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ABSTRACT

Missing data presents a persistent challenge in machine learning. Conventional approaches often rely on data
imputation followed by standard learning procedures, typically overlooking the uncertainty introduced by
the imputation process. This paper introduces Imputation-based Distributionally Robust Logistic Regression
(I-DRLR)—a novel framework that integrates data imputation with class-conditional Distributionally Robust
Optimization under the Wasserstein distance. I-DRLR explicitly models distributional ambiguity in the
imputed data and seeks to minimize the worst-case logistic loss over the resulting uncertainty set. We
derive a convex reformulation to enable tractable optimization and evaluate the method on the Breast
Cancer and Heart Disease datasets from the UCI Repository. Experimental results demonstrate consistent
improvements for out-of-sample performance in both prediction accuracy and ROC-AUC, outperforming
traditional methods that treat imputed data as fully reliable.

1 INTRODUCTION

This paper presents a distributionally robust approach to address the issue of missing data in logistic regression,
a widely used statistical method for classification. The motivation stems from real-world applications—such
as healthcare analytics, industrial monitoring, traffic management, and customer behavior modeling—where
datasets often contain incomplete feature observations due to various factors (Ehrlinger et al. 2018; Noh
et al. 2004; Preda et al. 2005; Smith et al. 2003). These factors include sensor errors, communication
delays, or data privacy restrictions.

Traditional approaches to handling missing data in machine learning models, including logistic regres-
sion, aim to construct a complete dataset through imputation methods such as mean substitution, maximum
likelihood estimation, K-Nearest Neighbors (KNN), or multiple imputation (Austin and van Buuren 2022;
Dempster et al. 1977; Martins et al. 2024; Jerez et al. 2010; Verchand and Montanari 2024), followed by
standard model training. However, these approaches ignore the uncertainty introduced during the imputation
process, which can lead to unreliable predictions (Schafer and Graham 2002; Zhang 2016).

In this paper, we propose a distributionally robust method that accounts for the uncertainty in imputed
values, resulting in more reliable forecasts. Our approach incorporates distributional ambiguity in the
imputed data distribution and minimizes the worst-case logistic loss within this ambiguity set.

Robust methods have been extensively used to tackle uncertainty in machine learning models, particularly
in scenarios involving distributional shift and noise (Bertsimas et al. 2019; Blanchet et al. 2020). Among
these, Distributionally Robust Optimization (DRO) has gained attention for its ability to hedge against
distributional uncertainty by optimizing for worst-case performance within an ambiguous set of possible data
distributions and utilized for machine learning models including logistic regression (Chen and Paschalidis
2018; Faccini et al. 2022; Lee and Mehrotra 2015; Shafieezadeh-Abadeh et al. 2015). While DRO has
proven effective in handling distributional uncertainty, it has not yet been applied to model the uncertainty
arising from imputed datasets—an issue that frequently occurs in real-world applications.

We propose a novel integrated framework that considers distributional uncertainty around the imputed
data and leverages DRO to optimize the worst-case logistic loss in the corresponding ambiguity set. Rather
than completely relying on empirical imputed data distribution, our method constructs class-conditional
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ambiguity sets—defined using the Wasserstein distance—centered around empirical distributions generated
via imputation. The DRO formulation then seeks to minimize the worst-case logistic loss over these
sets of data distributions, allowing for controlled perturbations in the feature space while preserving class
labels (Delage and Ye 2010; Gao and Kleywegt 2016; Kuhn et al. 2024). This enables the model to hedge
against distributional uncertainty introduced by the imputation process.

Contributions. The main contributions of this paper are as follows:

1. We propose a novel Imputation-based Distributionally Robust Logistic Regression (I-DRLR) frame-
work that hedges against uncertainty arising from the imputation process. We consider missing data
in the feature space and construct separate Wasserstein ambiguity sets for each class. The model
then solves the worst-case logistic loss for each corresponding set. The framework is flexible,
allowing control over the level of uncertainty and choice of ambiguity set.

2. We derive a tractable reformulation of the [-DRLR problem and prove its equivalence to a convex
optimization problem. This enables efficient solutions using standard convex optimization libraries
such as CVXPY and commercial solvers like Gurobi and CPLEX.

3. We conduct extensive computational experiments on the Breast Cancer Wisconsin (Diagnostic) and
Heart Disease datasets from the UCI Machine Learning Repository (Wolberg et al. 1993; Janosi
et al. 1989). Across varying missing data probabilities and robustness radii, I-DRLR consistently
provides better out-of-sample performance than standard imputation-based methods in terms of
both prediction accuracy and ROC-AUC. We also analyze the effect of ambiguity set design on
generalization performance.

The remainder of the paper is organized as follows. Section 2 reviews related work on missing data,
robust statistics, and DRO in machine learning. Section 3 provides the necessary background. Section 4
introduces our I-DRLR model based on class-conditional Wasserstein ambiguity sets. Section 5 presents
a tractable convex reformulation for scalable implementation. Section 6 reports experimental results on
real-world datasets from the UCI Machine Learning Repository under varying missing data probabilities
and robustness levels. The Appendix includes the proof of the reformulation.

2 RELATED WORK

Missing data is a critical issue in machine learning and has been extensively studied in the literature. The
most common strategy for addressing missing data is imputation, which involves estimating and filling in the
missing values based on observed information. Various imputation techniques have been proposed, including
single imputation, multiple imputation, maximum likelihood estimation, and K-Nearest Neighbors, among
others (Austin and van Buuren 2022; Emmanuel et al. 2021; Martins et al. 2024; Jerez et al. 2010;
Verchand and Montanari 2024; Zhang 2016).

Data uncertainty is another major challenge in machine learning applications, and ensuring robustness
is essential for obtaining reliable predictions. As a result, robust methods have been widely studied in
the field. Much of the existing literature on data uncertainty focuses on variations in the underlying data
distribution, such as distributional shifts, noise, or adversarial perturbations (Bertsimas et al. 2019; Blanchet
et al. 2020; Caramanis et al. 2012). DRO is a powerful framework that optimizes for the worst-case
expected loss over an ambiguity set of possible data distributions (Delage and Ye 2010; Gao and Kleywegt
2016; Kuhn et al. 2024). DRO has been successfully applied to various machine learning models, including
linear regression, support vector machines (SVM), and logistic regression (Blanchet et al. 2020; Blanchet
et al. 2024; Chen and Paschalidis 2018; Duchi and Namkoong 2018; Faccini et al. 2022; Kuhn et al. 2019;
Shafieezadeh-Abadeh et al. 2015; Taskesen et al. 2020). While DRO methods in machine learning have
been applied to address uncertainties arising from distributional shifts, noise, and adversarial perturbations,
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they have, to the best of our knowledge, not been utilized to tackle the issue of missing data in machine
learning models.

This paper contributes to the literature on missing data in logistic regression by explicitly incorporating
uncertainty in the imputed data distribution (Austin and van Buuren 2022; Jiang et al. 2018; Verchand and
Montanari 2024). We propose a novel approach that integrates imputation with DRO to handle datasets
containing missing values. Specifically, we introduce the Imputation-based Distributionally Robust Logistic
Regression (I-DRLR) method, which combines imputation with a class-conditional DRO framework based
on the Wasserstein distance. We further derive a tractable reformulation of the I-DRLR problem as a convex
optimization, enabling efficient implementation using standard optimization solvers. Finally, we conduct
comprehensive experiments to evaluate the performance of our method relative to conventional logistic
regression, with a focus on out-of-sample prediction accuracy and ROC-AUC.

3 PRELIMINARY AND BACKGROUND

Standard logistic regression estimates class label probabilities based on feature vectors. Let the binary label
be denoted by y. The model uses a feature vector x € R?, where R? represents a d-dimensional real vector
space. The relationship between predictors and outcomes is described using a coefficient vector 8 € R¢,
with class probabilities estimated via the logistic function:

Prob(y | x) = [1 +exp (—yXTB>] - . €))

In (1), the optimal coefficient vector 3 is found by minimizing the total logistic loss over the entire
dataset. The logistic loss function is defined as follows:

{g(x,y) = log (1+exp (—yxTB>). 2)

This formulation arises from the principle of maximum likelihood estimation under the assumption of
independently and identically distributed (i.i.d.) data and a logistic loss for binary outcomes (Hastie et al.
2009). Considering the empirical distribution P, standard logistic regression can then be written as the
following optimization problem:

1 n
mﬁin Epllp(x,y)] = mﬁin " Y log(1+exp(—yi- B x;)). 3)
i=1

Assuming that our dataset has n = ng +n; i.i.d. samples, where ng and n; represent the number of
training samples with labels 0 and 1, respectively. Let Py denote the empirical distribution of samples
with y =0, and P; the empirical distribution for y = 1. Each of these contributes to the overall empirical

distribution P. Let XEO) and xgl) denote the i samples from classes 0 and 1, respectively. Define po = ng/n
and p; = n;/n as the empirical class proportions. Then, (3) can be equivalently expressed as:

1 &

13
Zﬁﬁ(x§°),0)+ﬁ1-n—lZﬁﬁ(xE”J)- )
=1 i=1

Po- B, [lp(%,0)] + 1 -, [f(x, )] = o~

Missing Data Assumption. In this paper, we assume that only the feature variables contain missing
values—regardless of the underlying missingness mechanism—while the labels are fully observed (Josse
and Reiter 2018; Schafer and Graham 2002).

Distributionally Robust Optimization. DRO is a framework for decision-making under uncertainty
that seeks solutions robust to distributional ambiguity. Rather than optimizing for a fixed probability
distribution, DRO optimizes for the worst-case expected loss over a set of possible distributions (Delage
and Ye 2010; Gao and Kleywegt 2016; Kuhn et al. 2024). There are several ways to define this ambiguity
set; in our case, we use a commonly used metric, the Wasserstein distance, which quantifies the cost of
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transporting mass to transform one probability distribution into another. It effectively measures the optimal
transport cost between distributions (Villani 2008). In the following section, we present our Imputation-
based Distributionally Robust Logistic Regression (I-DRLR) method, which applies the DRO framework to
the distribution of imputed data. This is achieved by constructing class-conditional Wasserstein ambiguity
sets to capture uncertainty in the imputed feature values.

4 MAIN MODEL

In this section, we employ a DRO approach to minimize the worst-case expected logistic loss across all
distributions within the ambiguity sets of possible shifts of the imputed data distribution. We consider the
distributions that are close to the imputed empirical distribution for each class, allowing perturbations only
in the feature space while keeping labels fixed.

Recall f’y denotes the empirical distribution of features with label y € {0, 1}, and let p, be the empirical
class prior, which is the proportion of training samples that belong to class y in the empirical dataset. For
each class label y, we define a class-conditional ambiguity set with a shared Wasserstein radius 7 > 0:

Py ={Py e 2(X):W(P,,Py) < 7}, ®)

where Z2(X) denotes the set of all probability distributions supported on the feature space X C R,
and W(-,-) denotes the Wasserstein distance over X. The radius 7 > 0 is tunable and may be adjusted
based on the problem context—for example, higher missing rates may suggest a larger uncertainty radius.

While any valid distance can define the ambiguity set, we use the Wasserstein distance, a widely
adopted and foundational metric in distributionally robust optimization. The Wasserstein distance between
two distributions P, and IA’y is defined as:

W(PWIA)}') = inf R IE:(x,x/)wﬂ.’ [HX_X/H] ) (6)
nell(Py,P))
where TI(P,,P}) denotes the set of all couplings with marginals P, and Py, and | - || is a norm (e.g.,

?1,0>,4. norm) on the feature space R?. Intuitively, this formulation seeks the minimum expected cost
of transporting "mass" from one distribution to another (Villani 2008). Formulation (6) ensures that
perturbations are allowed only in the feature space, and the label remains fixed.

The following is a distributionally robust formulation associated to problem (3). Since missing data and
uncertainty occur only in the feature space, we adopt a class-conditional distributionally robust optimization
approach, using the ambiguity sets defined in (5). The resulting Imputation-based Distributionally Robust
Logistic Regression (I-DRLR) problem is formulated as follows:

. {ﬁo - max Ex.p, [£5(x,0)] + p1 - max Ex.p, [0p(x,1)] } ©)

where /g(x,y) is the logistic loss function defined in the previous section. Although the Wasserstein
DRO formulation of logistic regression can be reduced to regularized logistic regression under specific
conditions, this equivalence does not hold in general, and it does not apply in our setting where we
have utilized class-conditional ambiguity sets (Wu et al. 2022). More importantly, regularized logistic
regression does not explicitly account for the uncertainty introduced by imputation. In contrast, Wasserstein
DRO directly models distributional ambiguity in the feature space, providing robustness against worst-case
perturbations space (Shafieezadeh-Abadeh et al. 2015).

5 TRACTABLE REFORMULATION

In this section, we present a tractable reformulation of the I-DRLR problem (7), influenced by the ideas
introduced in (Shafieezadeh-Abadeh et al. 2015). The reformulated optimization problem is convex for

3493



Chen and Bidkhori

most commonly used norms, and can be efficiently solved using standard convex optimization solvers
such as those in CVXPY, a standard convex optimization library. A complete proof of the reformulation is
provided in the Appendix.

Theorem 1 (Tractable Reformulation of I-DRLR) Let %; € R and §; € {0,1} denote the imputed feature
vector and the corresponding observed label. Then, the Imputation-based Distributionally Robust Logistic
Regression (I-DRLR) problem (7) is equivalent to the following convex optimization problem:

1 o 1 M
min Do (MT—I—ZSEO)) + P (M‘H-Zsz(l))
P8 ) no ;= ni i=1

B.Ao A s) sl i=1
s.t Eﬁ(ﬁgo),O)gsEO), Vi=1,...,ng,
1) (1) ®
lg(%;7,1) <s;7, Vi=1,...,ny,
1Bl+ < A,
1Bll+ < A1

In the above formulation, ny and n; are the number of training samples with labels 0 and 1. The

quantities py and p; are the empirical class proportions defined earlier. The vector B € R¢ represents the
(0) (1)

parameters of the logistic regression model, while the scalar variables s;” and s;

serve as upper bounds

on the logistic loss for each class-specific training example (f(fo),O) and (f(l(l), 1). The dual variables A
and A, represent the model’s sensitivity to perturbations in the class-conditional distributions. Lastly, || - ||«

denotes the dual norm associated with the norm used in defining the Wasserstein distance.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of the proposed I-DRLR method by comparing its out-of-
sample performance against Imputation-based Logistic Regression (I-LR). We conduct a series of experiments
under varying missing rates and uncertainty levels. In addition, we evaluate the performance of I-DRLR
under different ambiguity set configurations. Across all settings, the I-DRLR approach consistently
demonstrates superior performance in the presence of incomplete data. Our experiments are conducted
on two benchmark datasets from the UCI Machine Learning Repository: the Breast Cancer Wisconsin
(Diagnostic) dataset (Wolberg et al. 1993) and the Heart Disease dataset (Janosi et al. 1989). We first
describe the experimental setup in detail, followed by the presentation of results in Subsections 6.1 and 6.2
for the two datasets. The result for comparison under different uncertainty sets is presented in Subsection 6.3.

Experiment Setup. Since the Breast Cancer Wisconsin (Diagnostic) dataset and the Heart Disease
dataset are fully observed, we introduce missingness by randomly removing feature values at predefined
rates. Specifically, 10% and 20% of all feature entries are removed uniformly at random across all feature
dimensions. The imputed datasets utilized in I-LR and I-DRLR are then obtained using a K-Nearest
Neighbors (KNN) imputer with kK = 5 neighbors. All numerical features are subsequently standardized
to ensure consistent scaling. Finally, each dataset is split into an 80%-20% training-test partition. Both
I-LR and the proposed I-DRLR model are trained on the imputed training data. I-DRLR is formulated
as a convex optimization problem that minimizes worst-case logistic loss over Wasserstein balls of radius
7 € {0.05,0.10,0.15}. We use the same 7 value for both class-conditional ambiguity sets as defined in
the previous section. The norm used for the Wasserstein distance is the ¢, norm, and the optimization is
solved using the CVXPY, a python-based standard convex optimization library. To ensure the reliability of
the results, we repeated the entire experimental procedure 30 times. In each iteration, missing values are
introduced randomly and independently. The models are then retrained, and the out-of-sample performance
isrecorded. The out-of-sample performance of the models is evaluated using two standard metrics: Accuracy

3494



Chen and Bidkhori

and ROC-AUC score, which measures the model’s ability to distinguish between classes by calculating the
area under the ROC curve. The ROC curve plots the true positive rate against the false positive rate. In
addition to evaluating the performance on different robustness radii 7, we also experiment with different
norm choices for the Wasserstein distance, including ¢; and ¢, norms. This allows us to study the effect of
different uncertainty sets on I-DRLR performance under incomplete data. The following sections discuss
the results of our experiments.

6.1 Results for the Breast Cancer Dataset

In this section, we compare the performance of I-LR and I-DRLR on the Breast Cancer Wisconsin (Diagnos-
tic), which contains 569 samples with 30 numerical characteristics representing cell nuclei characteristics
from digitized images. The binary target indicates whether a tumor is malignant (1) or benign (0). We
compare the out-of-sample performance across different missing probabilities, 10% and 20%. For each
missing probability and uncertainty level, we repeated the experimental procedure 30 times to ensure the
reliability of the results. The out-of-sample accuracy and ROC-AUC results for 10% missing probability are
summarized using boxplots in Figure 1. Mean and standard deviation statistics are summarized in Tables 1
and 2. The results show that I-DRLR consistently outperforms I-LR in both accuracy and ROC-AUC.
With increasing values of 7, [-DRLR produces more stable and reliable predictions, as evidenced by higher
medians and tighter interquartile ranges in the boxplots. Tables 3 and 4, along with Figure 2, reaffirm
the above observation for the 20% missing probability. In addition, they reveal that the performance gap
between I-DRLR and I-LR widens as the missing probability increases.

Table 1: Accuracy with 10% missing probability. Table 2: ROC-AUC with 10% missing probability.
Method | Mean Std Dev Method | Mean Std Dev
I-LR: I-DRLR(7 =0) | 0.900292 | 0.022744 I-LR: I-DRLR(7 =0) | 0.971427 | 0.010656
I-DRLR (7 =0.05) | 0.924854 | 0.021694 I-DRLR (7 =0.05) | 0.983535 | 0.008318
I-DRLR (t=0.1) | 0.933041 | 0.017466 I-DRLR (7 =0.1) | 0.985610 | 0.008251
I-DRLR (7 =0.15) | 0.933041 | 0.018641 I-DRLR (7 =0.15) | 0.986341 | 0.008117
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Figure 1: Accuracy & ROC-AUC with 10% missing probability.
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Table 3: Accuracy with 20% missing probability. Table 4: ROC-AUC with 20% missing probability.
Method | Mean Std Dev Method | Mean Std Dev
I-LR: I-DRLR(7t =0) | 0.896784 | 0.033278 I-LR: I-DRLR(7 =0) | 0.970816 | 0.012733
I-DRLR (7 =0.05) | 0.923684 | 0.024720 I-DRLR (7 =0.05) | 0.985490 | 0.006793
I-DRLR (t=0.1) | 0.929825 | 0.023265 I-DRLR (t=0.1) | 0.987258 | 0.006312
I-DRLR (7 =0.15) | 0.932749 | 0.020775 I-DRLR (7 =0.15) | 0.987804 | 0.005887
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Figure 2: Accuracy & ROC-AUC with 20% missing probability.

6.2 Results for the Heart Disease Dataset

In this section, we apply the same experimental procedure to the Heart Disease dataset, which consists of
303 patient records. The binary target indicates the presence (1) or absence (0) of heart disease. Performance
results for the 10% missing-data scenario are visualized as boxplots in Figure 3, while the corresponding
mean and standard deviation statistics are summarized in Tables 5 and 6. As illustrated, I-DRLR consistently
outperforms I-LR across all evaluation metrics. As 7 increases, [-DRLR shows improved out-of-sample
performance. We replicated the experiment with a 20% missing probability, and again, I-DRLR consistently
outperforms I-LR across all metrics. Figure 4 further highlights that under 20% missingness, I-DRLR
exhibits greater stability and superior performance.

Table 5: Accuracy with 10% missing probability. Table 6: ROC-AUC with 10% missing probability.
Method | Mean Std Dev Method | Mean Std Dev
I-LR: I-DRLR(7=0) | 0.761749 | 0.040324 I-LR: I-DRLR(7 =0) | 0.838578 | 0.032293
[-DRLR (7 =0.05) | 0.775410 | 0.036314 I-DRLR (7 =0.05) | 0.860776 | 0.026883
I-DRLR (t=0.1) | 0.784699 | 0.033826 I-DRLR (7 =0.1) | 0.870833 | 0.025391
I-DRLR (7 =0.15) | 0.781967 | 0.036821 I-DRLR (7 =0.15) | 0.872701 | 0.024471
Table 7: Accuracy with 20% missing probability. Table 8: ROC-AUC with 20% missing probability.
Method | Mean Std Dev Method | Mean Std Dev
I-LR: I-DRLR(7 =0) | 0.777596 | 0.040313 I-LR: I-DRLR(7 =0) | 0.845546 | 0.028995
[-DRLR (7 =0.05) | 0.774317 | 0.034624 I-DRLR (7 =0.05) | 0.857471 | 0.026922
I-DRLR (t=0.1) | 0.780328 | 0.033236 I-DRLR (r=0.1) | 0.864583 | 0.028858
[-DRLR (7 =0.15) | 0.785246 | 0.035331 I-DRLR (7 =0.15) | 0.865445 | 0.029422
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Figure 3: Accuracy & ROC-AUC with 10% missing probability.
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Figure 4: Accuracy & ROC-AUC with 20% missing probability.

6.3 Comparison under Different Ambiguity Sets

In this section, we compare the out-of-sample performance of I-LR and I-DRLR on the Heart Disease dataset
for different norms that are incorporated in the Wasserstein ambiguity set (¢1, ¢). The performance com-
parisons under 10% and 20% missing probabilities and different robustness parameters (7 = 0.05,0.1,0.15)
are visualized in Figures 5 and 6. As illustrated in Figure 5, I-DRLR models outperform I-LR on the Heart
Disease dataset with 10% missing probability for both ¢; and ¢, norms. These results consistently show
improvements in both accuracy and ROC-AUC. I-DRLR with the #; norm and a larger 7 stands out with
the most favorable results. We increase the missing probability to 20% and compare the results. Figure 6
shows that [-DRLR with #; and ¢, norms generally outperform I-LR, especially in ROC-AUC. The best
performance is observed with the ¢, norm at T = 0.15, which improves both accuracy and ROC-AUC.
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Figure 5: Accuracy & ROC-AUC on different norms with 10% missing probability.
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Accuracy & ROC-AUC on different norms with 20% missing probability.

7 CONCLUSION

This paper proposes Imputation-based Distributionally Robust Logistic Regression (I-DRLR), a principled
framework that integrates data imputation with class-conditional Distributionally Robust Optimization
(DRO) using the Wasserstein distance. I-DRLR explicitly models uncertainty in the imputed feature space
by constructing class-wise ambiguity sets centered on the empirical imputed distributions. Empirical
evaluations on benchmark datasets with induced missing data mechanism show that I-DRLR consistently
outperforms Imputation-based Logistic Regression (I-LR) in both predictive accuracy and ROC-AUC,
particularly under higher levels of missing probability and robustness radii. These results underscore the
value of incorporating distributional robustness into learning procedures with missing data and motivate
further exploration of robust methods that address imputation uncertainty. The proposed I-DRLR method
is designed to operate under the assumption of a completely unknown missing data mechanism. However,
more specialized models could be developed when partial knowledge of the missing mechanism is available.
Exploring theoretical performance guarantees also remains a valuable direction for future research. While
the current framework assumes fully observed labels, it can extend for settings involving partially observed
labeled data. Moreover, future work could investigate alternative robust learning models (Blanchet et al.
2024)—beyond the Wasserstein distributionally robust optimization framework to effectively handle missing
data.
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8 APPENDIX
8.1 Proof for Theorem 1

Proof.  We consider the Imputation-based Distributionally Robust Logistic Regression (I-DRLR) problem
under the class-conditional Wasserstein ambiguity sets over the feature space R?, using a shared Wasserstein
radius T > 0. For each class y € {0,1}, the ambiguity set is defined as:

P, = {Py e P(RY):W(P,,P,) < r},

where 13y is the empirical distribution of features for class y, and W(-,-) is the Wasserstein distance defined
as:

W(P,P)= inf |Ix — x| d7m(x,x),
nell(P.P) JRIxRI

with || - || a norm on R¢, and TI(P,P) the set of all couplings with marginals P and P.
Let £g(x,y) = log(1 +exp(—y- B "x)) denote the logistic loss. The I-DRLR objective is:

min Py sup Exp, |{p(X,y
Ber? )E{ZOI} )P €, [ B( )]

Fix a class y € {0,1}. The robust expected loss over &2, can be expressed from strong duality for
Wasserstein DRO (Zhang et al. 2024):

sup Ex-p, [(g(x,y)] = inf AyT+Eg p, | sup (0p(x,y) — AylIx — %]
P, ey 4,20 T [ xeRrd

Since P, is empirical, the expectation becomes a finite sum:

—Zm%xyMu ).

My (=1 xeRrd

)

where X;”’ denotes the i" imputed sample from class y. Therefore, the DRO objective becomes:

min Z Py <2,}1;_|_ 1 Z sup [ﬁﬁ X,y) — Ayl[x — })

ﬁJo,llZOye{O’l} y = 1X€R

To evaluate the inner supremum, fix X( ¥, From convex analysis (Shafieezadeh-Abadeh et al. 2015),
we have:

&), i [Vt Y| <4,

o0, otherwise.

wp%@w—%w—ﬁﬂz{

xcR4

We compute the gradient:
Vilp(&,y) = —y-o(~y-B ') - B,

where o (1) = is the sigmoid function. Therefore, the dual norm becomes:

|

e

&M y)

=o(=y-B'&)- B
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Since o(-) < 1, it suffices to enforce:

1Bls < Ay.
o)

Under this constraint, the pointwise supremum becomes /g(%;"’,y), and the DRO objective reduces to:

. . I &, .0 . I &, .0
T+ — ) Lg(%7,0 MT+—) L5(%: 7,1 ,
g min 1o | Ao +"0,-§{ p(X,0) | +p1| A +n1,§{ p(%i 1)

subject to:

1Bl <20, [IBll« < 4i.

Finally, introducing slack variables sl(.o) > {g (ﬁgo),O) and sEl) > Lg (ﬁgl), 1), we obtain the equivalent
convex program:

, R L) s (ape Ly
min - Po hot+—Y 5" | +p | Mt+—Y 5
ﬁv%vllvsl’ »S; "o i=1 nj i=1
0)

st 58200 <s vi=1,....n,
&Y <M vi= 1,0,
1B+ < Ao,
1B« < Ay
O
) ()

This is a convex optimization problem over ﬁ,lo,ll,sgo ,5; , and can be solved efficiently using
standard convex solvers such as CVXPY. The dual norm || - || corresponds to the dual of the norm used
to define the Wasserstein distance in the feature space.
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