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ABSTRACT

Fleet planning is often challenging. Especially, the dynamic interaction with maintenance entails vari-
ous uncertainties. Predicting the arrivals into maintenance processes requires an understanding of fleet
performance over time while, in turn, delays of repairs severely impact fleet performance and deterioration.

This feedback loop has been neglected so far, which is why we present a novel framework using a
‘rolling window’ machine learning model to predict the inputs into a discrete event simulation (DES) of
repair activities based on remaining useful life (RUL). Our ‘fleet tracker’ then uses the DES outputs to
simulate fleet performance together with environmental and mission-based factors which form the inputs
for predicting RUL. Finally, explainable ML helps decision-makers construct relevant ‘what if’ scenarios.
As a motivating example, we consider helicopters in search and rescue missions and their maintenance.
As a key result, we compare two scenarios of repair turnaround times and their impact on RUL decline.

1 INTRODUCTION

Fleet management and planning is a complex challenge for many organizations. In particular, understanding
the dynamic interaction between fleet performance and the required maintenance, repair and overhaul (MRO)
processes to ensure a safe and acceptable level of service and operation poses an important, yet so far
neglected, problem. As examples we can think of organizations managing fleets of assets, such as trucks,
ships, aircraft or helicopters, that are being used in supply chains and ambulance services, or even deployed
in missions and training, for instance in search and rescue (SAR) (coastguards and mountain rescue), or
also the military. In all of these examples, it is important to consider and understand (1) the impact that
fleet performance has on managing resources and capacities in an MRO facility (e.g., due to a sudden
surge in demand for repairs or needing to prioritize mission critical assets), but also (2) the impact that, in
turn, constraints and delays (bottlenecks) in the MRO process can have on fleet performance (e.g., assets
in a fleet deteriorating quicker than expected due to absorbing work of assets delayed in repair). This
interaction becomes an even more complex challenge when considering that we are often dealing with
globally deployed fleets operating in a wide variety of environments. In some cases, these are organizations
producing components, such as engines, that are vital for assets in a fleet to function and for which they
provide technical assistance and maintenance for several customers.

In this paper, we present a novel approach to tackle and simulate this dynamic interaction stemming
from the previous two points as a feedback loop. Our first contribution is the technical implementation.
We present a new way to determine the arrival process of a discrete event simulation (DES) based on a
common concept in predictive maintenance, that of remaining-useful-life (RUL). For that, we integrate a
‘rolling window’ machine learning (ML) model, predicting RUL based on a ‘fleet tracker’, with a DES of
a maintenance and repair process. The ‘fleet tracker’ is a stochastic simulation with agent-based elements
that captures accumulated operating hours of each asset in a fleet together with environmental and mission-
specific factors and preferences that might impact their RUL (e.g., how long was an asset operating in
adverse weather or difficult mission types in remote locations?). However, it is not simulating operating
hours in isolation. Instead, these depend on the assets available in a fleet each day, which itself depends
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on the maintenance process DES and possible delays and bottlenecks therein. Thereby the inputs into all
models constitute a loop to capture the dynamics of the aforementioned two points as shown in Figure 1.

‘Fleet tracker’ simulation:
Stochastic simulation of missions/ 

environment with agent-based elements

▪ Updates daily operating hours based 
on mission duration distributions 
(conditional on seasonality, mission 
locations, weather etc.)

▪ Simulates weather and environmental 
conditions assets operate in

▪ Simulates individual agent behavior 
towards mission type and location 
preferences

Machine Learning (Supervised Learning):
Remaining-useful-life (RUL) prediction

▪ Updates RUL predictions based on 
cumulative operating hours in 
combination with weather conditions and 
various mission and operational factors

▪ Short ‘rolling window’ considers 
snapshots of system states (recent flight 
operations and missions)

Assets absorbing more operating hours (than 
expected) when other assets in fleet are delayed in 

MRO process; higher likelihood of operating in 
adverse weather and difficult missions more often

Arrivals into MRO process based on RUL predictions AND 
decision-maker’s threshold/preference of when to inspect/repair

RUL predictions based on accumulated 
operating hours, environmental factors, 

mission types and locations etc.

…

Discrete event simulation: 
maintenance (MRO) process

▪ Resource sharing (e.g., workforce, 
budget, inspection equipment)

▪ Prioritization of mission critical 
assets

▪ Distinguish different failure types 
(e.g., repair times, routing logic)

▪ Inventory optimization: spares

Figure 1: Schematic overview of integrating supervised learning, a ‘fleet tracker’ simulation and DES.

Given that RUL predictions can change rapidly through a sudden increase in accumulated operating
hours once a fleet size is diminished due to delayed repairs, especially in combination with adverse weather
and difficult mission types, our second contribution considers the decision-makers. Their responsibility is
to decide when assets come in for inspection and repair. Although we might determine a fixed threshold
for RUL below which assets should come into maintenance, for many fleets it might be beneficial to base
such decisions on the current state of the MRO facility. As such, one might bring in assets earlier than
their RUL suggests if there are currently no bottlenecks. This balances the current workload with the
expected future one. Therefore, we let decision-makers explore the RUL predictors via explainable ML
and inform ‘what if’ scenarios through them. For example, they can test what happens if a long period of
difficult mission types or extreme weather was to occur while fleet size is reduced? This factors in any
uncertainty around RUL predictions, especially for combinations of predictors for which only scarce data
exist. DePater et al. (2022) already highlighted the importance of considering imperfect RUL predictions.

The remainder of this paper is as follows. Section 2 briefly reviews the literature on integrating ML
methods with DES, focusing on simulation input modeling, and ML in predictive maintenance. In section
3, we discuss where our approach sits within fleet management and predictive maintenance research before,
in section 4, we present our framework together with results from a case study based on a SAR helicopter
fleet. Finally, section 5 concludes the paper by outlining the main findings and future enhancements.

2 LITERATURE REVIEW

We reviewed the literature with regards to two objectives. First, we show why and how ML algorithms
have been integrated with DES models, especially for input modeling. Second, we present the ML methods
commonly used in predictive maintenance more generally.
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2.1 Machine Learning for Simulation Input Modeling

Practitioners and researchers integrate ML with simulations for various reasons, including learning (complex)
conditional logic for prioritization and routing of entities, (Bergmann et al. 2017), automating results
interpretation (Mladenić et al. 1994), and meta-modeling (for optimization) (Fishwick 1989). However,
the reason that is of main interest to us is that of enhancing distributional assumptions in input modeling.
For that, we considered primarily Supervised Learning (SL) methods. They improve their prediction
accuracy through training from labeled examples in large datasets (see e.g. Kubat (2017)). Thus, we
briefly summarize the use of Unsupervised Learning (USL), which aims at finding or clusters (structures)
in unlabeled data, and Reinforcement Learning (RL), concerned with agents learning best actions to take
in an environment through rewards, in DES models as follows. The former can improve the understanding
of input data. However, USL algorithms are typically not integrated directly into DES models, i.e., they
do not update their inputs during nor between simulation runs. Instead, they help exploring data before
conceptualizing and constructing simulations. Elbattah et al. (2018) used USL to cluster patient data when
simulating a hip fracture care pathway. RL is integrated with DES to use simulations as ‘test beds’ (learning
environments) that allow agents to learn optimal strategies in current system states. Eriksson et al. (2022)
used RL to identify optimal schedules in a robot cell manufacturing DES.

More aligned with our interests, SL-based classification and regression methods have been used
previously in input modeling, and especially whenever inputs depend on multiple attributes (of entities)
or the simulation state, ML methods can be more flexible (than fitting distributions). For instance, in a
job shop DES, (Frye et al. 2019) predicted workpieces’ processing times via SL based on their individual
current conditions. Similarly, Jungmann et al. (2022) used decision trees (DTs) and random forests (RFs) to
set processing time inputs of crane operations in a construction DES. Further, Azab et al. (2021) compared
various SL methods (boosted DTs and neural networks (NNs)) to predict machine breakdown durations
in a flow-shop DES. All references considered that workpieces and machines are distinguished by current
conditions and individual attributes, so that SL provided more accurate inputs than fitted distributions. In
healthcare, Fairley et al. (2019) trained gradient boosting methods on patient data to set treatment and
recovery durations in a post-anesthesia care DES while Ortiz-Barrios et al. (2024) used RFs to predict
the probability of patients’ respiratory diseases worsening (resulting in longer bed occupancy) in an A&E
DES. Further, Chang and Chang (2018) estimated treatment times with NNs in a dental care simulation
while Kashani et al. (2024) and Olave-Rojas and Nickel (2021) both used RFs to predict length-of-stay
(LoS) durations of hospital patients and estimate ambulance travel times accordingly.

While the previous examples mainly predicted processing, LoS and breakdown durations, the next two
references are more aligned with us by considering arrival processes and frequencies. Glowacka et al.
(2009) used association rules to capture ‘no shows’ of patients in a healthcare DES informing the arrival
process, and Theeuwes et al. (2021) trained DTs on past ambulance dispatching decisions for determining
arrivals. Nevertheless, SL for arrival processes is much less common so far.

2.2 Machine Learning for Predictive Maintenance

Similar to the previous approaches predicting simulation inputs, which might depend on several attributes,
conditions and system states, SL-based prediction impacts also the area of predictive maintenance more
generally. Here we are often interested in predicting RUL and Zhang et al. (2018) used a long short-term
memory (LSTM) NN to forecast the degradation of a turbofan engine (with data from an open-source
dataset by NASA and containing sensor readings). Their regression model estimated the remaining cycles
of the engine before maintenance will be required. Using the same dataset, Mathew et al. (2017) compared
various ML methods and concluded that tree-based approaches (RFs and gradient-based boosting) lead
to the most accurate predictions. Indeed, SL-methods are now commonly applied to predict RUL and
overviews of methods are provided in Ferreira and Gonçalves (2022) and Berghout and Benbouzid (2022).

2346



Werner

3 BACKGROUND: FLEET MANAGEMENT AND PREDICTIVE MAINTENANCE

Next, we outline the concepts that our framework builds upon in more detail. This embeds it in the research
areas of fleet management and maintenance strategies while highlighting the contributions to these areas.

3.1 Fleet Management

Given that the arrivals into our MRO simulation are driven by the overall behavior of a fleet, we should
briefly define a fleet and its main characteristics. According to Petchrompo and Parlikad (2019), a fleet
constitutes a group of assets that are similar regarding their technical features while they often share common
maintenance facilities, resources and interventions. Fleet management is then the act of overseeing and
organizing such fleets to ensure safe and efficient operations while fulfilling operational demand. The point
of sharing resources (spare parts, workforce, tools, budget) and facilities for maintenance and repair is
particularly relevant for us as our DES serves exactly this purpose. We support the planning and optimization
of resources together with the overall planning of the maintenance facility needed to provide timely repairs
and minimize unplanned downtime that might lead to knock-on effects on the remaining fleet in operation.
This helps decision-makers to better understand the interaction within a fleet regarding its performance and
degradation which is often misunderstood as consisting of independent assets. In the literature, this idea
of adapting fleets to current conditions is known as dynamic fleet management (del Castillo et al. 2023)
– an area where DES can make important contributions. So far, most models supporting dynamic fleet
management rely purely on optimization approaches, such as mixed-integer linear and non-linear programing
(Petchrompo and Parlikad (2019) discuss examples). Thereby they omit possible dynamic considerations
and uncertainties about the current state of a maintenance facility (and its capacity, bottlenecks, resource
availability etc.). This can lead to the aforementioned feedback loop of active assets operating more than
planned and degrading unexpectedly whenever other assets are delayed in repair. Further, DES can include
details such as the impact of prioritizing mission critical assets on possible repair delays.

3.2 Predictive Maintenance and Remaining Useful Life

The importance of selecting a suitable maintenance strategy is well understood by decision-makers in fleet
management. It increases reliability and reduces costs while avoiding unplanned downtime (Pintelon et al.
2006). The main challenge concerns the timing of a maintenance operation, i.e., when to inspect and
possibly repair an asset. Generally, we distinguish three approaches: reactive, preventive, and predictive
maintenance (Swanson 2001). For us, predictive maintenance is of interest. It estimates the optimal time
to inspect and repair based on the predicted time of failure. The inherent challenge concerns, of course,
building an accurate model for detecting anomalies and predicting failures. A key concept, often being the
predicted output, is RUL. It provides the time between the current condition and failure for a given asset
through its deterioration over time (Si et al. 2011). RUL is often provided as a time unit (e.g., days, hours),
however, other measures are possible, such as the number of cycles. We estimate it in one of three ways
depending on the available data. Survival models require failure times from similar assets, similarity models
need run-to-failure data from similar assets, and degradation models use condition indicators to predict
future changes and when a chosen safety threshold is crossed. We mostly align with the last approach.

Although improvements in digital technologies (sensors) and more data-driven maintenance approaches
let fleet managers nowadays respond to issues more easily, some challenges persist, such as sudden changes
in requirements and operating in new environments. These exemplify the possible uncertainty around RUL
predictions and examples are helicopters doing missions in new (possibly extreme) weather conditions
or accumulating unusually many flight hours in remote locations. In our framework, we include this
uncertainty and predict RUL therefore differently. Instead of considering input vectors of regular sensor
updates, such as the aforementioned NASA turbofan data, our RUL predictions are based on various
aggregated features derived from a rolling window of recent flight cycles for each engine, capturing
environmental and operational conditions per flight in addition to categorical flight mission and location
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profiles. Thus, we consider aggregated tabular data from multiple possible influencing factors of RUL
where each row represents a snapshot of the system state, i.e., a daily summary of recent flight metrics. We
do not necessarily assume strong time dependence of time-windows (or snapshots) as some factors can be
assumed independent. This is different from common approaches to anomaly detection that solely focus on
degradation data, thus omitting the impact of environmental factors on future predictions. It allows us to
simulate the likely future conditions of engines by considering the upcoming flight environment (or system
states more generally). Hence, we identify patterns of short sequences of events prior to sharp drops in
RUL. This avoids the need to consider data from an asset’s whole trajectory. Further, our predictions come
as distributions which reflects maintenance decisions for fleets more realistically.

4 OUR FRAMEWORK

After having discussed our position within the research areas of fleet management and predictive maintenance
strategies, we now present our framework in detail. Our motivating example considers fleet planning for
SAR missions. More specifically, we considered a producer of engine parts for helicopters deployed in
missions, such as the UK Coastguard Agency, for which they offer technical assistance and MRO support.

4.1 ‘Fleet Tracker’ Simulation: Stochastic Modeling of Mission Dispatch and Helicopter Allocation

As shown in Figure 1, the ‘fleet tracker’ simulation sits at the center of our framework. To capture
fleet performance over time, it simulates the daily scheduling of missions and training flights for a fleet
of four helicopters, incorporating the associated randomness and operational constraints. It is a hybrid
between a stochastic model by considering mission demand, durations, type and environmental factors
probabilistically, and an agent-based model by incorporating the preferences and specifications of individual
helicopters that impact their likelihood of flying a given mission.

Our goal is to simulate how mission demand, environmental conditions, and mission characteristics
interact to affect helicopter utilization, thereby highlighting periods of increased strain on workload,
and ultimately their RUL. Based on a global simulation clock, which also tracks time in the DES, we
sample the number of missions for each day following a non-homogeneous Poisson process. Its intensity
function varies with seasonality and weather conditions. A SARIMA (Seasonal Auto Regressive Integrated
Moving Average) model provides the expected number of monthly missions based on historical SAR
helicopter mission data of the UK Maritime & Coastguard Agency (MCA) (including trends, seasonality
and autocorrelations)(see MCA (2025)). Here, we see i.a. that July and August are regular annual peaks.
Depending on monthly patterns, we compute the likely number of daily missions which are adjusted by
a weather multiplier. Different categorical weather types (i.a., clear, cloudy, rainy, stormy, snowy, foggy)
are chosen with monthly season-dependent probabilities to modify the mission rate. For instance, storms
boost mission numbers and are more likely during winter months.

Next, we define mission types and locations. The former distinguishes rescue (known and unknown),
medical assistance, support, pre-arranged transfer and search missions. Mission type probabilities depend
on seasonality and weather whereas in MCA (2025) rescue made up most mission types (48%). The
locations are also distinguished categorically. While the MCA considers coast, land and maritime, we
extended these to distinguish mountain, mountain-remote and urban areas in the land category. The location
type probabilities depend on mission type, e.g., rescue and support missions are more likely in maritime
environments (MCA 2025). Both mission type and location impact the mission duration. Most missions
last between 1 and 9 hours, but some extend over multiple days. We capture this with several log-normal
distributions with parameters conditional on mission types and locations. Some exhibit a corresponding
long right tail to specify the uncertainty of remote locations and rescue and search missions.

Finally, we assign daily missions to available helicopters. Of course, the input of available helicopters
is an output from the DES model. First, we schedule high-priority tasks (like rescue missions). Typically,
helicopters with fewer flight hours since last maintenance are assigned first. However, we also include
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individual agent behavior, such as some helicopters being preferred for specific mission types or durations.
For instance, missions at sea more suitable with certain helicopter sizes. Therefore, we assume a fleet with
two larger and two smaller helicopters. On days when the number of missions exceeds helicopters available,
we either assign multiple missions to a single helicopter, or reschedule lower priority missions. Whenever
daily missions are less than helicopters available, we check for training flights. Although we could apply
a fixed schedule for these, we consider a probabilistic approach, capturing the chance of cancellations.

The ‘fleet tracker’ was implemented in Python and records accumulated flight hours per helicopter
together with the conditions of each flight. That way, it informs the RUL predictions presented next. For
example, capturing that a helicopter has flown several missions over sea recently, especially in stormy
conditions, can impact its vibration and lead to a sharp drop in RUL. At a more granular level, we can include
simulated vibration levels conditional on mission types and environmental factors if data from monitoring
are available. In a similar way we can distinguish the categorical weather conditions more granularly by
sampling conditional temperatures, wind speeds and humidity levels. Figure 2 shows a screenshot.

Figure 2: The ‘fleet tracker’ simulates and logs detailed mission data per helicopter per day, including
mission type, weather, location, duration, and role (primary or replacement).

The above idea of flying many short missions reflects SAR operations realistically. However, in other
contexts, including military and large-scale emergencies like forest fires, a mission profile likely differs by
requiring an intense period of flying for a longer period, e.g., several weeks, typically followed by much
less flying afterwards (for a while). The ‘fleet tracker’ simulation can be adapted to that.

4.2 Machine Learning-Based Regression: Predicting RUL of SAR Helicopters

As mentioned in section 2.2, RUL prediction is becoming more data-driven (rather than based on physical
models) and several ML models have been proposed for that purpose. We use DTs and RFs as they
handle linear and non-linear relationships while also capturing complex interactions between features in
high-dimensional data. Indeed, we consider them a suitable model choice for including aggregated features
for environmental and operational conditions that are easier to train than most deep learning alternatives.
However, to account for the aims set out in section 3.2, our model differs from more common RF approaches
in two important ways:

1. We include the uncertainty around RUL predictions,
2. We identify patterns of recent system states (snapshots of last flights) that lead to a sharp drop in

RUL (short ‘rolling window’).

DTs and RFs are some of the most common SL algorithms and, as outlined in section 2.1, they learn
from labeled datasets. After training on example data, DTs construct classification or regression trees,
either predicting discrete or continuous variables. For RUL we consider the latter. Internal nodes in a
DT, i.e., not leaves, have input labels and are considered decision rules. Leaf nodes on the other hand
contain predicted output values that can be traced back to the DT’s root node. During training, DTs are
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split repeatedly to minimize prediction errors according to a chosen loss function (e.g., MSE). Given DTs’
propensity to overfitting, i.e. when predictive performance is good in training but poor with new data, RFs
have been introduced as extension (Breiman 2001). They are an ensemble method and construct multiple
DTs, using a bootstrapped subset of examples and inputs to reduce the risk of overfitting.

Although RFs in regression problems typically output the average of all predictions, we use the percentiles
of all trees (the tree-wise prediction spread) to create an uncertainty aware RF with estimated confidence
intervals. Our ‘rolling window’ approach to estimate RUL based on high-level operational data, i.e., the
temporally aggregated flight, weather and mission features, informed by the ‘fleet tracker’ simulation, can
be summarized as follows. First, we decide on the number of time windows, i.e., last flights to consider (in
our case 5). Then, we aggregate the features from those flights, i.e., get averages for continuous variables,
such as wind speeds, in addition to frequencies and fractions for categorical variables, for instance, the
different mission types and locations. This data is tabular and resembles columns in the ‘fleet tracker’, so
each row provides an input vector. Hence, the feature aggregation over a short ‘rolling window’ provides
the RF model with a memory of the most recent flights (system state snapshots). However, we should
clarify that we do not assume strong time dependence but only leverage local patterns, as ideally, we then
identify short-term patterns that occur right before a decline in RUL. For instance, we might observe a sharp
drop after flying multiple missions over sea in cold temperatures or after flying several rescue missions.
At this point, we can also add the simulated maintenance history, provided by the DES, to enhance RUL
predictions. E.g., it might be of interest if a part had been repaired or replaced in the last MRO visit. The
RF with short rolling windows was constructed in Python using the scikit-learn library (Pedregosa et al.
2011). Here, we also supplemented our training examples through a synthetic dataset due to a lack of real
flight data to test our approach. Figure 3 shows an example screenshot of RUL predictions.

Figure 3: Example predictions of helicopters after 100 fights in combination with cumulative flying hours,
environmental and mission factors).

This plot shows the RF predictions of the individual RUL changes per helicopter. As such, Helicopter 2
is predicted to see a sharp drop in RUL as it has recently accumulated many flying hours in difficult missions
(rescue in remote locations) and adverse weather conditions at t0 = 100, t−1 = 90 and t−2 = 80 flights. This
was caused (1) by Helicopter 2 being a large model and the other corresponding large one, Helicopter 3,
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not being available due to reaching its end of RUL and going to MRO (Helicopter 2 absorbed most longer
and more remote missions during that time) and (2) due to seasonality with worse weather conditions more
likely in the last time-windows. As this pattern likely continues for the next flights RUL might decrease
further. Thus, it is not only the uncertainty about flight hours accumulating with a reduced fleet, but also
about most likely mission and weather related factors. The benefits of our approach are the consideration
of multi-flight historical data, capturing (short) temporal patterns influencing engine degradation, and the
inclusion of mission profile effects. In the next section, we discuss the impact that the time-to-repair (TTR)
of a helicopter, i.e., the duration of flying with an incomplete fleet, has on the decrease in RUL predictions.

4.3 Discrete Event Simulation: Modeling the Maintenance and Repair Process

DES modeling is commonly used to better understand and analyze a wide variety of processes and for
a general introduction, we refer to Robinson (2014) and Law and Kelton (2000). Thus, it also gained
popularity in MRO planning and Alrabghi and Tiwari (2015) present an overview. It provides maintenance
managers and engineers with a way for risk-free experimentation, scenario testing and optimization of
important levers (or decision variables) they can influence, such as the number of available resources, and
even process flow considerations. In line with the discussion in section 3.1, we want to show the impact
that sharing workforce, machinery and spare parts has on the repair turnaround time in order to return
engine parts to the helicopters while also including additional important details, such as prioritization based
on mission criticality. We used Simul8 for building the DES and a screenshot is shown in Figure 4.

Figure 4: Main part of maintenance and repair (MRO) process simulation (screenshot Simul8).

The process starts with incoming engine parts (see point 1 in Figure 4). The arrival frequency depends
on their RUL and the decision of when to repair (see section 4.2). In addition, we have scheduled (preventive
maintenance) and unscheduled arrivals from other fleets for which the MRO facility is also responsible.
As mentioned in the introduction, this is common with companies maintaining components for assets.

Any incoming part requires two maintenance technicians. The first makes an initial inspection to assess
the fault type and severity. This decides if repairs go ahead (point 2). Some are dismissed at this stage
due to fault severity while others are sent to the original supplier or a more specialized technical crew, for
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instance, if the fault cannot be identified. The second technician stays with each repair job until final testing
at the end of the process. Note, from here onwards, we consider that each engine has been disassembled,
and repairs relate to individual components. Thus, any component not needing repair is routed aside for
later reassembly into a whole engine again (point 3). Before repairable parts go to the main repair activity,
we check if we can simply replace the faulty component subject to replacement part availability (point
4). Replacement parts are replenished regularly but can deplete if demand becomes too high (point 5).
When replaced, the turnaround for engines back to the fleet is typically quicker as the actual repair can be
done later while no helicopter is ‘on ground’. If not possible, several specialized tools are needed at the
main repair activity (point 6) depending on failure type, summarized here as SD machines. Here, we can
prioritize repair of jobs if they are mission critical. After modification we might prioritize mission critical
parts again for overhaul (point 7). This means that technicians and machinery are used there first, and
ongoing work might be interrupted if necessary. Next, components are tested for a final time whereas there
is a chance of failure and joining the rework loop back to troubleshooting and inspection. After passing
final testing, repaired components are reassembled into the complete engine part and leave the facility
(point 8). They are then cleared for delivery and dispatched back to the fleet (point 9).

While we could add more detail of MRO processes, this is out of scope here. We just note that despite
most individual processing times being reasonably assumed to follow log-normal distributions with low
standard deviations, hence, not causing unexpected delays by themselves, several factors can introduce
high uncertainties for predicting the overall TTR or turnaround time for engines returning to fleets. These
include (1) sharing resources and spares together with possible unavailabilities, (2) mission critical assets
taking priority, and (3) different routing options, e.g., to a specialist crew or for rework. This also explains
why solely considering mean-time-to-repair (MTTR) is often an oversimplified assumption. The main
exceptions for uncertainty stemming from distributional assumptions relate to the inspection and repair
activities. These can vary greatly due to the different possible causes of engine faults.

Regarding the main results in interaction with the ‘fleet tracker’ simulation and individual helicopter’s
RUL predictions, we compare two possible system states of the MRO DES, called scenario 1 and 2
respectively. Note, these are just two examples with respect to how busy the MRO process is due to
repairs from other fleets (either scheduled or unscheduled). They were chosen to show the impact of repair
delays on RUL and vice versa after running trial runs of the simulations in this framework. Scenario 1
reflects a ‘less busy’ scenario with an exponential inter-arrival rate of other arrivals into MRO of 36 hours.
Scenario 2 reflects a ‘somewhat busy’ scenario with other arrivals coming in every 12 hours (exponential).
In scenario 1, the repairable part from the first helicopter engine reaching the end of its RUL had an average
time-in-system of 271.36 hours, 95% CI [269.65,273.07] (measured until Reassembly) while the average
sum of all waiting times was 29.59 hours, 95% CI [33.91,25.27]. During this time, the average RUL for
the three remaining helicopters dropped by 84.68 flying hours. When running the ‘fleet tracker’ simulation
for the same length of time with a complete fleet, the average RUL reduction is only 56.81 flying hours.
This is caused by the slope of each RUL estimate being corrected downwards once the first helicopter
becomes inactive. In scenario 2, the average time-in-system was 391.36 hours, 95% CI [381.98,400.75]
with a total average wait time of 97.55 hours, 95% CI [87.65,107.45]. Further, time-in-system had a long
right tail with the 95th quantile at 579.35 hours signifying a risk as the average RUL of the three other
helicopters decreased already by 154.77 flying hours. This behavior indicates a lagged phenomenon we
can plan with when investigating the impact that specific features have on RUL as explored next. That
way, the results inform multiple decisions. First, they can minimize the impact that MRO has on a fleet
by timing it with the current state of the facility. This avoids getting caught in bottlenecks and through
‘what if’ scenarios, we can assess how well an incomplete fleet copes with such scenarios and recovers
from them, especially with the risk of operational readiness collapsing within this feedback loop. This
goes beyond simply preparing for a busier summer season, but instead allows for informed decisions when
facing the uncertainty of challenging missions and locations together with unexpected adverse weather.
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4.4 Explainable ML: Making ‘What If’ Scenario Development Accessible for Decision-Makers

A common challenge with ML-based predictions concerns the understanding, transparency and interpretation
of outputs. Indeed, most ML models are known as ‘black boxes’ (Castelvecchi 2016). This also raises an
important concern when integrating simulation models with ML, which is why we include this step in our
modeling process. It allows decision-makers to gain a better understanding of the drivers of sharp drops
in RUL and by that the aforementioned dynamic interaction between fleet performance and maintenance.
Explainable ML has emerged as an umbrella term for techniques that aid gaining a better insight into the
factors that predictions are based upon (see Belle and Papantonis (2021) for an overview). In our case
decision-makers need to understand when fleet performance becomes critical for maintenance planning
and vice versa. We achieve this through integrating a common explainable ML method, Shapley Additive
Explanations (SHAP). It is based on Shapley values from cooperative games in game theory (Shapley
1953), whereas here Shapley values calculate the weighted marginal contribution of variables to the final
prediction result of the RF model. We refer to Štrumbelj and Kononenko (2014) for details. The method is
model-agnostic, suitable for a small to moderate number of features, and it overcomes issues with ordering.

Figure 5: SHAP values evaluating the contributions of individual features on RUL decrease).

In Figure 5 (built in Python’s SHAP package), we see that especially mission locations Sea and Mountain
together with mission type Rescue unknown and stormy and foggy weather have an impact on our RUL
predictions. All of these come (unsurprisingly) after the actual accumulated flight hours. The clusters
of high values (red) in contrast to spread out low values (blue) indicate that these are not just individual
outliers causing occasional increase in SHAP values. Further, we see that the SHAP values separate the
important and less important features well which confirms the outputs of the ‘fleet tracker’ simulation in
the sense that it distinguishes relevant features for RUL. Next, we can use the SHAP values to assess the
reliability of our simulation results. In particular, whenever we only have scarce data on the most important
features, we should consider ways to counteract this lack of data, such as including expert judgments
to assess their likelihood. For example, with a lack of data on remote mission probabilities, we could
elicit this information to improve the ‘fleet tracker’ simulation. Werner (2023) discussed simulation input
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modeling in the absence of relevant historical data. Finally, these results (and their correlations) are useful
for developing informative ‘what if’ scenarios that stress test the current MRO set up, attuned to coping
with the current expected drops in RUL. For instance, we might simulate other mission type probabilities
combined with adverse weather to specifically include and mimic real-world conditions in SAR missions.

5 CONCLUSIONS

In this paper, we have addressed the dynamic interaction between fleet performance and MRO processes
through a novel simulation framework. It considers the feedback loop that exists between these given that
delays and bottlenecks in repairs can put stress on fleet performance which, in turn, might cause a rapid
decline in RUL and, hence, more arrivals into MRO again. Our simulation framework, integrating an RF
model with DES through a ‘fleet tracker’ provides a more holistic view of this problem. In addition, it
includes important factors at the individual level of the fleet assets that can cause a sudden decline in RUL.

In future, we would like to validate the framework in real-world applications and further develop it.
First, although the idea of a ‘rolling window’ for RFs provides realistic results of short-term sequences
leading to drops in RUL, we want to explore more advanced methods. In that context, LSTM considers
time series data specifically and can overcome the less flexible fixed time windows of feature vectors in
RFs. Second, other models are better suited to capture uncertainty around RUL predictions by treating
model parameters probabilistically and predicting quantiles from trees, such as Bayesian approaches for
RFs or also Quantile Regression Forests. Next, the ‘fleet tracker’ and DES model can be enhanced to
account for important additional details. The first with respect to agent-based details of helicopter pilots
and their behavior and the latter regarding technical assistance and maintenance for global fleets, including
the impact of multiple maintenance facilities and rules regarding first and second line support.

Finally, we want to enhance our framework with a simulation-optimization approach considering the
states of all models together. This allows us to benchmark it against existing fleet management optimization
and simulation approaches. Further, by integrating interactive methods for exploring scenarios of declining
RUL, such as serious games based on explainable ML, we can test the robustness of its results while making
them more informative and accessible for decision-makers, especially when basing ‘what if’ testing on live
(or near live) data, e.g., on the current state of the fleet or current weather, for operational use.
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