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ABSTRACT 

Mission Engineering (ME) requires coordination of multiple systems and stakeholders, but often suffers 
from unclear problem definitions, fragmented knowledge, and limited engagement. This paper proposes a 
hybrid methodology integrating Retrieval-Augmented Generation (RAG), Human-Centered Design 
(HCD), and Participatory Design (PD) within a Model-Based Systems Engineering (MBSE) framework. 
The approach generates context-rich, stakeholder-aligned mission problem statements, as demonstrated in 

the Spectrum Lab case study, ultimately improving mission effectiveness and stakeholder collaboration. 

1 INTRODUCTION 

Mission Engineering in the U.S. Department of Defense (DoD) applies systems engineering principles to 
plan, analyze, and design missions involving multiple systems, focusing on mission outcomes in complex 
environments. Despite its importance, ME often struggles with unclear problem definitions, stakeholder 
misalignment, and scattered knowledge. Recent DoD policy emphasizes interdisciplinary, user-inclusive 

approaches to reduce integration risk. HCD and PD address these gaps by prioritizing end-user needs and 
collaborative solution development. Our hybrid framework combines RAG, HCD, and PD within an MBSE 
process, ensuring problem definitions are data-driven and stakeholder-validated. 

Human-Centered Design principles are employed to keep the process focused on the people and 
stakeholders for whom the mission is being engineered. HCD emphasizes empathy with users (or in this 
case, warfighters, operators, and other mission stakeholders), iterative prototyping, and feedback loops. In 

practical terms, we incorporate HCD by gathering user needs and context through interviews, surveys, and 
workshops at the outset of the project. Participatory Design goes a step further by actively involving those 
stakeholders in co-creating the solution. Rather than engineers working in isolation, PD methods bring in 
stakeholders (e.g. mission planners, analysts, end-users) to collaborate in formulating the mission problem 
and to validate the relevance of retrieved information and AI-generated suggestions. This participatory 
approach ensures that the problem definition resonates with real operational concerns and garners buy-in 

from the community. It also helps surface tacit knowledge that might not be documented elsewhere. By 
embedding HCD and PD into the MBSE workflow, the framework ensures that human insights drive the 
modeling effort rather than being an afterthought. 

We propose a hybrid framework that integrates emerging AI techniques with human-centered 
methodologies to address this shortcoming. The framework combines RAG, HCD, and PD within an 
MBSE-driven process. RAG is an approach from the AI domain where a large language model is paired 

with a knowledge retrieval mechanism to generate outputs grounded in real data (Lewis et al., 2020). In our 
context, RAG allows the engineering team to tap into extensive knowledge repositories – such as 
organizational lessons learned, prior mission reports, and even public databases of mission statements or 
requirements – to inform the mission definition. By automatically retrieving relevant documents and facts, 
the AI can draft preliminary mission problem statements or key requirements that are backed by evidence. 
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This helps avoid the “starting from scratch” problem and reduces the risk of LLM hallucinations by ensuring 
generated content is traceable to sources. 

2 BACKGROUND AND RELATED WORK  

2.1 Mission Engineering and Problem Framing 

The Department of Defense (DoD) and systems engineering community increasingly recognize the 
importance of Mission Engineering (ME) – treating missions as adaptable, designable systems (Beery & 
Paulo, 2019). A fundamental early step in ME is problem framing: identifying mission needs, objectives, 
and constraints before jumping to solutions. Poorly framed mission problems lead to suboptimal designs or 
failure to meet true operational needs. Prior work highlights that mission success depends on aligning 

technical systems with operational context and user needs. Thus, methodologies that can rigorously capture 
both technical and human dimensions of a mission problem are needed. Our work addresses this by fusing 
techniques from AI (for knowledge retrieval) and human-centered methods into a modeling framework. 

ME is an interdisciplinary process for analyzing, designing, and integrating operational capabilities to 
achieve mission goals (Dahmann & Parasidis, 2024), encompassing activities such as mission capability 
and trade-off analyses as well as interoperability assessment (Giachetti & Hernandez, 2024), aimed at 

creating mission-oriented systems of systems (SoS) rapidly deployable to address threats or opportunities. 
As an emerging discipline, ME integrates engineering and analytical domains to develop mission-level 
capabilities. The DoD’s Office of Systems Engineering & Architecture underscores interdisciplinary 
approaches in ME, highlighting risk management, system integration, and SoS architectures to reduce 
integration risk (Dahmann et al., 2019). This interdisciplinary focus aligns with human-centered design 
(HCD) and participatory design (PD) principles: HCD emphasizes empathy and PD involves diverse 

stakeholders, supporting ME’s collaborative nature. Modern ME approaches are increasingly structured 
and data-driven, emphasizing mission-based inputs (requirements, prototypes, design options) to guide 
system development to meet operational needs (Goldenberg, 2022). Integrating HCD and PD can strengthen 
these approaches by making requirements development more inclusive; involving end-users early ensures 
systems are technically sound and meet workflow expectations (Goldenberg, 2022). Hutchison et al. (2018) 
identify a framework of ME competencies (governance, operational concepts, interpersonal skills, and 

leadership) that overlap with human-centered approaches. Emphasis on interpersonal skills and leadership 
in ME competencies mirrors PD’s collaborative nature, and focus on operational concepts aligns with 
HCD’s focus on user context (Hutchison et al., 2018; Vesonder et al., 2017). These insights suggest that 
integrating HCD and PD into ME could bolster ME practices involving complex human–system integration 
and multi-stakeholder coordination. 

2.2 Retrieval-Augmented Generation (RAG)  

RAG systems combine pre-trained language models with external knowledge bases, enabling context-
aware information retrieval and synthesis. In simulation contexts, RAG can automatically identify relevant 
domain knowledge, enhancing transparency and traceability (Lewis et al., 2020). 

2.3 Human-Centered Design (HCD) 

HCD is a design philosophy and process that keeps end-user needs and usability at the forefront. In a 
mission context, HCD means engaging with operators, analysts, and other humans in the loop to ensure the 

problem framing and eventual solutions reflect real-world workflows, limitations, and preferences. HCD 
emphasizes empathy with users, iterative refinement, and a holistic view of user experience. Prior studies 
in defense and emergency planning show that failing to account for human factors (cognitive load, training, 
trust in systems) can derail mission outcomes (Norman, 2014; Shattuck, 2017). We incorporate HCD by 
involving end-users early: validating the AI-generated context against on-the-ground reality, uncovering 
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unarticulated needs, and iterating on the problem statement with user feedback. This ensures what the 
mission is trying to achieve and why is informed by those who ultimately execute the mission. 

2.4 Participatory Design (PD)     

Participatory Design extends HCD by actively involving stakeholders in co-design. In mission engineering, 
PD manifests as workshops or collaborative sessions where operators, commanders, engineers – even 
adversarial experts – jointly define the mission problem and requirements. This democratizes the process: 
stakeholders don’t just inform design; they share authority in shaping it. Prior work has shown PD can 
increase buy-in and surface diverse perspectives, which is vital in complex missions with many stakeholders 
(Schuler & Namioka, 1993; Smith et al., 2020). Our framework leverages PD after an initial problem draft 

is available, to let stakeholders critique and modify it live. The result is a consensus-built problem definition 
that resonates with all parties, reducing later misunderstandings. 

2.5 Model-Based Systems Engineering (MBSE) in Mission Context   

MBSE provides a formalized approach to modeling complex systems and their interactions, using 
languages like SysML (Systems Modeling Language). In mission engineering, MBSE offers a way to create 
digital mission models – capturing not only system architecture but also operational processes and scenarios 

(Gemma et al., 2022). For instance, SysML activity diagrams can represent mission workflows, and state 
machine diagrams can model system behavior in different operational modes. Friedenthal et al. (2011) 
demonstrated how SysML can rigorously represent system requirements, behavior, and structure, 
improving consistency and traceability in system design (Friedenthal et al., 2011). In the mission context, 
MBSE allows engineers to simulate performance under various conditions and evaluate different system-
of-systems configurations virtually. In fact, Digital Mission Engineering (DME) is an emerging paradigm 

defined as “using digital modeling, simulation, and analysis to incorporate the operational environment 
and evaluate mission outcomes” (Ansys, 2020). Our work aligns with this: by formalizing the mission 
problem in a SysML model, we set the stage for simulation-based analysis of that mission. Integrating HCD 
into MBSE means including human task models and user workflows in these mission models. For example, 
one can model how an operator interacts with a system in a mission thread alongside system functions 
(Gemma et al., 2022). This helps identify usability bottlenecks or training gaps early, before any real 

deployment. Participatory modeling (an aspect of PD in MBSE) further means stakeholders help build or 
review SysML diagrams (e.g., mission use-case diagrams or operational views), ensuring the model reflects 
operational reality. Literature has begun to fuse MBSE with simulation for mission analysis; for example, 
Beery and Paulo (2019) map SysML architectural products to an analysis approach that integrates 
operational simulations (Beery & Paulo, 2019). Batarseh and McGinnis (2012) similarly showed that 
SysML models can be transformed into discrete-event simulation models (Arena) to assess system 

performance quantitatively (Batarseh & McGinnis, 2012; McGinnis & Ustun, 2009). These efforts 
underscore that MBSE and simulation are complementary: MBSE provides the authoritative model, and 
simulation uses that model to generate dynamic insights. We leverage this synergy by treating the MBSE 
model not just as documentation but as an executable mission prototype. 

2.6 Summary of Gaps  

The convergence of AI-driven knowledge retrieval, human-centered methods, and MBSE is still emerging 

within ME. Existing ME practices lack a systematic way to incorporate vast prior knowledge (which RAG 
can provide) and often treat human factors as secondary. Likewise, while MBSE and simulation are 
recognized in ME, they typically come into play after requirements are set – not during problem 
formulation. Our framework explicitly fills these gaps by bringing RAG, HCD, PD into the problem 
framing stage and tightly coupling the outcome with simulation-capable MBSE models. This foundation 
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aims to ensure that when the engineering of solutions begins, it is built on a well-vetted, stakeholder-
endorsed, and analytically sound problem definition.  
 Integrating RAG, HCD, and PD in the framing phase makes the process data-rich and user-centric. 

RAG mechanisms retrieve relevant domain knowledge from archives and literature, broadening the 
evidence base and reducing oversight. Human-centered and participatory design ensure stakeholder needs, 
experiential insights, and organizational constraints shape the requirements from the outset (Boy, 2018). 
Embedding these enriched insights in MBSE models allows teams to simulate and refine mission scenarios 
during problem definition, tightening the feedback loop between formal modeling and stakeholder feedback 
(Barclay, 2025; Boy, 2018). This combined approach produces an early problem statement that is both 

analytically rigorous and collaboratively validated, giving practitioners confidence that solution 
development will proceed from a well-understood and broadly vetted foundation. 

3 PROPOSED METHODOLOGY 

To address the identified gaps, we propose a Human-Centered Problem Definition framework for mission 
engineering that integrates RAG, HCD, and PD within an MBSE-centric process. The goal is to enhance 
the problem definition phase of mission engineering by automatically grounding it in relevant knowledge 

and ensuring it is iteratively refined with stakeholder input. Figure 1 provides an overview of the RAG 
concept, and Figure 3 (later in this section) is organized into four main stages, with simulation modeling 
serving as a critical follow-on for validation. Below, we describe each stage and highlight how SysML-
based simulations become relevant once the problem definition is in place. 

3.1 AI-Driven Knowledge Retrieval with RAG 

RAG is an approach from the artificial intelligence domain that can retrieve and utilize domain knowledge 

during content generation. Instead of relying solely on a pre-trained model, a RAG system first searches a 
knowledge base for relevant information (documents, databases, prior cases) and then uses that information 
to generate a context-specific response or summary. In the context of mission engineering, a RAG system 
can be used to automatically gather information related to a given mission problem statement or scenario, 
providing a starting point for problem definition that is grounded in existing data (doctrine, previous 
mission after-action reports, technical specifications, etc.). 

 Figure 1: RAG pipeline consists of four stages: (1) Indexing – domain knowledge (documents, 
databases, lessons learned) is indexed for search; (2) Retrieval – given a query or mission context, relevant 
information is retrieved from the index; (3) Augmentation – the retrieved information is compiled and fed 
into an AI reasoning process; and (4) Generation – the AI generates a response (e.g., a draft mission problem 
statement or situation analysis) using both its trained knowledge and the retrieved context. By incorporating 
retrieval, RAG ensures that the output remains grounded in real data, enabling domain-aware problem 

framing with transparent sourcing of information. In essence, RAG can provide an initial mission context 
overview or problem definition that is backed by evidence (e.g., citing relevant doctrine or historical 
mission data), which can be invaluable for mission engineers at the start of the planning process. 

 
Figure 1: RAG pipeline consists of four stages. 

 In our methodology, the RAG component serves as a tool for real-time contextual understanding during 
problem formulation. For example, if the mission under consideration is a humanitarian relief operation, 

the RAG system might retrieve information about similar past operations, known logistical challenges, 
environmental factors, and stakeholder roles. The generated output could be a first draft of the mission’s 
problem statement or a list of key considerations, complete with references to the source documents 
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(providing traceability). This helps ensure that the problem framing is informed by a broad base of 
knowledge rather than limited to the immediate team’s memory or perspective. It addresses the “knowledge 
integration” issue by automating access to relevant information and presenting it in a usable form to the 

engineering team. 

3.2 Integrating HCD and PD Principles 

While RAG brings in data and domain knowledge, Human-Centered Design and Participatory Design 
ensure that the process remains focused on the people involved in the mission. We incorporate HCD and 
PD in the methodology through structured stakeholder engagement and iterative refinement steps: 

• Human-Centered Design in Problem Definition: After the RAG system produces an initial problem 

context, mission engineers apply HCD practices to interpret and refine that information. This 
involves validating that the identified problems are the “right” problems from a user perspective. 
For instance, the team would conduct interviews or empathy mapping with end-users (e.g., field 
operators, decision-makers) to understand their pain points and priorities relative to the mission 
context. HCD encourages the team to question assumptions: Are the mission goals and constraints 
framed in a way that reflects on-the-ground reality? What unarticulated needs might the operators 

have? The RAG output serves as a starting hypothesis that the HCD process then critiques and 
elaborates on, ensuring human concerns (usability, workload, communication, etc.) are brought to 
light. 

• Participatory Design Workshops: We explicitly include PD by holding co-design sessions 
(workshops) with stakeholders after the initial problem statement is drafted. In these sessions, 
stakeholders – such as operational commanders, system operators, analysts, and possibly 

adversarial perspective experts – are invited to collaboratively review and modify the mission 
problem definition. They have access to the RAG-provided information and any initial models or 
diagrams. Using participatory methods (brainstorming, storyboarding mission scenarios, voting on 
mission priorities), the group can identify errors or omissions in the problem framing and contribute 
their knowledge. This process ensures shared decision-making in defining the mission scope and 
objectives, which builds buy-in and surfaces diverse perspectives early. By the end of PD 

workshops, the problem statement and associated requirements are not just handed down by 
engineers; they are co-created, which significantly improves stakeholder alignment. 

 
 HCD focuses on understanding users through empathy, iteration, openness, and inclusion of diverse 
perspectives; PD emphasizes co-design, shared decision authority, and real-time feedback from users. Both 
approaches overlap in aiming for stakeholder-aligned problem formulation, as depicted by the convergence 

toward a shared understanding of the mission problem. In practice, this means the mission problem is 
defined not only by technical requirements but also by the insights of operators and stakeholders, leading 
to a formulation that all parties understand and support. By combining HCD and PD, the methodology 
ensures that mission problem definition is both user-informed (via HCD’s user research and iterative 
refinement) and user-influenced (via PD’s direct stakeholder participation). This overlap results in greater 
consensus on what the mission is solving and why, reducing the risk of misalignment between what is 

engineered and what is actually needed in the field. 

3.3 Human-Centered Problem Definition Framework 

The overall process framework, which brings together RAG, HCD, and PD within an ME context, is 
structured in sequential stages (with some iteration within and between stages as needed). This framework 
ensures the mission problem is well-defined, human-vetted, and ready for model-based simulation and trade 
studies. Figure 2 illustrates the stages of the proposed Human-Centered Problem Definition framework for 

an MBSE-driven Mission Engineering process: 
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Figure 2: Proposed Framework for integrating RAG with HCD/PD in ME. 

• Stage 1 – Data Collection & Preparation: The process begins by gathering and organizing mission-
relevant data. This includes doctrine documents, prior mission after-action reports, stakeholder 
interviews, technical specifications, etc. All these sources populate a knowledge repository that the 
RAG engine will index. Concurrently, initial stakeholder inputs on mission goals, pain points, and 
assumptions are captured. By building this repository, we ensure the AI has high-quality, context-rich 

data to draw from, and we document any initial hypotheses or constraints the stakeholders have (e.g. 
“Mission must be completed within 48 hours” or “Communications infrastructure is unreliable in the 
area”). This stage lays the groundwork for an AI-informed analysis by structuring raw knowledge into 
a usable form. 

• Stage 2 – RAG-Enabled Context Analysis: In this stage, the RAG engine is run against the Stage 1 
repository to generate a draft mission context and problem statement. The RAG system, given a query 

or prompt about the mission (for example, “Outline the main challenges and objectives for a 
humanitarian relief mission in a coastal region after a hurricane”), retrieves relevant facts and lessons 
from the repository. It then produces a synthesized output such as a situation overview, key challenges, 
objectives, and even suggested requirements, complete with references to the source data. The result 
might be a few paragraphs describing the mission environment (terrain, weather, adversarial presence 
if any), known logistical or operational challenges (e.g. port infrastructure damage, need for disease 

control), and objectives (rescue and supply distribution priorities), each traceable to real past instances 
or doctrine. This draft problem statement serves as a starting point – grounded in evidence – for the 
human team. It’s important to note the RAG output is not final or authoritative; rather, it jump-starts 
the human-centered refinement by ensuring the team’s initial focus is comprehensive and data-driven. 
It mitigates cognitive biases and knowledge blind spots by injecting outside information. In short, Stage 
2 yields a proto-problem-definition informed by AI. 

• Stage 3 – Stakeholder Co-Design Workshops: Next, we put the AI-generated draft into the hands of 
human stakeholders through participatory design workshops. In facilitated sessions, mission 
stakeholders (such as commanders, field operators, analysts, domain experts – including red-team or 
adversary perspectives) collaboratively review the draft problem statement. They discuss and critique 
the content: Are the stated mission goals correct? What’s missing? Are certain challenges overstated 
or understated? Using HCD techniques, the workshop encourages empathy and uncovering real needs: 

participants might share on-the-ground anecdotes or concerns not captured in documents. We 
incorporate interactive tools in these workshops – for example, a shared interface (our prototype 
Spectrum Lab, discussed later) where participants can edit the text, comment, or vote on priorities in 
real time. Visual aids generated from the MBSE model (which is evolving in parallel) can be used to 
facilitate understanding – e.g. an automatically generated mission thread diagram or an operational 
node connectivity chart that stakeholders annotate. Through these iterations, the problem statement is 

refined and corrected. PD ensures that diverse viewpoints are integrated: in one use-case, we found 
that including an electronic warfare officer and a communications officer in a scenario planning 
workshop highlighted a conflict between jamming threats and comms needs, leading to a new 
requirement about resilient communications. By the end of Stage 3, we expect to have a significantly 
improved problem definition: one that is not only data-driven (from Stage 2) but also experience-driven 
from practitioners. The output of this stage is a revised mission problem statement and a preliminary 

set of mission requirements or key considerations, which have been co-created and agreed upon by the 
group. MBSE modeling is happening concurrently as stakeholders identify mission threads or use cases, 
systems engineers can start capturing those in SysML diagrams (use case diagrams, activity flows, etc.). 
These diagrams or mission thread models might be iteratively updated during the workshop to reflect 
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the evolving understanding. This dynamic interplay keeps the digital model in lockstep with stakeholder 
consensus. 

• Stage 4 – Final Mission Problem Definition: After the workshops, the team synthesizes all the inputs 

into a formal mission problem definition. This includes a finalized problem statement narrative and a 
structured set of mission requirements, constraints, and assumptions. Uniquely, this final output is 
captured within an MBSE model (or linked document repository) as the single source of truth. In 
practice, by Stage 4 the SysML model contains an authoritative representation of the mission problem 
space. For example, a SysML requirements diagram now lists the mission’s objectives and key 
requirements (both functional and non-functional) and traces them to stakeholders or source data. An 

operational concept diagram (OV-1 or use case diagram) depicts the high-level scenario, and maybe 
activity diagrams outline the mission workflow. All of these were iteratively refined in Stage 3 and now 
baselined in Stage 4. Formalizing the problem in MBSE ensures consistency and prepares for 
downstream engineering – the transition from problem definition to solution design/analysis is now 
seamless. The final problem definition is richly informed by real data and vetted by stakeholders, 
providing a solid foundation for the rest of the mission engineering lifecycle. 

 
 Role of Simulation Modeling (Post-Stage 4): Although our framework’s core problem-framing stages 
are as above, we explicitly integrate simulation modeling immediately after Stage 4 as a bridge to analysis. 
At this point, we have an MBSE model of the mission – and we leverage it to conduct SysML-based 
behavioral simulations that support or validate the problem framing. In other words, Stage 4a (Simulation-

Based Validation) uses the MBSE artifacts as input to simulations before committing to detailed design. 

Many MBSE environments support executing SysML models or connecting them with simulation tools. 
For instance, MagicDraw (Cameo) with the Cameo Simulation Toolkit can execute SysML state machine 
and activity diagrams directly. Parametric constraint diagrams can be solved to compute performance 
measures, or even co-simulated with external physics models (Spangelo et al, 2013). We exploit these 
capabilities to simulate the mission scenario defined by the problem statement. For example, if the mission 
involves a series of tasks (deliver supplies, survey area, evacuate wounded) captured in an activity diagram, 

we can run that diagram as a discrete-event simulation to estimate how long the mission might take, where 
bottlenecks occur, or how resource usage (fuel, supplies) accumulates over time. Similarly, if our problem 
definition includes a requirement like “maintain 90% communication uptime under jamming,” we can use 
a state machine model of the communications network to simulate uptime vs jamming conditions and see 
if 90% is achievable with the assumed constraints. This kind of behavioral simulation allows us to verify 
that the problem statement is realistic and internally consistent. It answers questions like: Given the defined 

mission tasks and constraints, are the objectives achievable? Which requirements are most sensitive or 
risky? By performing simulation at the end of problem framing, we effectively do a “sanity check” using 
quantitative analysis before moving to design solutions. This approach reflects best practices in simulation-
based methodology – using models early for validation. It also aligns with the concept of digital mission 
engineering, where the digital model of the mission is continuously used for analysis (Beery & Paulo, 
2019). Any insights from these simulations feed back into our framework: if a simulation run uncovers an 

unanticipated issue (e.g., a particular step consistently takes too long or a resource is overutilized), we treat 
that as a new data point. Stakeholders and the RAG engine can incorporate this finding – perhaps by adding 
a new constraint or revising a requirement – and we adjust the problem definition accordingly. This closes 
the loop, ensuring our defined problem is not only stakeholder-approved but also simulation-tested. In 
summary, simulation modeling supports our framework by extending Stage 4 into an analysis phase: the 
MBSE model (output of Stage 4) becomes an executable simulation model. In this case, the problem 

definition doesn’t remain a static document but becomes a scenario that can be played out and studied 
through modeling & simulation. Figure 2 in our case study (next section) illustrates this by showing an 
“MBSE Model & Simulation” component as part of the tool architecture, indicating how the finalized 
problem definition feeds into simulation and feeds back results. We emphasize that while we present 
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simulation as a post-stage activity, it is an integral part of the methodology’s spirit. The inclusion of 
simulation ensures that the human-centered, AI-informed problem framing is grounded in quantitative 
reality. It provides confidence that the mission problem, as defined, has been stress-tested and understood 

dynamically, which ultimately de-risks the downstream engineering of solutions. 

3.4 Spectrum Lab Case Study: Prototype Implementation  

To demonstrate the methodology, we developed a prototype tool called Spectrum Lab and applied it to a 
notional mission scenario. Spectrum Lab serves as an interactive platform implementing the framework’s 
stages: it incorporates an AI RAG engine, a collaborative stakeholder interface, and an MBSE model 
repository with simulation capabilities. The scenario we use for illustration is a mission engineering 

problem involving electronic warfare and communications in a contested environment (e.g., ensuring 
resilient radio communications for a platoon under jamming during an operation). 

Spectrum Lab Workflow: In Stage 1, we populated Spectrum Lab’s knowledge base with documents 
about spectrum management, electronic warfare tactics, previous exercises, and relevant communication 
system specs. Stakeholders initially indicated a goal to “maintain comms for platoon leaders under enemy 
jamming” and concerns about spectrum congestion. In Stage 2, the RAG engine (built on GPT-4 with 

retrieval plugins) indexed this corpus. Given a prompt about “mission context for maintaining 
communications under jamming”, it produced a draft summary: outlining adversary jamming capabilities, 
environmental factors (terrain blocking line-of-sight), possible mitigation strategies (frequency hopping, 
relay drones), and objectives like a 90% uptime requirement for leader comms. This draft cited a NATO 
electronic warfare report and a past training exercise where communication loss was a problem. 

In Stage 3, we convened a workshop with three roles simulated by our team: an electronic warfare 

officer, a communications officer, and a mission commander (plus systems engineers facilitating). Using 
Spectrum Lab’s interface, the team reviewed the AI draft. The comms officer noted the draft didn’t consider 
encryption key distribution (which affects comms setup time) – a gap we added as a new consideration. 
The EW officer stressed that the 90% uptime requirement might be too low given modern operations; they 
suggested aiming for 99% and identified a critical scenario when all platoon leaders transmit 
simultaneously. The commander prioritized ensuring any solution is simple for soldiers to use (a human-

factor point). As they discussed, the MBSE model (in Cameo) was updated live: a use case diagram for 
“Ensure Platoon Comms” was modified to include an alternate flow for rekeying encryption, and an activity 
diagram was adjusted with an explicit jamming mitigation step. Spectrum Lab’s interface allowed the 
stakeholders to see these diagrams. They collectively edited the problem statement text – increasing the 
uptime requirement to 95% as a compromise, and adding a constraint about limited training time for soldiers 
to learn new equipment. By the workshop’s end, the mission problem definition was much more complete 

and agreed-upon: essentially, “How can we ensure at least 95% radio communication uptime for platoon 
leaders in a 5 km² area under continuous jamming, using equipment and procedures simple enough for a 
single soldier to operate, within 48 hours of mission start?” along with about a dozen key 
requirements/constraints. This was stored in the SysML model (requirements diagram and accompanying 
documentation). 

In Stage 4, Spectrum Lab automatically compiled the final problem statement and requirements into 

the MBSE repository (Cameo model). We now had a digital artifact representing the mission problem. At 
this point, we invoked the simulation extension: using a simplistic spectrum allocation simulation we built. 
The simulation took the communication network described in the MBSE model (nodes for platoon leaders, 
a base station, an adversary jammer with certain range) and ran a time-step model of communications and 
jamming. We ran a quick simulation experiment varying the number of frequencies and power of the 
jammer. The result showed that with the current assumptions, ~92–98% uptime could be achieved – 

confirming that the 95% requirement was reasonable, but also revealing that if the jammer were even 10% 
more powerful, uptime would drop below 90%. This insight was fed back into the problem definition: the 
stakeholders decided to add a note about jammer signal strength assumptions (i.e., the problem definition 

2034



Soule and Ezell 
 

 
 

now explicitly states the assumed jammer capabilities – a refinement prompted by simulation). This small 
case study highlights the value of integrating simulation at the problem stage: if the simulation had shown, 
say, that 95% was utterly unattainable with any plausible setup, the requirement could be reconsidered 

immediately. Instead of discovering this flaw during design or testing, it was caught on the whiteboard, so 
to speak. 

Throughout this process, the Spectrum Lab tool integrates technology and people. Figure 4 shows its 
architecture, highlighting connections between the RAG engine, stakeholder interface, and MBSE model 
repository. 

 
Figure 3: Spectrum Lab Prototype Architecture. 

The Spectrum Lab tool serves as an interactive co-design platform connecting three key components: 
(1) an AI RAG Engine linked to a mission knowledge base (doctrine, prior cases, technical data), which 
provides context and suggestions; (2) the Stakeholder Interface, where mission stakeholders (operators, 

analysts, decision-makers) input their knowledge, review AI-generated content, and collaboratively refine 
the mission problem definition; and (3) the MBSE Model & Simulation Environment, which receives the 
finalized problem definition and provides means to validate and explore it (e.g., running simulations or 
visualizations to ensure the problem is well-understood and to inform solution trade-offs). The architecture 
allows information to flow in both directions: the RAG engine supplies data to stakeholders; stakeholders’ 
inputs update the MBSE model; and simulation results or model constraints feedback to refine 

understanding. This closed-loop ensures consistency – if a simulation reveals a new challenge (e.g., a 
particular frequency band is too congested), that insight is sent back into the RAG knowledge base or noted 
by stakeholders, and the problem definition is adjusted accordingly. In our case study, this architecture 
enabled rapid iteration: the AI provided a draft, humans adjusted it, and the model/simulation checked it, 
all in one integrated workflow. 

3.5 Discussion  

The demonstration, though preliminary, illustrates the practical benefits of our integrated framework. First, 
by combining RAG with HCD/PD, we observed improved problem comprehension and stakeholder buy-
in. Users of the prototype commented that the AI-generated context surfaced non-obvious information (e.g., 
an old lesson learned that the team had overlooked), and the collaborative interface made them feel actively 
engaged in defining the mission (addressing the common issue of stakeholders feeling left out early on). 
These qualitative findings support our claim that front-loading the engineering process with AI-informed 

and human-centered activities can reduce knowledge gaps and misalignment. Second, the immediate 
formalization of the problem in an MBSE model created a digital thread from problem definition to 
solution development. This is aligned with the concept of a single source of truth in digital engineering – 
any updates in the problem definition automatically reflected in the model, and vice versa. 
 The integration of simulation modeling into the framework proved valuable. By running a quick 
SysML-driven simulation on the problem definition, the team received early feedback on the feasibility of 

requirements. This kind of simulation-before-design is not standard in many mission engineering practices, 
yet our results suggest it can catch issues that would otherwise appear much later. Essentially, we treated 
the problem statement itself as a hypothesis to be tested via modeling & simulation. This approach is 
consistent with model-driven engineering principles and digital mission engineering as defined by industry 
(Ansys, 2020; Gemma et al., 2022) – we are executing the “mission” in a virtual environment to validate 
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that we’re solving the right problem. The literature on MBSE in early life-cycle supports this notion: by 
exploring mission threads through simulation, one can perform trades and sensitivity analyses on 
requirements before locking them down (Beery & Paulo, 2019). For example, Had we found that the 95% 

comm uptime was consistently unachievable, the stakeholders could have revisited that requirement or 
introduced new mitigating measures before any system design began. This reduces costly rework and helps 
ensure that subsequent engineering efforts are spent on viable solutions. Additionally, integrating 
simulation aligns our framework with the – it demonstrates how architecture modeling languages like 
SysML and simulation tools can work in concert. Others have noted challenges in bridging MBSE models 
to simulation (e.g., ensuring that SysML conceptual models correctly translate to executable models) 

(McGinnis & Ustun, 2009). Our approach offers a template for this bridge: by constraining the MBSE 
model to a well-defined mission scenario and using off-the-shelf simulation integration (Cameo’s built-in 
execution and a custom domain-specific simulator), we achieved a fluid workflow. In doing so, we 
contribute to the ongoing dialogue on how to make simulation a first-class citizen in MBSE – not an 
afterthought. 

3.6 Challenges and Considerations   

There are, of course, limitations and areas for further development. The prototype was developed in a 
controlled lab setting within a limited domain (spectrum management). Scaling this approach to real-world 
complexity – such as joint operations involving numerous systems and stakeholders – presents major 
challenges. The following sections outline these limitations and potential areas for advancement.  

There are limitations and areas for further development. The prototype was developed in a controlled 
lab setting within a limited domain (spectrum management). Scaling this approach to real-world 

complexity, such as joint operations involving numerous systems and stakeholders, presents major 
challenges. The following sections outline these limitations and potential areas for advancement. 

 
• Limited Domain & Generalizability: The current prototype was a controlled lab scenario focused on 

spectrum management. Generalizing and scaling this methodology to real-world mission engineering 
contexts (e.g., joint operations with dozens of systems and diverse stakeholders) will pose challenges. 

The approach may need adaptation for unique or complex scenarios, and further research is needed to 
validate it across a wider range of ME problems. 

• Dependence on High-Quality Data (RAG): The RAG component is only as effective as the data it draws 
on. If the knowledge base is incomplete, outdated, or biased, the AI may produce inaccurate or 
irrelevant outputs. Continuous curation of high-quality, relevant data is essential to avoid 
misinformation. There is also a risk of overwhelming stakeholders with too much retrieved information, 

so the system must filter and present data judiciously. 
• Simulation Fidelity & Integration: Ensuring realistic simulations is another concern – our prototype’s 

quick simulation was simplistic and may not capture complex real-world behaviors. In larger settings, 
integrating more sophisticated models would be necessary (for example, linking the SysML design to 
high-fidelity discrete-event simulations or physics-based tools like Ansys STK for orbital and 
communication analysis). Fortunately, our MBSE approach is compatible with such extensions; tools 

like ModelCenter can orchestrate complex simulation workflows directly from SysML models 
(Spangelo et al, 2013). This compatibility will support scaling up the fidelity of analyses as needed. 

• User Adoption & Training: Cultural adoption is an issue, since many mission engineers and 
stakeholders are unfamiliar with AI-driven tools or SysML models. Our framework represents a shift 
in early mission planning, which may require dedicated training and new roles (e.g., a facilitator to 
operate a Spectrum Lab–like tool). Users may be hesitant to trust an AI assistant initially, perceiving it 

as a “black box.” 
• Trust & Traceability: Early user feedback showed initial skepticism about the AI’s recommendations. 

We found that making the AI’s outputs transparent – clearly showing the source of each 
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recommendation – helped build confidence. Emphasizing traceability of RAG outputs (so users can 
verify information back to its source) and providing a user-friendly interface are key for real-world 
acceptance. 

• Success Criteria for Evaluation: Finally, evaluating the effectiveness of this methodology requires clear 
success criteria. In our prototype, we gauged success by stakeholder satisfaction with the problem-
definition process, the time required to reach consensus on decisions, and the accuracy of the AI-
assisted outputs against expected results. Defining and measuring these metrics is itself a challenge, but 
it is crucial for demonstrating the approach’s value and guiding future improvements. 

4 CONCLUSION  

We presented an integrated framework that strengthens the mission problem framing stage by coupling AI-
driven knowledge RAG with human-centered design principles, all anchored in an MBSE process that feeds 
directly into simulation modeling. This approach ensures that mission engineering begins with a well-
informed, stakeholder-validated problem definition that can be analyzed quantitatively before solution 
development. By doing so, it improves the odds that subsequent engineering efforts address the right 
problem and meet operational needs. The incorporation of SysML-based simulation in particular extends 

the framework’s impact beyond documentation – it provides a methodological connection to simulation 
modeling. Our case study, while limited in scope, demonstrated the potential for rapid feedback and 
iterative refinement when these elements work in unison. 

Moving forward, we plan to apply this framework to more complex case studies (e.g., multi-domain 
operations) and measure its benefits in terms of reduced rework, improved stakeholder satisfaction, and 
mission outcome success. We will also explore integrating more advanced simulation tools and AI 

reasoners (for example, using RAG not just for text generation but to interface with simulation results, 
closing the loop with automated suggestions). Ultimately, we see this work as a step toward digital-first 
mission engineering, where problem formulation, design, and analysis are all part of a connected, model-
driven continuum. We hope that this approach inspires further research at the intersection of MBSE, AI, 
and simulation in the mission engineering community, and we welcome collaboration and critique from 
practitioners and researchers in these domains. 
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