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ABSTRACT

Large language models (LLMs) have exhibited capabilities comparable to those of human experts in
various fields. However, their modeling abilities—the process of converting real-life problems (or their
verbal descriptions) into sensible mathematical models—have been underexplored. In this work, we take
the first step to evaluate LLMs’ abilities to solve stochastic modeling problems, a model class at the core of
Operations Research (OR) and decision-making more broadly. We manually procure a representative set of
graduate-level homework and doctoral qualification-exam problems and test LLMs’ abilities to solve them.
We further leverage SimOpt, an open-source library of simulation-optimization problems and solvers, to
investigate LLMs’ abilities to make real-world decisions. Our results show that, though a nontrivial amount
of work is still needed to reliably automate the stochastic modeling pipeline in reality, state-of-the-art LLMs
demonstrate proficiency on par with human experts in both classroom and practical settings.

1 INTRODUCTION

Large language models (LLMs) have shown great potential in solving many tasks, such as language
modeling, translation, and question answering. More recently, the advent of reasoning models, such as
GPT-o01 (OpenAl 2025) and DeepSeek-R1 (Guo et al. 2025), has further pushed LLMs’ ability to solve math
problems. In general, there are two popular types of benchmarks relevant to this task. The first one usually
considers problems that have unambiguous numerical answers, much like high-school math problems or
math competition problems; example datasets constructed for these purposes include MATH (Hendrycks
et al. 2021) and GSMS8K (Cobbe et al. 2021). The other type of benchmarks target formal theorem proving
and often involve the use of functional programming languages such as Lean (Yang et al. 2023).

However, these types of benchmarks are not suitable for evaluating LLMs’ ability to abstract more
complex problem descriptions into a formal mathematical framework, a procedure often referred to as
modeling. Modeling problems are ubiquitous in practice and are at the core of the field of Operations
Research (OR). As a field, OR differentiates itself by its focus on the science and art of modeling, through
which it aims to distill sensible mathematical models that can be analyzed for insights and structure of
solutions. This process is highly nontrivial and usually requires a deep understanding of both the technical
skills and the problem domain. An ideal model should be able to capture the essential features of the
problem, while being simple enough to be solved analytically or numerically. Clearly, neither math-exam-
style problems nor pure theorem-proving problems can adequately test LLMs’ modeling abilities.

Meanwhile, one may argue that this modeling ability is crucial for an intelligent agent. By abstracting
tangible phenomena into structured mathematical representations, an intelligent agent not only simplifies the
inherent uncertainty of everyday problems but also enables systematic reasoning, simulation, and prediction.
Recently, the OR community has begun to explore the potential of LLMs in solving modeling problems
with an emphasis on optimization (Ramamonjison et al. 2022; AhmadiTeshnizi et al. 2024; Huang et al.
2025). As a central pillar of OR, optimization problems have a wide range of real-world applications, and
the ability to properly formulate and solve them is a key skill for OR practitioners.
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In contrast, the evaluation of LLMs’ ability to handle stochastic modeling problems, another pillar
of OR, has been mostly absent in the literature. Stochastic modeling problems cast the decision-making
process in a framework of uncertainty, which is inherent to many real-world problems. Compared to
optimization in a deterministic scenario, decision-making with uncertainty is intrinsically harder because
a “good” decision has to work for a range of possible outcomes that are often unpredictable and may only
be tractable en masse through an often unknown probability distribution. For example, consider stochastic
processing networks (Dai and Harrison 2020), a well-known class of challenging stochastic modeling
problems. Though some networks have seemingly simple structures, there is often no known analytical
solution, and one must resort to numerical solutions, where a range of other issues (e.g., the choice of a
solver) arise. In general, the complexity of a stochastic modeling problem scales up quickly as multiple
sources of randomness become entangled, and a real-world problem can easily become overly challenging. If
some specialized intelligent agent can be developed to possess human-expert-level capabilities, an incredible
amount of potential can be unlocked just by the power of automation itself.

Therefore, as a first step, we believe there is an urgent need to assess LLMs’ ability to solve these
stochastic modeling problems, and hence add to our understanding of the LLMs’ ability to perform modeling
abstractions. Our contributions include:

*  We construct a dataset of graduate-level stochastic modeling problems to test LLMs’ abilities to solve
them. We find strong performance overall with more open-ended modeling problems presenting a
greater challenge.

*  We procure a set of qualification-exam problems and manually grade LLMs’ answers to them. Our
results show that they demonstrate comparable performance to human PhD candidates in the field.

e Using the SimOpt library, we show that top-performing LL.Ms can match the best in-house solvers
on a range of simulation-optimization problems, underscoring their potential. However, our results
also indicate that off-the-shelf use of LLMs is not yet reliable for automating the full stochastic
modeling pipeline, suggesting the need for further adaptation and integration.

In summary, our findings demonstrate that LLMs hold significant promise across stochastic model-
ing tasks—from analytical problem solving to simulation optimization—but realizing reliable end-to-end
automation will require targeted refinement beyond off-the-shelf use. We hope this work encourages fur-
ther research on automating stochastic modeling and contributes to building intelligent agents capable of
autonomously understanding, modeling, and solving complex real-world problems.

The rest of the paper is organized as follows. In Section 2, we review the related literature. In
Section 3, we evaluate LLMs’ performance on the homework problems dataset. In Section 4, we assess
LLMs’ performance on the qualifying exam problems. In Section 5, we discuss the simulation-optimization
problems and compare LLMs’ solutions with standard solvers. Finally, in Section 6, we conclude the paper
and discuss future directions.

2 LITERATURE REVIEW

LLMs have long been tested for their ability to solve math problems. GPT-3 was one of the first large-scale
generative models to demonstrate strong zero-shot and few-shot capabilities across many tasks, including
simple mathematical problems (Brown et al. 2020). Soon after, Hendrycks et al. (2021) introduced
the MATH dataset, which consists of over 12,500 competition-level math problems covering algebra,
geometry, number theory, and more, emulating the difficulty of middle and high-school math competitions.
Concurrently, Cobbe et al. (2021) released the GSM8K dataset that contains over 8,000 short-answer math
word problems (grade-school level) focusing on arithmetic and multi-step reasoning. They also proposed
a “verifier” model trained to check correctness of solutions. MATH and GSMS8K datasets became widely
used benchmarks to test reasoning and multi-step solution correctness. Many later papers used them as
primary testbed, including the renowned chain-of-thought paper (Wei et al. 2022) and subsequent papers
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on LLM reasoning. It is evident by now that these standard datasets are too rudimentary to keep up with
the problem-solving capabilities of newer models. Therefore, there is a need for new benchmarks with
deeper symbolic reasoning and proof-like questions.

One direction that is more specialized and more challenging is applying LLMs to the stricter setting
of formal logic and interactive theorem proving. Unlike natural language math solutions, where partial
correctness is sometimes acceptable, formal theorem proving requires exact logical derivations. Small
mistakes are not tolerated by the proof checker. Early works on neural theorem proving started almost a
decade ago (Rocktédschel and Riedel 2017; Bansal et al. 2019; Yang and Deng 2019) and typical theorem
proving environments include Lean, Coq, Isabelle, and Mizar. They laid the groundwork for using general-
purpose LLMs for theorem proving (Jiang et al. 2022; Yang et al. 2023). Many challenges remain in
this direction. For example, high-quality proof corpora are relatively small compared to internet-scale text.
Theorem proofs can also be very long and even large models can hallucinate or lose track of intermediate
states. See Glazer et al. (2024) for an example of scenarios where LLMs still struggle.

Another direction equips LLMs with code-writing to enhance their problem-solving abilities. The
LLM’s job is to write correct, logically consistent code, and then a downstream system (e.g., a Python
interpreter) executes that code to obtain the result. Gao et al. (2023) is a good example, where the LLM’s
chain-of-thought is effectively replaced by or augmented with a Python function that solves each sub-step
of the problem. Romera-Paredes et al. (2024) is another prime example, where an LLM paired with
a systematic evaluator pushed beyond the boundary of human knowledge on the cap set problem and
discovered an asymptotic lower bound that was the largest improvement in 20 years. More broadly, this
stream of literature is also related to code generation (Chen et al. 2021; Li et al. 2022) and tool-use (Schick
et al. 2023) by LLMs.

As mentioned before, the rapid development of LLMs’ abilities to solve math problems generally does
not consider the aspect of modeling. A series of work, primarily by OR researchers, have discussed successes
in marrying LLMs with techniques of formulating optimization problems and solving them (Ramamonjison
et al. 2022; Astorga et al. 2025; Xiao et al. 2024; Jiang et al. 2025a; Mostajabdaveh et al. 2024;
AhmadiTeshnizi et al. 2024; Huang et al. 2025; Jiang et al. 2025b); valuable datasets and benchmarks
have also been published. A few works have also attempted to replicate behavioral hypotheses in OR using
LLM agent-based simulations (Kirshner 2024). In contrast, studies on LLMs’ abilities to solve stochastic
modeling problems have been missing. With this paper, we aim to take the first step towards this direction
and hope to inspire future research.

3 HOMEWORK PROBLEMS TEST CASE
3.1 Dataset

To the best of our knowledge, no dataset featuring a list of stochastic modeling problems and solutions
is publicly available. Ideally, the dataset should consist of a large number of mathematical models and
analytical results from academic papers on stochastic modeling, but as a start we will focus on course
settings as a prerequisite. Most textbooks available in digital forms do not have readily available solutions,
and there are also copyright issues. Therefore, we manually sourced problems and solutions from related
courses at Columbia University. The first version of the dataset has 175 problems and solutions, divided
into three categories: probability, stochastic processes, and modeling. However, a quick inspection shows
that a large proportion of the problems are educative and not suitable for evaluation; see Example 1 and 2
for two sample problems.
Example 1 (A classical result in probability theory). Let X be a non-negative random variable with
cumulative distribution function F. Show that E[X] = [;° F (x)dx, where F(x) =1—F(x).
Example 2 (A classical result in stochastic processes). Prove the backwards martingale convergence theorem.
These problems are meant to educate students about classical results that are important enough but
are not covered in class often due to time constraints. It is reasonable to surmise that these classical
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problems have solutions that can be readily found online. As a result, it is very likely that LLMs have
seen the solutions in their training data. Therefore, we screened the dataset to take out questions of similar
nature. The final dataset contains 71 problems and solutions, where 37 are on probability theory, 23 are
on stochastic processes, and 11 are on modeling. Below are some examples:

Example 3 (A sample problem in probability theory). Consider a sequence of i.i.d. random variables
X1,Xa, ..., each having an exponential distribution with parameter 1. Let M,, := max{Xy,...,X,}. (a) Let
Y, = X,1{X,, <logn} denote a truncated exponential, i.e., Y, = X, if X, < logn and equals zero otherwise.
Prove that Y, # X,, i.o., almost surely. (b) Prove that M, /logn — 1 almost surely as n — oo, where log
denotes the natural logarithm.

Example 4 (A sample problem in stochastic processes). Consider an irreducible discrete-time Markov
chain X, on a finite state space. Let P denote its transition probability matrix. A function f is said to be
superharmonic if f(x) > ¥, P(x,y)f(y) or equivalently f (X,) is a supermartingale. Show that the Markov
chain is recurrent if and only if every nonnegative superharmonic function is constant.

Example 5 (A sample modeling problem). Consider a queueing system where each job is “fed-back” to
the input buffer a finite and random number of times. The input flow to the system {(sy,t,) :n € Z} is
assumed to be stationary and ergodic. Provide and prove conditions under which the system has a finite
steady-state which the system couples to in finite time.

Naturally, these problems vary in difficulty and the knowledge required. For instance, Example 3
requires basic knowledge of measure theory; Example 4 requires basic knowledge of Markov chains;
Example 5 requires a good understanding of G/G/1 queues and sample-path analyses. Overall, we believe
this dataset is representative of the problems that students in a graduate-level stochastic modeling course
would encounter.

3.2 LLMs, Prompt Template, and Solving the Problems

We consider 6 LLMs: GPT-40, ol, 03-mini (OpenAl 2025), Claude 3.5 Sonnet (Anthropic 2024), Llama
3.3 70B Instruct Turbo (Grattafiori et al. 2024), and DeepSeek-R1 (Guo et al. 2025) (we use Together Al
(2025) to access Llama and DeepSeek models). While many other LLMs exist and may be of interest, we
believe the ones selected are representative of popular and state-of-the-art LLMs. For each LLM and each
problem, we call the corresponding API to obtain a solution by the following prompt template:

Prompt Template for HW Problems

You are given a problem from probability theory and stochastic modeling. You need to solve this problem
rigorously to the best of your ability. Please provide as many details and explanations as you can. The
problem is as follows: \n\n{problem}

We use this prompt to evaluate the inherent capabilities of LLMs without additional enhancements.
Current LLMs (e.g., ol, 03-mini, DeepSeek-R1) already incorporate reasoning abilities and advanced
prompting and sampling techniques. Therefore, we intentionally avoid using complex prompts, chain-
of-thought methods (Wei et al. 2022), or specialized sampling approaches in our testing. While we
acknowledge that fine-tuning and prompt engineering could potentially improve performance, we reserve
these approaches for future exploration.

3.3 Evaluating LLMs’ Solutions

Ideally, for a rigorous evaluation of LLMs’ solutions, we would have qualified human graders to grade
each of LLMs’ answers. However, due to budget constraint, a more scalable and valid alternative is the
“LLM-as-a-judge” approach (Zheng et al. 2023), where strong LLM models are used to evaluate LLM
performance. In our case, we use GPT-40 as the judge. For each LLM’s answer, we provide the correct
solution and ask the judge to assign a score between 0 and 100 (with 100 meaning the best) to the answer.
We also ask the judge to provide comments on the solution and justify the score it gives.
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By manually inspecting the judge’s scores and comments, we find the evaluations reasonable and
sometimes more comprehensive than those that would be provided by a human counterpart. To make the
evaluation process more robust, we sample three independent scores from the judge (by calling the API
three times) for each problem and take the average for the final score. This procedure mimics pooling
scores assigned by three independent human graders. We found that, in general, the three scores do not
differ much, underlining the reliability of using an LLM as the judge. In Section 4, we also compare the
LLM’s score with human scores and show further evidence for alignment.

3.4 Results

The LLMs’ average scores (and standard errors in parenthesis) are summarized in Table 1.

Table 1: LLMs’ scores on homework problems.

LLM Probability theory Stochastic process = Modeling Total
GPT-40 81.85 (1.95) 78.72 (2.65) 74.67 (1.57) 79.72 (1.39)
ol 95.46 (0.47) 95.28 (0.56) 90.61 (1.96) 94.65 (0.48)

03-mini

Claude 3.5 Sonnet
Llama 3.3 70B Instruct Turbo

DeepSeek-R1

96.97 (0.36)
88.74 (1.09)
78.36 (2.47)
84.30 (2.00)

96.25 (0.54)
86.96 (1.33)
75.99 (2.70)
73.33 (4.44)

92.58 (1.29)
73.48 (3.74)
58.18 (3.49)
64.85 (5.03)

96.05 (0.37)
85.80 (1.12)
74.46 (1.85)
77.73 (2.13)

While we believe that these scores are generally reasonable, we caution against taking these scores to
be exact because they are, after all, generated by GPT-40 and thus may have certain bias (Zheng et al.
2023). Nevertheless, several qualitative observations can be made:

1. First and foremost, if we set 60% as the cutoff for passing a stochastic modeling course, all models
would pass with flying colors, with ol and 03-mini being the top performing.

2. Secondly, models with higher scores seem to have smaller standard errors as well. This may
be because that they have been optimized to be more accurate and be more aligned with human
preferences, which may reduce the variability in their answers.

3. Lastly, for all models, modeling problems seem to be the hardest, perhaps due to their more
open-ended nature.

4 QUALIFICATION EXAM PROBLEMS

In light of the observations from the last section, we believe the state-of-the-art LLMs have abilities on
par with human PhD students in the field. To make the evaluation more rigorous, we next procure a set
of qualification-exam problems to test the LLMs. It is a common tradition in many fields to test a PhD
student’s ability with a qualification exam after the student has passed all required courses. Only those
who pass the exam will be allowed to proceed to the next stage of their PhD and become PhD candidates.
Since the LLMs exhibit superior performance in a course-like setting, it would be interesting to see how
they perform in a real exam. To ensure fairness, we will manually grade the LLMs’ answers; we will also
compare our scores with those generated by GPT-40 to provide evidence for the validity of using GPT-40
as a grader.

Results from the last section suggest that ol and 03-mini have the best performance. Therefore, we
will manually grade the answers generated by these two models. As a comparison, we will also consider
answers from Claude 3.5 Sonnet since it was the second runner-up. Recall that we observed that modeling
problems seem to be the most challenging for these models. By manually inspecting the LLMs’ answers,
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we are also convinced that the LLMs can answer any probability theory and stochastic process problems
well in the exam. Therefore, we will focus on testing these LLMs on modeling problems.

4.1 Dataset

We carefully select 8 modeling problems that have appeared in past qualification exams in the Decision,
Risk, and Operations Division at Columbia Business School. A common theme of these problems is to
model some real-life problem with an abstract model. The students are asked to analyze the model to
arrive at sensible decisions for the real-life problem. Examples include modeling the spread of a virus by
a branching process, variants of the newsvendor problem, optimizing assortment planning using Markov
chains, and stability conditions for complex queueing systems. In other words, though these problems are
still limited to clean models, they have a practical footing and are representative of “analyzable” real-life
stochastic modeling problems. Since they are exam problems, they are also less open-ended compared
to their counterparts in homework to ensure fair grading. On average, these problems are designed to
be challenging for junior PhD students. Every year, a selected committee of faculty would design new
qualification exam problems. Since past problems and their solutions are private, it is unlikely that LLMs’
training set contains the exact problems.

Due to departmental regulations, we are unable to share actual problems from past qualification exams.

To provide a sense of the exam’s format and style, we present below a sample modeling problem that
is made available to first-year PhD students as part of their preparation. Since its primary purpose is to
illustrate the structure and expectations of the exam, the problem is on the easier end of the spectrum
compared to typical qualification exam problems.
Example 6 (A sample qualification exam modeling problem). Consider a non-preemptive FIFO queue with
infinite buffer. Requests arrive according to a Poisson process with rate A, and each has i.i.d. workload
w ~ Exp(lt). The service proceeds as follows. Each request is initially processed for up to 0 time units.
If completed within 0, it exits the system and the next request (if any) begins service. If not, then the
system restarts service in a mode that is divided into two steps: 1) the request is broken into n sub-tasks
that are executed in parallel by n servers, where the processing times of the sub-tasks are i.i.d., uniformly
distributed in the interval [0.5w/n,1.5w/n|; and 2) the results of all n sub-tasks are combined to complete
the service of the original request, in a step that can only commence after all n sub-tasks are completed and
its duration is exponentially distributed with rate 2, independent of the processing times of the sub-tasks
and of the processing requirements of any other requests. (a) What is the stability condition for the system?
(b) What is the steady-state expected sojourn time (waiting time + service time) for a request?

We want to emphasize that the qualification exams at Columbia Business School, especially the stochastic
modeling part, are not easy by any means. The core course that prepares students for this exam is widely
known to be hard in the community. Students often spend a significant amount of time taking this class and
preparing for this exam. Therefore, though we use a small dataset, the evaluation remains meaningful: as
educators and researchers in OR, we are genuinely curious about how LLMs perform on these problems,
and the results may inform how we teach and assess students in the future.

4.2 Results

We obtain answers from the LLMs in the same fashion as before. We also obtain GPT-40’s grading for
these answers. The LLMs’ scores (average scores and standard error in parenthesis where applicable)
are summarized in Table 2. As evidenced by the scores, though modeling problems seem to be more
challenging for LLMs than other types of problems, with 60% being the cutoff for passing, all three models
can pass the qualification exam with flying colors. As a reference, though exact score distributions of past
qualification exams at Columbia Business School are unknown, across the years scores border-lining the
60% cutoff or lower consistently occurred. In this sense, under the same evaluation framework for humans,
these models have demonstrated capabilities at least on par with PhD candidates in the field.
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Table 2: LLMs’ scores on qualification exam problems.

Problem ol 03-mini Claude 3.5 Sonnet
Scores by Scores by Scores by Scores by Scores by Scores by

GPT-40 human GPT-40 human GPT-40 human
Problem 1 95 94 93.33 94 81 74
Problem 2 95 96 96.67 96 85 88
Problem 3 95 91 95 94 86.67 85
Problem 4 98.33 100 100 100 95 88
Problem 5 96.67 95 96.67 100 91.67 100
Problem 6 95 95 98.33 95 78.33 85
Problem 7 94.67 85 98.33 87 85 80
Problem 8 96.67 100 93.33 100 73.33 77

Total  95.79 (0.43) 94.5 (1.61) 96.46 (0.80) 95.75 (1.47) 84.5 (2.31) 84.63 (2.66)

How well the top LLMs are solving these problems and how fast they are improving (see Table 1) are
indeed impressive! But of course, the LLMs’ answers are not without flaws. Upon closely examining their
answers, we found that, for almost all problems, they have the right intuition and high-level arguments.
Where points are taken off, it was mostly because of missing calculations or proof steps. This finding
suggests that these LLMs can be helpful assistants for solving stochastic modeling problems, but they tend
to generate answers that might lack rigor.

4.3 Grading Alignment

Given scores by humans, it is natural to ask whether the scores given by GPT-40 aligns well with “real”
scores. Across the 24 scores, we calculated the Pearson correlation coefficient to be 0.77 (Figure 1, left
panel). The distribution of score differences (GPT-40’s scores minus human’s scores) is approximately
symmetric with a mean of 0.63 and standard error of 1.00 (Figure 1, right panel). The absolute difference
has a mean of 3.82 and a maximum of 11.33. Since the maximum score possible is 100, we believe the
alignment between GPT-40’s grading and human’s is well and the LL.M-as-a-judge method is reliable in our
context. We also acknowledge that a more comprehensive and large-scale evaluation would be beneficial
and leave it for the future work.

5 SIMULATION-OPTIMIZATION PROBLEMS

Having shown that LLMs perform well in a classroom setting, in this section we discuss the ability of
different LLMs in solving and implementing simulation-optimization methods on a testbed of problems
that more closely resemble those encountered in practice.

5.1 Dataset and Evaluation

We evaluate five LLMs—GPT-40, o1, 03-mini, Claude 3.5 Sonnet, and DeepSeek-R 1—on six optimization
problems from the SimOpt library, a well-known benchmark suite for noisy simulation optimization in
OR (Eckman et al. 2023). Each model is prompted five times with problem descriptions from SimOpt.
We execute the Python code generated by the models and compare their solutions to those produced
by baseline algorithms implemented in SimOpt, including RandomSearch, ASTRO-DF, Nelder-Mead,
STRONG, SPSA, ADAM, and ALOE (see Dong et al. (2017) for algorithmic details and comparisons).
For each problem, we report the objective values achieved by the models and benchmark them against
the best solver identified by Dong et al. (2017). These values may differ considerably due to variations
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Figure 1: Grading alignment.

in the simulation environments implemented by the different models. Consequently, we also focus on the
algorithmic strategy that each model employs by manually analyzing the solutions they propose. Each
model solution is allocated the same computational budget, where the budget refers to the number of
simulation replications over the entire course of the search for optimal solutions (Eckman et al. 2023).
To ensure consistency, we use the same prompt template for all five LLMs. The prompt is crafted by
merging the problem descriptions from the SimOpt library with a prompt template (omitted due to space
constraint), which is then refined using ol and manually verified for correctness.

5.2 Results

In Figure 2, we showcase the performance of the solution proposed by the different models. If the
performance of a model is missing, it means that the model failed to produce reasonable code despite
multiple attempts. Below, we summarize our main findings, followed by problem-specific analyses.

1. Claude 3.5 Sonnet delivers the strongest overall performance, achieving near-optimal solutions
for five out of six problems. On the other hand, despite their theoretical exam prowess, GPT-40
critically fails on the textbook Continuous Newsvendor problem and ol can even fail to generate
numerical solutions.

2. Consistent methodological preferences surface—Claude leverages binary/differential evolution;
DeepSeek-R1 defaults to coordinate descent; and ol employs domain-constrained grid searches.

3. The IronOre problem highlights implementation limitations, with all models producing incomparable
solutions.

As evidenced by comparing LLMs’ performance on paper-based exams and on these practical problems,
the top performer in one scenario may not be the best in the other. State-of-the-art models like GPT-40
or ol may even fail to reliably produce numerical solutions. The IronOre problem also suggests that the
comparison between models still needs human supervision. Overall, these observations suggest that more
work is needed to reliably automate the stochastic modeling pipeline.

5.2.1 Chess Matchmaking (ChessMM)

This problem involves matching players on an online chess platform to minimize the average Elo difference
between matched pairs, while ensuring that the average waiting time does not exceed a specified threshold
(0 =5.0). In this setting, players arrive according to a Poisson process and their Elo ratings are sampled
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Figure 2: Performance of different LLMs for simulation-optimization problems. We omit IronOre due to
differences in how LLMs implement the simulation environment, making the results incomparable. We
also exclude ParamEsti, as all LLMs converge to the optimal solution.

from a truncated normal distribution over the interval [0,2400]. No theoretical optimal solution is known,
and SimOpt’s best-performing algorithm achieved an average Elo difference of 45.1246. All evaluations
are conducted with a fixed budget of 1000 function calls. The different LLM approaches primarily differ
in their search strategies for determining the optimal allowable Elo difference threshold, x. For example,
GPT-40’s solution implements a line search over the full range [0,2400]. In contrast, o1’s approach confines
its grid search to the interval [0,300], effectively focusing its limited budget on a more promising subset of
the parameter space, which results in better performance relative to the other methods. Similarly, 03-mini’s
approach uses grid search but over a wider interval [10,2400], which can lead to a less concentrated search
and suboptimal tuning. Meanwhile, Claude’s solution employs a binary search over [0,2400], efficiently
honing in on the smallest threshold that meets the waiting time constraint, while DeepSeek also utilizes
grid search over the full range. These differences in search range and methodology underscore how a
more targeted exploration—such as the one adopted by ol—can yield superior performance when the
computational budget is fixed.

5.2.2 Continuous Newsvendor (CntNv)

This problem considers a vendor who orders a fixed quantity of liquid at the beginning of the day. The
liquid is sold to customers at a per-unit price and any unsold inventory is salvaged at a lower per-unit price,
while the vendor incurs a per-unit ordering cost. In this classic formulation the optimal order quantity is
known in closed form. In our evaluation, we compare ASTRO-DF alongside LLM-derived solutions, all
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using a fixed budget of 1000 function evaluations. Among the LLM solutions, GPT-40 failed to produce a
reasonable solution, whereas o1 and o3-mini both leveraged the closed-form solution to guide their search.
Specifically, o1 combined the closed-form reasoning with a random search strategy, while 03-mini employed
a grid search over candidate order quantities. In contrast, Claude utilized a Nelder-Mead algorithm to
iteratively converge to the optimum, and DeepSeek applied a grid search approach.

5.2.3 Dual Sourcing (DualSourcing)

This problem requires choosing optimal order-up-to levels for two procurement channels—one regular
(lower cost, longer lead time) and one expedited (higher cost, shorter lead time)—so as to minimize the
total expected daily cost (comprising holding, penalty, and ordering costs) over n periods. All the LLMs
implemented grid search. Overall, the differences in performance across these models can be traced to
how they allocate their fixed evaluation budget. 03-mini, Claude, and DeepSeek restrict the search to a
plausible, domain-informed range and appropriately replicate the simulations. In contrast, GPT-40 and ol
misinterpreted and incorrectly implemented key aspects of the inventory dynamics—the correct handling
of order arrivals, backorders, and the inventory pipeline—leading them to absurd cost estimates.

5.2.4 Facility Sizing (FacSize)

This problem requires selecting nonnegative capacities x; for three facilities to minimize the total installation
cost while ensuring that the probability of a stockout (i.e., at least one facility experiencing demand
exceeding its capacity) remains below a certain level. GPT-40 uses a continuous optimization approach with
scipy.optimize.minimize, simulating demand samples and incorporating the stockout probability
as an inequality constraint; however, its estimation of the constraint is imprecise, leading to suboptimal
solutions. In contrast, ol employs a grid search over a discrete range of candidate capacities and reuses
pre-generated demand samples to estimate the stockout probability for each candidate, ultimately selecting
the lowest-cost solution that meets the risk constraint. 03-mini takes a different approach by parameterizing
the capacities as x = U +z 0 and performing a binary search on the scalar parameter z to efficiently identify
the smallest safety margin that satisfies the stockout constraint. Claude also relies on an iterative binary
search, starting with bounds based on the mean and standard deviations of the demand distribution, and
refines these bounds through repeated simulations to robustly estimate the stockout probability, thereby
finding a cost-effective solution. DeepSeek initially derives a solution by setting baseline capacities based
on normal quantiles and then applies coordinate descent to iteratively lower each capacity while ensuring
that the overall stockout probability remains within acceptable limits.

5.2.5 Iron Ore Production with Exogenous Stochastic Price (IronOre)

This problem models a mine producing and selling an item (such as iron ore) on a spot market where the
daily price P, follows a truncated mean-reverting random walk. Every day the decision maker observes P,
and the current inventory level, then makes production and sales decisions according to four thresholds: x;
is the price above which production starts or continues, x, is the inventory level above which production
is halted, x3 is the price below which production is stopped, and x4 is the price above which the entire
inventory is sold. Production is limited to a maximum daily amount and capacity constraints, while holding
costs apply to unsold inventory. Among the SimOpt algorithms, ASTRO-DF performed the best in terms
of maximizing profit. All the LLMs differ in the way they implement the simulation environment for this
problem, so their numerical results are not directly comparable. Therefore, we describe only qualitatively
the strategies each one uses: GPT-40 performs a random search over the continuous threshold space
using scipy.optimize.minimize; ol uses a grid search over a broad range of threshold candidates,
applying pre-generated price paths to evaluate each policy, but its ordering of decisions appears inconsistent;
03-mini parameterizes the thresholds relative to the mean and standard deviations of the price process
and uses a binary search on a safety margin parameter combined with multiple replications to refine the
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candidate solution; Claude employs differential evolution, running multiple simulation trials per evaluation
to iteratively improve the threshold values; and DeepSeek initiates its search with a Bonferroni-based
heuristic and then applies coordinate descent to iteratively adjust the thresholds.

5.2.6 Parameter Estimation (ParamEsti)

This is a classical problem in which the objective is to recover the unknown parameter vector x* of a two-
dimensional gamma distribution from i.i.d. observations. Both SimOpt algorithms and those implemented
by the various LLMs converge to the optimal solution. We omit their implementation details for brevity.

6 CONCLUSIONS

In this work, we evaluated LLLMs’ abilities to solve stochastic modeling problems through a series of
homework problems, qualification-exam problems, and simulation-optimization problems. Our findings
suggest that these models have the potential to automate the stochastic modeling pipeline at a level comparable
with human experts, and we hope this work will inspire future research in developing intelligent OR agents
that can help make real-world decisions reliably and at scale.
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