by using yreal

t−1 in specifying the conditional probability model, i.e., PYt|Xt
= PYt|Xt,yreal

t−1
.

3 DYNAMIC WAKE EFFECT PREDICTION WITH STOCHASTIC SIMULATION

In the wake calibration study, xreal
t contains mx important summary statistics (i.e., mean and standard

deviation) of key wind variables such as wind speed, wind direction and turbulence intensity observed from
a met mast. Let yreal

t ∈ Rmy be the corresponding my-dimensional vector of turbine outputs at time-t, where
yreal
t,i ∈ R is the observed power output of turbine i. We assume the wake effect follows a parameterized

physics-based model for turbine i, represented as [J (xreal
t ; θ)]i such as the Jensen’s wake model (Jensen

1983). We define θreal
t and θsim

t as the true and calibrated (solution to problem (4)) wake parameter at time
t, in the Θ = [0.001, 0.1] domain. Note, θsim

t does not necessarily equate θreal
t . To estimate the stochastic

constraint in (4), we generate s realizations from a weather emulator W = PXt and for each weather
realization, we simulate r turbine responses using the wind farm simulator M = PYt|Xt,yreal

t−1
to account for

uncertainties. Modeling of these probability distributions is described in Section 3.1. Figure 4 provides an
overview of this framework.

Figure 4: Proposed dynamic wake calibration framework and actual wake calibration process.

Suppose we use an L1 discrepancy metric, d+(a, b) = m−1
y

∑my

i=1 |ai − bi|, ∀a, b ∈ Rmy . Then our
estimate of gsim

t (θ) is computed as

ĝsim
t (θ; s, r) =

1

s

s∑
j=1

1

r

r∑
k=1

1

my

my∑
i=1

∣∣Yt,i,j,k − [J (Xt,j , θ)]i
∣∣ , (5)

where [J (Xt,j , θ)]i is the predicted output of turbine-i under weather realization-j and Yt,i,j,k is the
simulated output of turbine-i of scenario-j in the k-th replication from PYt|Xt,j ,y

real
t−1

.
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The minimum and maximum of ĝsim
t (θ; s, r) would then be used to approximate the right-hand-side

value in (4). Solving this optimization problem poses significant computational challenges. First, evaluating
the physics-based model J across the forecast scenarios incurs high simulation costs and is particularly
unsuitable in wind farm domain where fast and frequent responses are essential for operational decision-
making. Second, verifying feasibility of a candidate wake parameter adds another layer of difficulty, as the
threshold κsim

t,α itself must be estimated through excessive simulation runs. To address these computational
challenges, we propose calibration with Bayesian optimization, where design points of θ can help estimate
the right-hand-side constant κsim

t,α and our formerly developed root-finding strategy (Jeon and Shashaani
2024) can accelerate the computation. To facilitate root-finding, we would need to adjust the discrepancy
metric, which we will discuss in Section 3.2.

3.1 Input Models—Fitting Probability Models to Xt and Yt|Xt, y
real
t−1

In the wind farm context, dependencies among weather variables are hard to justify. Each weather feature
represents a summary statistic of a distinct wind property. To apply multivariate modeling effectively,
one must construct a covariance structure that precisely captures the temporal dynamics of each feature
while preserving their underlying physical dependence. This is particularly challenging when the physical
relationships between variables are not fully characterized or are nonstationary. We address this challenge
by assuming independence between each weather variable (which our case study data justified) and fitting
a probability model to each based on its own temporal behavior.

To model the temporal evolution of wind features, we use Gaussian process regressor (GPR). At time
t− 1 , separate GPR for each weather variable is trained using the recent observations xtrain to produce a
probabilistic distribution (forecast) for time t. We compare the following two approaches for GPR training:

1. Time-index GPR models each weather variable independently as a function of time. At time t− 1,
we construct a GPR for the ℓ-th weather variable over time, denoted f time

t−1,ℓ, with the ℓ-th weather
variable xt′,ℓ = f time

t−1,ℓ(t
′), ∀ t′ ≤ t − 1, ℓ ∈ {1, . . . , d}. Time-index GPR is trained using the

previous n time steps information, i.e., xtrain = {(t−n, xt−n,ℓ), . . . , (t− 1, xt−1,ℓ)}. The resulting
GPR is then used to generate a probabilistic forecast for Xt,ℓ with input t.

2. Lagged-input GPR models each weather variable as a function of its recent temporal trends. Let
n′ denote the size of the lagged window, where each training input consists of previous n′ values
of the variable, and the corresponding target is the subsequent value. At time t− 1, we fit a GPR
for the ℓ-th weather variable on its lagged window, denoted f

lag
t−1,ℓ. The model is trained using

the training set xtrain = {((xτ−n′,ℓ, . . . , xτ−1,ℓ), xτ,ℓ)| τ ∈ {t − n + n′, . . . , t − 1}}. To construct
the predictive distribution of xt,ℓ, (xt−n′,ℓ, . . . , xt−1,ℓ) is used as an input. Importantly, we set
n′ ≤ n− 2 to avoid training GPR on a single-pair training set when n′ = n− 1.

Figure 5: Prediction interval coverage and half-width using n = 6 time steps for training.
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Figure 5 illustrates the PI coverage and half-width under n = 6 time steps (i.e. one-hour), based on the
experiment using a real-world, one-year dataset to evaluate the forecasting performance of both approaches.
In this experiment, at each prediction time, the constructed GPR provides a predictive distribution for the
ℓ-th weather variable as Xt,ℓ ∼ N (µt,ℓ, σ

2
t,ℓ), where µt,ℓ and σ2

t,ℓ are its predictive mean and variance at
time t, respectively. The corresponding (1− α)-level prediction interval (PI) is then expressed as

PI(1−α)
t,ℓ =

[
µt,ℓ − z1−α/2σt,ℓ, µt,ℓ + z1−α/2σt,ℓ

]
.

The experimental results suggest that the time-indexed GPR achieves higher coverage while maintaining
comparable half-width. Therefore, we use this approach for modeling the weather emulator W .

We now describe the wind farm simulator M that is the conditional probability distribution of power
outputs for each turbine given the weather characteristics and the most recent output. Given the 10-minute
resolution of the dataset, turbine outputs at consecutive time steps are expected to be highly-correlated,
making temporal features more capable of capturing short-term dynamics. We adopt ordinary least squares
(OLS) regression (Staum 2009) using the actual weather covariates xreal

t along with each turbine’s recent
output yreal

t−1,i as predictors. Recall that using yreal
t−1,i helps to account for the absence of turbine-level control

settings (e.g., individual rotor angles) in our study, as it implicitly reflects the impact of recent control
decisions that are likely to persist over a short time interval. Accordingly, this relationship is expressed as

yreal
t,i = z⊤t,iβi + ϵi, ϵi ∼ N (0, σ2

i ), (6)

where zt,i = [xreal
t , yreal

t−1,i]
⊤ ∈ Rmx+1 is the input vector. The term ϵi represents the residual variability

due to the unobserved factors and inherent stochastic behavior of the turbine outputs. Due to lack of
detailed information about these effects, we model ϵi as an independent Gaussian noise. The fixed model
coefficients βi ∈ Rmx+1 can be estimated through

β̂i = (Z⊤
T,iZT,i)

−1Z⊤
T,iyT,i

in which zT,i ∈ RT×(mx+1) is the input matrix, T is the size of the training set and yT,i ∈ RT is the vector
of recent turbine outputs over the training set. The residual noise variance is estimated as

σ̂2
i =

1

T − (mx + 1)

T∑
k=1

(
yT,i,k − z⊤T,i,kβ̂i

)2

where yT,i,k is the k-th element of yT,i. To capture the stochastic variability in turbine responses under fixed
weather conditions, we simulate r sub-scenarios of turbine outputs for each generated weather realization.
Hence, for i-th turbine with j-th weather realization Xt,j , r-turbine outputs are generated as

Yt,i,j,k = z⊤t,iβ̂i + ϵ̂i,k, ϵ̂i,k ∼ N (0, σ̂2
i ), k = 1, . . . , r,

where Zt,i,j = [Xt,j , y
real
t−1,i]

⊤ ∈ Rmx+1 is the input vector.

3.2 Calibration with Root-Finding of a Simulation Metamodel via Bayesian Optimization

The crux of the proposed framework is calibrating the wake decay parameter by aligning the output of the
physics-based model J under s copies of Xt each with r copies of the corresponding power output Yt.
As discussed earlier, directly solving the problem in (4) is computationally challenging, as each evaluation
requires running up to sr simulations, and most importantly, the threshold value κsim

t,α is not known in
advance. For a practically efficient solution method, we decompose the problem into two stages. In the
first stage, we solve the primal optimization without constraints—counterpart of (1) but as a simulation
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optimization, i.e., minθ∈Θ gsim
t (θ) as defined in (4). This setup allows us to explore a wide range of candidate

wake parameters without performing repeated feasibility checks. Exploring this broader set of candidates
is still important, as even infeasible parameters may contribute to identifying better candidates with lower
discrepancy and those with worst-case discrepancy that can determine the κsim

t,α threshold. Hence, we first
minimize ĝsim

t (θ; s, r) as defined in (5).
Since directly minimizing this objective is computationally expensive due to many replications per

evaluation, we use a root-finding simulation metamodel approach that we previously proposed in (Jeon
and Shashaani 2024). Bayesian optimization with root-finding reduces the search space leading to faster
convergence and fewer simulation runs. This metamodeling approach is particularly well-suited for our
setting, as the aforementioned infeasible candidates can naturally be leveraged when constructing the
metamodel.

However, a challenge here is to change the discrepancy function to produce signed values that enable
us to find the root as the optimal θ, rather than one that minimizes the positivized discrepancy. To this
end, we first use a lower bound approximation for (5) computed by

ĝ
approx
t (θ; s, r) =

∣∣∣∣∣∣1s
s∑

j=1

1

r

r∑
k=1

1

my

my∑
i=1

Yt,i,j,k − [J (Xt,j , θ)]i

∣∣∣∣∣∣ . (7)

This approximation measures the discrepancy of the averaged values rather than and L1 norm. The same
approximation could be valid for other norms by the triangle inequality. Note that this quantity estimates
g

approx
t (θ) = d+(EXt [EYt|Xt

[Yt]],EXt [EYt|Xt
[h(Xt, θ)]]) instead of gsim

t (θ) as defined in (4). The immediate
result of using g

approx
t (θ) instead of gsim

t (θ) is that we know this function is minimized at the root of the
signed average discrepancy. In other words, we estimate the approximate θt with θ̂

approx
t which satisfies

ĝ
approx-r
t (θ̂

approx
t ; s, r) :=

1

s

s∑
j=1

1

r

r∑
k=1

1

my

my∑
i=1

Yt,i,j,k −
[
J (Xt,j , θ̂

approx
t )

]
i
= 0.

The root-finding via BO starts by evaluating a set of candidate design points {θ(1), . . . , θ(e)} with
their corresponding signed discrepancy values {ĝapprox-r

t (θ(p); s, r), p = 1, · · · , e} to construct the initial
metamodel. It then proceeds by optimizing a root-finding-based acquisition function until termination
leveraging a reduced search space for the roots; see (Jeon and Shashaani 2024) for more details.

In the second stage, we need to identify feasibility of the solution to the first stage. We approximate
the gsim

t,min and gsim
t,min with empirical estimates as

ĝsim
t,min ≈ min

1≤p≤e
|ĝapprox-r

t (θ(p); s, r)|, and ĝsim
t,max ≈ max

1≤p≤e
|ĝapprox-r

t (θ(p); s, r)|,

and the estimated discrepancy threshold as κ̂sim
t,α = ĝsim

t,min + α
(
ĝsim
t,max − ĝsim

t,min

)
, which is used to identify

the feasible set as

Θ̂t =
{
θ | ĝapprox

t (θ; s, r) ≤ κ̂sim
t,α

}
.

Of all the θ’s evaluated during BO, we select the candidate that is closest to the previous θreal
t−1 as

θ̂sim
t = argminθ∈Θ̂t

|θreal
t−1 − θ|. Finally, as these empirical estimates are obtained from a limited set of

evaluated candidates, we enforce an additional regularizing step to mitigate potential prediction errors,
moderating the influence of uncertain forecasts, ensuring that the update is not overly sensitive to potentially
noisy or inaccurate predictions. We apply the following smoothing

θsim
t = γθ̂sim

t + (1− γ)θreal
t−1, (8)

where the smoothing parameter γ ∈ [0, 1] controls the degree of information gain from the predicted values.
A lower γ would lead to more conservative updates, tightening the parameter evolution.
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3.3 Root-Finding in Rootless Instances

It is important to note that root-finding formulation does not always guarantee the existence of a root. This
situation arises when the discrepancy between the model output and the target remains persistently positive
(or negative) across all parameters, i.e., ĝapprox-r

t (θ; s, r) > 0 (< 0), ∀θ ∈ Θ. One reason for this incident
is insufficient choice of r and s; we leave this investigation for future research. Another reason for this
type of mismatch is the presence of unknown influences that are not captured by the digital twin (J ). In
these cases, we prove that the root-finding approach reverts to solving the original minimization problem.
To show this, we examine the limiting behavior of the upper confidence bound (UCB) acquisition function
case that was primarily used in our study. We write the predictive distribution for ĝ

approx-r
t (θ; s, r) after

l-evaluations, i.e., l design points, obtained through simulation metamodeling as

Ĝl(θ; s, r) ∼ N (µl(θ; s, r), σ
2
l (θ; s, r)),

where µl(θ; s, r) and σl(θ; s, r) are the predictive mean and standard deviation using the fixed replication
sizes r and s. The UCB acquisition for the minimization and root-finding are defined, respectively, as

UCB(θ; s, r) = µl(θ; s, r) + λσl(θ; s, r), UCBRF(θ; s, r) = |µl(θ; s, r)|+ λσl(θ; s, r),

where λ > 0 is a user-specified parameter controlling the exploration-exploitation trade-off. With this, we
make the following assumptions:
Assumption 1 ĝ

approx-r
t (θ; s, r) is strictly positive, i.e., ĝapprox-r

t (θ; s, r) > 0, for all θ ∈ Θ.
Assumption 2 At each iteration, the global optimum is attained when optimizing the acquisition function.
Assumption 3 As l increases, σl(θ; s, r) < ∞ at any θ ∈ Θ.

We then obtain the following theorem:
Theorem 1 Under Assumptions 1, 2, and 3,∣∣argminθ∈ΘUCBRF(θ; s, r)− argminθ∈ΘUCB(θ; s, r)

∣∣ → 0 as s, r → ∞.

We explain a sketch of this proof here. Under Assumption 1, since the metamodel is trained on
strictly positive discrepancy values, the predictive mean µl(θ; s, r) also remains strictly positive in the
limit, i.e., µl(θ; s, r) > 0 for all θ ∈ Θ as l → ∞. This observation together with Assumption 3 implies
|µl(θ; s, r)| = µl(θ; s, r); hence

UCBRF(θ; s, r) = µl(θ; s, r) + λσl(θ; s, r) = UCB(θ; s, r), ∀θ ∈ Θ.

Then, Assumption 2, which guarantees the global optimum at each iteration, concludes the proof. For the
opposite case in Assumption 1, where the discrepancy function is strictly negative, the same reasoning
applies. The interpretation of this theorem is that when using UCBRF, we do not need to know in advance
whether ĝapprox-r

t (θ; s, r) has a root at all, as after sufficient number of observations, UCBRF is expected to
make that same decisions as standard UCB. It is also worth emphasizing that the assumptions made in this
analysis remain reasonable even when only a small number of evaluations are available. This is because,
under Assumption 1, all observed evaluations will also be strictly positive (negative), and the predictive
mean µl(θ; s, r) will remain predominantly positive (negative) across Θ, even with limited number of
observations, with a relatively smooth kernel in the metamodel. Similarly, Assumption 3 also holds in
practice since the predictive variance of the GPR remains finite for any θ ∈ Θ as long as the parameter
space is compact and designs are sufficiently spread out.

4 NUMERICAL EXPERIMENT

We now present our experimental results of the proposed framework. The weather emulator W and wind
farm simulator J are both trained using a one-year dataset of an existing wind farm and dynamic wake
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prediction task is conducted on the dataset of the following year (for propitiatory reasons we leave out the
year and other unimportant details in this paper). The simulator J is implemented using FLORIS (open
source model by NREL), and configured with the precise physical layout and specifications of our case
study. In the wind farm simulator J , the relationships between the wind speed and both power outputs
and thrust coefficients are embedded with fitted splines from the training data. Weather emulator W is a
time-indexed GPR using n = 6 time steps. Table 1 presents the set of weather variables used in this study.
For each variable, both the mean and standard deviation are computed at a 10-minute resolution, and thereby
mx = 16 independent GPR models are trained at each time step. To properly handle the circular nature
of the wind directions, directional variables are decomposed into their sine and cosine components. Each
GPR is based on the rbf kernel with a length-scale between [0.1, 10]. Once fitted, the weather emulator W
is used to generate s = 100 weather realizations at each prediction stage.

Table 1: Normalized weather variables and corresponding average coefficients of 36 OLS models.

Variable Type Description Unit Coefficient for Mean Variable Coefficient for Std.dev Variable

Horizontal wind speed m/s 0.028 0.035
Vertical wind speed m/s 0.020 −0.007
Wind speed m/s 0.003 0.012

Wind direction measurement 1 ° −0.005 −0.003
Wind direction measurement 2 ° 0.005 −0.015

Ambient temperature °C 0.007 0.001
Relative humidity % 0.003 0.000
Precipitation mm 0.004 −0.017

Latest turbine output kW 0.974

The wind farm simulator M is implemented with OLS regression model as discussed in (6) with
r = 10. The model uses the 16 weather variables from W and yreal

t−1, resulting in a total of 17 predictors.
The average OLS coefficients across 36 models are summarized in Table 1. The estimated average residual
standard deviation is σ̂ = 0.055. We use UCBRF acquisition function and GPR as a metamodel for the
calibration task. To initialize the metamodel, 10 evenly-spaced values from Θ = [0.001, 0.1] were sampled
and fitted, and then 10 additional evaluations were processed. To evaluate the performance of the proposed
dynamic wake prediction framework, we compare it against two benchmark approaches:

• Static wake: The wake decay parameter is fixed to a constant value across all time steps. We use
the representative constant 0.04, selected based on the prior study (Jain et al. 2023).

• Dynamic deterministic wake: This approach estimates the future wake parameter based solely on
the most recent single observation (xreal

t−1, y
real
t−1), without simulating or forecasting future uncertainty.

Table 2: Normalized test loss (RMSE) comparison under different levels of wake variability (γ = 0.1).

Method α = 0.1 (Rapid) α = 0.5 (Moderate) α = 0.9 (Steady)

Static wake 0.0368 0.0304 0.0258
Dynamic deterministic wake 0.0358 0.0215 0.0115
Dynamic stochastic wake 0.0347 0.0211 0.0113

In this experiment, we set the smoothing parameter to γ = 0.1 in (8) and evaluate the framework under three
different settings of α = [0.1, 0.5, 0.9]. These α values represent different levels of variability in the wake
decay behavior; α = 0.1 corresponds to rapidly-changing wake trends, α = 0.5 to moderately evolving,
and α = 0.9 to relatively steady, gradually changing wake decay trends. The test loss is evaluated using

2857



Jeon, Shashaani, Byon, and Jain

RMSE score. The experimental results, summarized in Table 2, show the dynamic wake prediction method
consistently achieves the lowest test loss across all α scenarios. The performance gap is most significant
in settings where the wake decay parameter evolves more rapidly (i.e., α = 0.1). This is particularly
significant, as highly dynamic settings pose a real challenge for methods based on static assumptions or
on a single current weather information, which tend to struggle to adapt to evolving trends.

Additionally, we conducted a side-experiment to demonstrate the effectiveness of our proposed frame-
work in comparison with a jointly modeled approach for approximating PXt,Yt using multi-output gaussian
process regression (MOGP) as discussed in Section 2. Recall that in our nested framework, we have
explicitly modeled the dependence between the weather covariates and turbine outputs through M, while
avoiding unnecessary assumptions about inter-variance correlations among weather features. In contrast,
MOGP jointly models all weather covariates and turbine outputs as a multivariate function, relying on the
estimated cross-covariance structure to capture dependencies.

Figure 6: Comparison of turbine output forecasts using the proposed nested framework and joint modeling
approach (MOGP) with n = 6 training time steps.

As depicted in Figure 6, when the number of training time steps is relatively small compared to the
output dimension mx + my, the model tends to prioritize the inter-variable dependencies over temporal
structure, which results in negative bias and larger variance in predictions. To handle this, using MOGP
would require a substantially large number of training time steps n as to balance the cross-covariance and
temporal behavior. However, increasing n in MOGP significantly increases the computational complexity,
which scales as O(n3(mx + my)

3). In contrast, our proposed framework is well suited with smaller
values of n with a reduced complexity of O(mxn

3). Furthermore, under full parallelization across the mx

independent GPRs, the overall complexity can further reduce to O(n3).

5 CONCLUSION

In this study, we proposed a dynamic framework for digital twin calibration that uses a nested stochastic
simulation to produce robust calibrated parameters, particularly suited in rapidly evolving system. Our
framework is informed by a case study for wake effect prediction to forecast the future wake behavior
of the wind farm. Experimental results show that the proposed framework consistently produces lower
prediction errors across various weather variability scenarios, which is particularly meaningful in highly
dynamic conditions where wake decay parameters change abruptly over time. Future work will be dedicated
to addressing our simplifying assumptions in dependence structure of X , aggregation of Y , smoothing,
and the fixed number of replications. Lastly, we are interested in exploring alternative objective functions
within the calibration process, such as the Conditional Value at Risk (CVaR). In such highly-dynamic
weather environments, it is often preferable to adopt more conservative predictions to mitigate the risk of
extreme prediction errors. This naturally casts the calibration problem into a broader simulation optimization
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framework, where state-of-the-art simulation optimization methods such as ASTRO-DF (Shashaani et al.
2018) or stochastic kriging (Staum 2009) can be effectively leveraged.
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