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ABSTRACT

Lifelong deep learning (LDL) enables neural networks to learn continuously across tasks while preserving
prior knowledge. We propose Task-Aware Multi-Expert (TAME), a novel algorithm that leverages task
similarity to guide expert model selection and knowledge transfer. TAME maintains a pool of pretrained
neural networks, activating the most relevant expert for each new task. A shared dense layer integrates the
selected expert’s features to generate predictions. To mitigate catastrophic forgetting, TAME employs a
replay buffer storing representative samples and embeddings from past tasks, enabling continual reference.
An attention mechanism further prioritizes the most relevant stored knowledge for each task. Overall, the
TAME algorithm supports flexible and adaptive learning across diverse scenarios. Experiments on CIFAR-
100–derived classification tasks show that TAME improves classification accuracy while maintaining
performance on earlier tasks, demonstrating its effectiveness in balancing adaptation and retention in
evolving task sequences.

1 INTRODUCTION

Lifelong deep learning is a rapidly evolving area focused on empowering deep neural networks to continually
learn new tasks while retaining previously acquired knowledge and adapting to novel situations. Unlike
traditional ensemble learning, which aims to improve accuracy by combining multiple models for the same
task, and multi-task learning (MTL), which learns multiple tasks jointly, lifelong deep learning emphasizes
continual adaptation and knowledge retention as tasks arrive sequentially. A key challenge in this domain
is catastrophic forgetting, where models lose performance on earlier tasks when trained sequentially—an
issue particularly evident in online or real-time systems. For instance, a traffic sign detection system may
degrade in recognizing previously learned signs when updated with new ones. While current methods often
employ replay mechanisms or regularization strategies, these solutions may struggle to scale in complex
environments or fully exploit shared knowledge across tasks. To overcome these limitations, we propose
a novel framework that dynamically integrates relevant insights from multiple models, enhancing both
knowledge retention and task adaptability. This is especially advantageous in simulation-based systems,
where ongoing adaptation to changing conditions is essential.

In this paper, we present TAME (Task-Aware Multi-Expert), a lifelong learning algorithm designed
to enable multiple deep learning models to incrementally and collaboratively learn over time. Central to
our approach is the use of task similarity to inform expert selection and guide knowledge transfer. By
identifying the relationships between the current task and previously encountered ones, TAME enables
selective reuse of relevant knowledge, thereby improving learning efficiency and mitigating redundancy. For
example, when a new task closely resembles a prior one, the most appropriate expert model is selected to
extract transferable features, promoting effective adaptation while reducing forgetting. To further address
the challenge of catastrophic forgetting, TAME incorporates a finite-capacity replay buffer that stores
representative samples and their corresponding feature embeddings from earlier tasks. This allows the
system to revisit and reinforce prior knowledge during training. We also introduce a scaled dot-product
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attention mechanism that dynamically prioritizes the most relevant past experiences in the buffer. To support
long-range dependency learning, the replay buffer retains representative samples from all previous tasks
using a balanced replacement strategy, ensuring early task information remains accessible. While attention
highlights relevant memories, the buffer preserves them—enabling sustained generalization and temporal
continuity. The key contributions of this work are as follows:

• We propose a Task-Aware Multi-Expert lifelong learning algorithm designed to improve adaptability
and knowledge retention across sequential tasks. The model architecture consists of multiple
pretrained neural networks interconnected with a shared dense layer (SDL) for the final output.
When a new task arrives, TAME uses task similarity—measured via Fréchet Inception Distance
(FID) or Cosine Similarity—to select the most appropriate model. This model extracts feature
representations from the new task, which are then stored in a replay buffer and passed to the SDL
for learning while preserving the expert models to prevent forgetting,

• We further enhance the algorithm to incorporate a scaled dot-product attention mechanism when
our model retrieves knowledge from the replay buffer. Instead of treating all stored features equally,
we compute attention scores between the current task and stored past tasks to dynamically prioritize
more relevant experiences. This targeted weighting of memory improves feature reuse and further
enhances performance and knowledge retention.

• We design a tailored experimental setup using multiple expert architectures connected to a shared
dense layer, applied to binary classification tasks derived from the CIFAR-100 dataset. Our framework
supports controlled evaluation across multiple task sequences, enabling consistent assessment of
task similarity-based strategies in high-dimensional image domains. We have also conducted an
experiment to compare TAME and a classical multi-task learning approach, the Shared-Bottom
model. Our results show that our proposed algorithm, compared with baselines that do not utilize
task similarity, performs better in terms of Average Forgetting and Average AUROC score.

TAME can be adapted to digital twins and traffic simulation by enabling real-time adaptation to
evolving conditions. In smart manufacturing, it allows digital twins to incrementally learn new equipment
behaviors—such as emerging faults or wear patterns—by selecting relevant expert models based on sensor
data similarity, supporting predictive maintenance without retraining. In traffic simulation, TAME can be
adapted to changing dynamics across regions or times of day by reusing expert models trained on similar
patterns. TAME is also compatible with datasets from stochastic simulations, where each scenario is treated
as a task, making it well-suited for simulation-informed digital twins and other real-time environments.

2 RELATED WORK

Lifelong deep learning, also referred to as continual deep learning, enables models to acquire new knowledge
over time while preserving previously learned information. Unlike traditional deep learning models trained
on fixed datasets, LDL models must handle a sequence of tasks and adapt dynamically. A fundamental
challenge in this setting is catastrophic forgetting, where learning a new task disrupts previously acquired
knowledge (Parisi et al. 2021). To address this issue, five primary classes of methods have been proposed:
regularization-based, replay-based, architectural expansion, optimization, and representation methods (Wang
2024). Regularization-based methods constrain weight updates to retain previously important parameters
(e.g. Elastic Weight Consolidation (Kirkpatrick et al. 2017)). Replay-based methods intelligently store
examples from earlier tasks and interleave them with new data during training (e.g. Experience Replay (Shin
et al. 2017)). Architectural expansion approaches, such as Dynamically Expandable Networks (Yoon et al.
2018), allocate new capacity for new tasks. Representation methods explore how the feature vectors
generated by networks might be shared across tasks. Optimization methods explore the objective function
used to train the network, and how this function might best prevent catastrophic forgetting.
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Task Similarity is a quantitative measure of how similar two different tasks are by some specific metric.
Task similarity plays an important role across machine learning literature, such as in few-shot learning and
meta-learning —— (Le et al. 2022; Le et al. 2022; Kötter et al. 2024), multi-task learning (Shui et al. 2019),
and causal inference (Aloui et al. 2023). Task similarity-based approaches have been shown to improve
knowledge transfer between tasks in deep learning applications (Upadhyay et al. 2024). Task similarity
can be measured in a variety of ways, depending on the specific domain. In this paper, we use Fréchet
Inception Distance (FID), and Cosine Similarity (Heusel et al. 2017). Recent studies have explored the role
of task similarity in lifelong learning, particularly focusing on similarities in weight differences between
teacher and student networks. For instance, the teacher-student continual learning framework proposed in
Lee et al. (2021) employs a two-layer nonlinear neural network, where task similarity is measured based
on the models’ weights. In this setup, the distance between tasks is quantified by comparing the weight
differences between the teacher and student models. Their findings reveal that catastrophic forgetting is
most pronounced when tasks exhibit intermediate similarity. Additionally, the weight regularization-based
task similarity framework proposed in Hiratani (2024) demonstrates an improvement in knowledge retention
in low-dimensional latent structures. Notably, when readout similarity (i.e., similarity in weights from
hidden to output layers) is low, even high feature similarity (i.e., similarity in weights from input to hidden
layers) can lead to interference during learning—causing the network to misuse shared representations
across tasks. While these approaches provide valuable insight for shallow neural networks, they fall short
in capturing the complexities of deeper architectures and do not generalize well in real-world applications
where multiple models collaborate simultaneously at large scales.

In this work, our primary objective is to demonstrate the impact of leveraging task similarity in
lifelong deep learning. Our task-aware multi-expert framework employs feature-based similarity measures
along with attention-guided replay to dynamically select and reuse relevant expert models. We show that
incorporating task similarity significantly enhances adaptive knowledge retention across tasks in lifelong
learning settings.

3 PROPOSED METHOD

In this section, we introduce the Task-Aware Multi-Expert (TAME) lifelong learning algorithm and its
attention-enhanced algorithm (AE-TAME). Here, the proposed architecture consists of n Convolutional
Neural Networks (CNNs), each interconnected via a shared fully connected component, referred to as the
Shared Dense Layer (SDL). A detailed overview of the proposed framework is provided in Figure 1.

3.1 Task-Aware Multi-Expert Lifelong Learning Algorithm

We present the algorithm in the context of image classification. TAME is designed to address the challenge
of lifelong learning by selectively reusing pretrained expert models based on task similarity. Its architecture
consists of three core components:

• A pool of expert models (CNNi), each pretrained on a distinct source task.
• A shared dense layer (SDL) that receives extracted features from the selected expert and performs

task-specific classification.
• A fixed-capacity replay buffer that stores representative samples and their embeddings from previ-

ously seen tasks to mitigate catastrophic forgetting.

The ith CNN, CNNi ,0 < i ≤ n, is initially pretrained on its corresponding initial task i. Following this
pretraining phase, the model enters a lifelong learning phase, where it is sequentially exposed to new tasks.

When a new task Tt arrives, the algorithm computes its similarity to each initial task T̂i and selects
the expert CNNi associated with the most similar initial task. The selected CNN generates a task-specific
feature representation β (Tt , i∗), which is used for downstream prediction and stored in a fixed-capacity
replay buffer for future reference. Unlike traditional ensemble methods, only the shared dense layer (SDL)
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Figure 1: Overview of TAME. Left: TAME algorithm procedure: a) Each CNN is pretrained on an initial
task. b) When a new task arrives, its similarity to initial tasks is computed. The most similar CNN is
selected. c) The selected CNN extracts features of the new task, stores them in the replay buffer, and—if
past data is available—feeds both new and stored features to the SDL for classification. Right: Model
Architecture: Multiple CNNs connect to a shared dense layer (SDL), which performs the final classification.

is updated during lifelong learning, while the expert CNNs remain fixed, allowing the system to accumulate
and preserve expert knowledge efficiently. The algorithmic details are described as follows:

1. Initialization Phase. During this phase, we initialize n expert CNNs and a Shared Dense Layer (SDL)
with random parameters. A replay buffer is also initialized as a dictionary indexed by CNNi, where
i = 1, . . . ,n, with each entry storing image samples, labels, and feature representation. Each CNNi
is independently pretrained on a distinct initial task T̂i, and its parameters are frozen afterward to
preserve learned representations.

2. Lifelong Learning Phase. When a new task Tt arrives at time step t, the algorithm executes the
following steps:
•Step 1: Task Similarity-Based Model Selection. TAME computes the similarity between the

incoming task Tt and all initial tasks T̂1, . . . , T̂n. This is done using metrics such as: Fréchet
Inception Distance (FID) and Cosine Similarity. FID quantifies the distance between the feature
distributions of the current task and the previously learned initial tasks, where lower values
indicate higher similarity. Cosine similarity, in contrast, measures the cosine of the angle
between two feature vectors, with higher values indicating greater similarity. The expert model
CNNi∗ associated with the most similar source task is selected. The chosen model is used to
generate a feature embedding β (Tt , i∗) for the new task. Full definitions and implementation
details of both measures are provided in Appendix A.1 and Appendix A.2.

•Step 2: Replay Learning. We employ a replay buffer as a memory module with a fixed capacity.
It removes the oldest entries once full to retain recent information. As Tt arrives at time t,
its feature representation β (Tt , i∗), raw images Img(Tt) and task label Lt are stored under the
selectedCNNi∗ . If replay data is available, the buffer retrieves all previous feature representations
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β (Tj, i∗) using CNN∗
i , and their raw images Img(Tj) ,1 ≤ j ≤ t −1. It concatenates them with

β (Tt , i∗) and Img(Tt), respectively to form combined feature vector θi and Img:

θi =

[
β (Tt , i∗)

β (Tj, i∗) ,1 ≤ j ≤ t −1

]
, Img =

[
Img(Tt)
Img(Tj)

]
,

which—along with the label of all stored task L j ,1 ≤ j ≤ t −1 and the new task label Lt—is
used to update the parameters of the SDL via backpropagation. If Tt is the first task for CNNi∗ ,
only Img(Tt), label Lt and feature β (Tt , i∗) are used, refer to Algorithm 1.

Algorithm 1: Task-aware multi-expert lifelong deep learning algorithm (TAME).

Input: Initialization tasks: T̂1, . . . , T̂n; Lifelong tasks: T1, . . . ,Tt

Output: Classification decision O
Function Initialization:

Initialize a replay buffer
for T̂i ,1 ≤ i ≤ n do

Train CNNi with T̂i

Freeze CNNi

return CNN
Function LifelongLearning:

for incoming task Tt do
Compute similarity d(Tt , T̂i) for all i, 1 ≤ i ≤ n ▷ Step 1: Task Similarity-Based Selection

Select CNNi∗ with highest similarity to generate feature β (Tt , i∗)
Store the raw images of Tt , denoted as Img(Tt), new task label Lt , and β (Tt , i∗) in replay buffer
if replay data is available ▷ Step 2: Replay-Based Learning

then
Retrieve stored features β (Tj, i∗) from the replay buffer for 1 ≤ j ≤ t −1
Obtain combined feature vector θi and combined image vector Img
Pass Img, new task label Lt , past task labels L j ,1 ≤ j ≤ t −1, and θi to SDL

else
Pass Img(Tt), new task label Lt , and β (Tt , i∗) to SDL

return O

To evaluate the importance of task similarity, we design a baseline model that shares the same architecture
and replay mechanism as TAME algorithm. However, rather than selecting the most similar CNNi∗ , the
baseline randomly assigns each incoming task Tt to one of the n CNNs, regardless of similarity.

3.2 Attention-Enhanced Task-Aware Multi-Expert Lifelong Learning Algorithm

We implement an attention mechanism in the TAME algorithm, while preserving the original architec-
ture and replay buffer, referring to the enhanced model as AE-TAME. Inspired by scaled dot-product
attention (Vaswani et al. 2017), AE-TAME dynamically assigns weights to stored task features based on
their relevance to the current task, enabling the model to focus on more informative representations. The
attention-enhanced features are then passed to the Shared Dense Layer (SDL) for final prediction.

Attention works by comparing a Query—the current task features—to a set of features Keys representing
past tasks, and weighting the corresponding Values based on attention weight.

Our algorithm still consists of two phases. The Initialization Phase and Lifelong learning phase. The
Initialization Phase remains unchanged. In the Lifelong learning phase, Step 1—Task Similarity-Based
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Model Selection—is also unchanged. The change happen in Step 2—Replay Learning. This step incorporates
an attention mechanism when the selected CNNi∗ retrieves stored feature in the replay buffer to enhance
knowledge retention and task adaptability. In this step, we define the standard attention components as
follows:

• Qt (Query): The feature representation β (Tt , i∗) generated by CNNi∗ .
• K j (Key): The feature representations stored in the replay buffer for CNNi∗ for previous lifelong

learning tasks, 1 ≤ j ≤ t −1.
• Vt (Value): A weighted sum of the stored task features, computed using attention weights α j:

Vt =
t−1

∑
j=1

α j ·β (Tj, i∗).

where each α j is derived from the scaled dot-product attention weight. For the details, please refer
to Appendix A.3.

When a new task Tt arrives at time step t, the selected CNNi∗ first generates its feature representation
β (Tt , i∗). The attention mechanism then computes a weighted sum Vt of the stored features β (Tj, i∗) ,1≤ j ≤
t −1, retrieved from the replay buffer. These are combined to form the attention-enhanced representation
γi:

γi = [β (Tt , i∗),Vt ] .

Finally, γi, the combined image vector Img, the current task label Lt , and the stored task labels L j,1≤ j ≤ t−1,
are passed to the Shared Dense Layers (SDL) for prediction, as detailed in Algorithm 2.

Baseline for Evaluation of AE-TAME. We design a baseline model that shares the same architecture,
replay mechanism, and attention mechanism as the AE-TAME algorithm, referred to as the Attention-
Enhanced Baseline. The only difference is that it does not use task similarity measures. This baseline
randomly assigns each incoming task Tt to one of the n CNN, regardless of similarity.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of TAME and AE-TAME in comparison to baseline
algorithms. As discussed in the previous section, the baseline algorithms maintain the same architectural
structure. The key difference lies in the expert selection step, where the baseline methods select a CNN at
random rather than leveraging task similarity for informed model selection.

4.1 Experimental Setup and Evaluation Metrics

In this subsection, we present the experimental setup and evaluation metrics.

• Dataset and Task Formulation. In machine learning, a "task" refers to a well-defined objective
that the learning algorithm aims to optimize based on input-output mappings derived from data. For
instance, in an "image classification task", the goal is to categorize images into predefined classes
based on their visual features. In our experiment, each task is a binary classification problem.
They are derived from the CIFAR-100 dataset, which contains 60,000 color images across 100
categories. Each initial task (for pretraining) consists of 400 images (200 per class), trained for
5 epochs. During lifelong learning phase, 10 new binary tasks are introduced incrementally, each
containing 200 images. We evaluate performance across 5 distinct sequences (Sequence 1–5), each
comprising 10 unseen binary tasks.

• Model Architecture. For TAME, AE-TAME, and the baselines, our model architecture is the same
and consists of five convolutional neural networks (CNN), each comprising three convolutional
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Algorithm 2: Attention-enhanced TAME algorithm (AE-TAME).

Input: Initialization tasks: T̂1, . . . , T̂n; Lifelong tasks: T1, . . . ,Tt

Output: Classification decision O
Function Initialization:

for T̂i ,1 ≤ i ≤ n do
Train CNNi with T̂i

Freeze CNNi
return CNN

Function LifelongLearning:
for incoming task Tt do

Compute similarity d(Tt , T̂i) for all i, 1 ≤ i ≤ n ; ▷ Step 1: Task Similarity-Based Selection

Select CNNi∗ with highest similarity score to generate feature β (Tt , i∗)
Store the raw images of Tt , denoted as Img(Tt), new task label Lt , β (Tt , i∗) in replay buffer
if replay data exists ; ▷ Step 2: Replay-Based Learning

then
Retrieve stored features β (Tj, i∗) from the replay buffer for 1 ≤ j ≤ t −1
Compute attention weights α j

Compute Vt = ∑α j ·β (Tj, i∗)
Obtain combined attention-enhanced representation γi

Pass combined image vector Img, new task label Lt , stored task labels L j, and γi to SDL
else

Pass Img(Tt), new task label Lt , and β (Tt , i∗) to SDL
return O

layers with ReLU activations and max-pooling, followed by two fully connected layers. Each CNN
contains approximately 180K parameters. These CNNs are connected to a Shared Dense Layer
(SDL), which includes five fully connected layers with ReLU activations and a sigmoid output for
binary classification, totaling around 720K parameters. A replay buffer with a fixed maximum
capacity of 1,000 images is employed to retain past task information for lifelong learning phase.

• Lifelong Learning Phase. For each task, only the SDL is updated using Binary Cross Entropy
(BCE) loss over three training epochs, with the Adam optimizer (learning rate = 0.001, batch
size = 32). Task similarity is computed using either Fréchet Inception Distance (FID) or Cosine
Similarity. Based on the similarity score, the most appropriate CNN is selected to process the new
task. A baseline variant assigns the new tasks to a randomly selected CNN without using similarity
measures.

• Evaluation Metrics. We evaluate and benchmark the performance of our algorithms using two
standard metrics: For each task sequence, Average AUROC (A-AUROC) is computed by averaging
the AUROC (Aread Under the Receiver Operating Characteristic Curve) scores of all tasks in the
sequence, reflecting the model’s overall ability to distinguish between classes. Average Forgetting
(AF) measures knowledge degradation by averaging the difference between each task’s highest and
final recorded accuracy, as detailed in Appendix A.4 and Appendix A.5.

• Runtime and Computational Setup. All experiments were conducted on a GPU cluster with
a single GPU featuring 14 GB of memory. Under the described experimental setup, TAME and
AE-TAME each required approximately 40 minutes on average to complete CNN pretraining, model
training, and evaluation per trial. Although the baseline models ran slightly faster, the difference
in runtime was not significant.

2557



Wang, Sheikh, Le, and Bidkhori

Table 1: Performance of all algorithms using FID similarity in terms of average forgetting and average
AUROC across five task sequences.

Sequence Baseline AE-Baseline TAME AE-TAME
AF A-AUROC AF A-AUROC AF A-AUROC AF A-AUROC

Seq 1. 0.0815 0.4869 0.099 0.4871 0.067 0.5080 0.0185 0.5580
Seq 2. 0.0964 0.4982 0.0625 0.4704 0.0051 0.5114 0.028 0.5643
Seq 3. 0.072 0.5350 0.2235 0.4443 0.06 0.4521 0.052 0.5167
Seq 4. 0.075 0.4975 0.0675 0.4369 0.072 0.4017 0.019 0.4993
Seq 5. 0.0777 0.4975 0.0593 0.4512 0.0536 0.5622 0.052 0.5022

4.2 Performance and Comparison of TAME and AE-TAME and Baselines

Table 1 compares all algorithms utilizing the FID similarity measure. AE-TAME outperforms both Baseline
and AE-Baseline in terms of Average Forgetting (AF) across all five sequences, and achieves higher Average
AUROC (A-AUROC) in four out of five cases, confirming its strong performance when leveraging FID-based
task similarity. TAME also outperforms Baseline and AE-Baseline in five out of five sequences for AF and
in three out of five sequences for A-AUROC, demonstrating that task similarity—even without the attention
mechanism—significantly improves knowledge retention and classification accuracy. Furthermore, AE-
TAME surpasses TAME in three out of five sequences in terms of AF and in four out of five sequences for
A-AUROC. These results collectively highlight the benefits of incorporating task similarity into the model,
and further show that performance is additionally enhanced when the attention mechanism is employed.

Table 2 compares all algorithms utilizing the Cosine Similarity measure. The results show that AE-
TAME consistently achieves lower forgetting than both Baseline and AE-Baseline across four out of
five sequences and outperforms them in A-AUROC also in four out of five cases. TAME exceeds the
performance of Baseline and AE-Baseline in three out of five sequences for AF and in two out of five for
A-AUROC. When comparing AE-TAME to TAME, AE-TAME demonstrates lower forgetting in three out
of five sequences and achieves higher A-AUROC in five out of five. These findings indicate that while
both task similarity metrics are beneficial, Cosine Similarity proves particularly effective when combined
with attention, especially in enhancing AUROC. Overall, AE-TAME remains the top-performing model
across both task similarity metrics and evaluation criteria.

Table 2: Performance of all algorithms using cosine similarity in terms of average forgetting and average
AUROC across five task sequences.

Sequence Baseline AE-Baseline TAME AE-TAME
AF A-AUROC AF A-AUROC AF A-AUROC AF A-AUROC

Seq 1. 0.0815 0.4869 0.099 0.4871 0.0195 0.5345 0.026 0.5557
Seq 2. 0.0964 0.4982 0.0625 0.4704 0.0723 0.5028 0.0445 0.5807
Seq 3. 0.072 0.5350 0.2235 0.4443 0.027 0.5176 0.076 0.5583
Seq 4. 0.075 0.4975 0.0675 0.4369 0.083 0.4268 0.0095 0.4591
Seq 5. 0.0777 0.4975 0.0593 0.4512 0.1012 0.4268 0.0523 0.5785

4.2.1 Additional Illustration for Accuracy

For additional illustration, Figures 2 visualize the performance of TAME and AE-TAME across one particular
sequence of 10 binary classification tasks derived from CIFAR-100, showing task-specific accuracy. In
Figure 2a, TAME utilizing FID and TAME utilizing Cosine Similarity show stronger and more stable
accuracy trends than the baseline. TAME utilizing FID achieves higher accuracy in later tasks, while
TAME utilizing Cosine Similarity is competitive in early and middle tasks. The baseline shows lower and
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more volatile accuracy. In Figure 2b, AE-TAME using FID consistently outperforms the baseline across
most tasks, while AE-TAME using Cosine Similarity achieves the highest accuracy, peaking around 70%.
The AE baseline remains inferior, confirming the advantage of combining attention mechanisms with task
similarity for robust and consistent accuracy across tasks.

(a) Accuracy across sequential tasks (TAME). (b) Accuracy across sequential tasks (AE-TAME).

Figure 2: Accuracy performance of TAME and AE-TAME across tasks for one sequence from CIFAR-100.

4.3 Comparison with the Shared-Bottom model

In this subsection, we compare the average forgetting performance of TAME and AE-TAME with a
traditional multi-task learning baseline—the Shared-Bottom model (Zhang and Yang 2022). The Shared-
Bottom model uses a shared CNN encoder and task-specific binary classification heads, with a structure
and parameter size designed to match that of TAME. This configuration ensures a fair comparison in terms
of model capacity and architectural complexity. We adopt the same experimental protocol as with TAME.
The model is optimized using Adam with a learning rate of 0.001, trained for 3 epochs per task with a
batch size of 32, and evaluated after each task to compute average forgetting.

As shown in Table 3, both AE-TAME and TAME completely outperforms the Shared-Bottom model
across all sequences. The Shared-Bottom model, while conceptually efficient, suffers from greater forgetting
due to its inability to isolate task-specific representations during continual updates.

Table 3: Average forgetting of TAME, AE-TAME, and shared-bottom model across five task sequences.

Sequence TAME (FID) TAME (Cosine) AE-TAME (FID) AE-TAME (Cosine) Shared-Bottom
Seq 1. 0.0670 0.0195 0.0185 0.0260 0.2111
Seq 2. 0.0051 0.0723 0.0280 0.0445 0.1972
Seq 3. 0.0600 0.0270 0.0520 0.0760 0.2083
Seq 4. 0.0720 0.0830 0.0190 0.0095 0.1947
Seq 5. 0.0536 0.1012 0.0520 0.0523 0.1573

5 CONCLUSION

We presented a Task-Aware Multi-Expert lifelong learning framework that leverages task similarity and a
multi-expert CNN architecture to facilitate incremental and collaborative learning. By dynamically selecting
the most relevant expert model based on task similarity metrics, our approach enhances both prediction
accuracy and knowledge retention. Additionally, the integration of an attention mechanism in AE-TAME
further improves the reuse of past knowledge by focusing on the most relevant task representations.

While this work focuses on image-based tasks and a single data modality, it can be adapted to a broad
range of real-world applications involving multimodal data. TAME’s modular design makes it well suited
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for such extensions, enabling specialized expert models to handle different modalities. In future work, we
aim to improve the scalability of the framework and incorporate task similarity to enhance other lifelong
learning algorithms.
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A APPENDIX

A.1 Fréchet Inception Distance (FID)

Given two tasks—Task 1 (new task) and Task 2 (initial task)—the Fréchet Inception Distance (FID) quantifies
the similarity between their feature distributions by measuring the distance between two multivariate
Gaussians (Heusel et al. 2017). It is computed as:

FID = ∥µ1 −µ2∥2 +Tr(Σ1 +Σ2 −2(Σ1Σ2)
1/2),

where:

• µ1, µ2 are the mean feature vectors of Task 1 and Task 2, respectively. For a given task T , the
mean vector µT is computed as:

µT =
1
N

N

∑
i=1

f (xi),

where f (xi) is the extracted feature vector for image xi and N is the total number of samples in the
task.

• Σ1, Σ2 are the covariance matrices of the feature distributions of Task 1 and Task 2, respectively.
Each covariance matrix ΣT is calculated as:

ΣT =
1

N −1

N

∑
i=1

( f (xi)−µT )( f (xi)−µT )
⊤,

Lower FID values indicate greater similarity between the tasks, suggesting that their feature distributions
are closely aligned.

A.2 Cosine Similarity

Cosine similarity quantifies the orientation between two feature vectors by measuring the cosine of the
angle between them. It is computed as:

Cosine Similarity =
A ·B

∥A∥∥B∥
,

where:

• A: Feature vector of the new task.
• B: Feature vector of the initial task.

Higher Cosine Similarity values indicate greater alignment between the tasks, suggesting stronger task
similarity.

A.3 Attention Weight

The attention weight α j quantifies the relevance of the jth past task relative to the current task Tt and is
used to prioritize informative feature representations during replay-based learning. Following the scaled
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dot-product attention mechanism (Vaswani et al. 2017), we normalize similarity scores between the current
task and previously encountered tasks using their feature representation.

The attention weight α j is computed as:

α j =

exp
(

Qt ·K⊤
j√

dk

)
t−1
∑

l=1
exp

(
Qt ·K⊤

l√
dk

) =
exp

(
β (Tt ,i∗)·β (Tj,i∗)⊤√

dk

)
t−1
∑

l=1
exp

(
β (Tt ,i∗)·β (Tl ,i∗)⊤√

dk

) ,
where:

• β (Tt , i∗): Feature vector (query Qt) for the current task.
• β (Tj, i∗): Feature vector (key K j) for the jth past task.
• dk: Dimensionality of the feature vectors (for scaling).

This attention formulation allows the model to emphasize past experiences that are most relevant to
the current task, enhancing prediction quality and knowledge retention.

A.4 AUROC

AUROC score, which measures the model’s ability to distinguish between classes by calculating the area
under the ROC curve. In our work, AUROC is computed for each task in a sequence, and we compute the
Average AUROC by averaging these scores across all tasks

A.5 Forgetting

Forgetting intuitively represents the degradation in a model’s performance on previously learned tasks after
it is trained on a new task (Chaudhry, Dokania, Torr, and Vedaldi 2018). Suppose we have a sequence of T
tasks. For a task Ti, let ai

i denote its accuracy immediately after being learned, and ai
t denote its accuracy

after learning task Tt (for t > i). Then, the forgetting for task Ti at time t is defined as:

F i
t = max(ai)−ai

t ,

where max(ai) is the highest accuracy achieved on task Ti over time.
The overall forgetting at time t is then averaged over all previously learned tasks:

Average Forgetting =
1

t −1

t−1

∑
i=1

[
max(ai)−ai

t
]
.
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